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Abstract

Two ways to approximate a proximity rela-
tion R (i.e. a reflexive and symmetric fuzzy
relation) by a T -transitive one where T is a
continuous archimedean t-norm are given.

The first one aggregates the transitive closure
R of R with a (maximal) T -transitive relation
B contained in R.

The second one modifies the values of R or
B to better fit them with the ones of R.

Keywords: Proximity, Transitive Clo-
sure, Opening, T -indistinguishability Opera-
tor, Aggregation Operator, Quasi Arithmetic
Mean, Representation Theorem.

1 Introduction

A proximity matrix or relation on a finite universe X
is a reflexive and symmetric fuzzy relation R on X. In
many applications transitivity of R with respect to a t-
norm T is required. In these cases, R must be replaced
by a new relation E also satisfying transitivity, such
relations called T -indistinguishability operators. Of
course, it is desirable that E is as close as possible to
R. This paper presents a couple of ways to find close
transitive relations to R in a reasonable way - i.e.: easy
and rapid to generate- when the t-norm is continuous
archimedean.

There are of course several ways to calculate the close-
ness of two fuzzy relations, many of them related to
some metric. In this paper we propose a way related
to the natural indistinguishability operator ET associ-
ated to T , so that the degree of closeness or similar-
ity between two fuzzy relations R and S is calculated
aggregating the similarity of their respective entries
using the quasi-arithmetic mean generated by an ad-
ditive generator of T .

Also the euclidean metric will be used as an alternative
method to compare fuzzy relations.

Trying to find the closest E to R is very expensive.
Indeed, if n is the cardinality of the universe X, the
transitivity of T -indistinguishability operators can be
modeled by 3

(
n
3

)
inequalities and they lay in the region

of the
(
n
2

)
-dimensional space defined by them. The cal-

culation of E becomes then a non-linear programming
problem. Therefore, simpler methods to find a close
E to R are desirable.

There are several algorithms to find the transitive clo-
sure R of a proximity relation R and it is well known
that R ≥ R. There are also algorithms to find maximal
T -indistinguishability operators B among the set of
T -indistinguishability operators smaller or equal than
R and also the Representation Theorem gives a T -
indistinguishability operator R smaller or equal than
R. It appears reasonable to aggregate R and B or R
to obtain a new T -indistinguishability operator closer
to R than R, B or R. This idea will be developed in
Section 3.

If E is a T -indistinguishability operator, then the pow-
ers E(p) p > 0 are T -indistinguishability operators as
well. This allows us to increase or decrease the values
of E, since E(p) ≤ E(q) for p ≥ q. So, we can de-
crease the values of the transitive closure or increase
the ones of an operators smaller than R to find better
approximations of it. Section 4 is devoted to this idea.

2 Preliminaries

This Section contains some results on t-norms and in-
distinguishability operators that will be needed later
on in the paper. Besides well known definitions and
theorems, the power Tn of a t-norm is generalized to
irrational exponents in Definition 2.2. and given ex-
plicitly for continuous archimedean t-norms in Propo-
sition 2.3.

Though many results remain valid for arbitrary t-



norms and especially for left continuous ones, for the
sake of simplicity we will assume continuity for the
t-norms throughout the paper.

Since a t-norm T is associative, we can extend it to an
n-ary operation in the standard way:

T (x) = x

T (x1, x2, ...xn) = T (x1, T (x2, ..xn)).

In particular, T (
n times︷ ︸︸ ︷
x, x, ...x) will be denoted by x

(n)
T or

simply by x(n) if the t-norm is clear.

If T is continuous, the n-th root x
( 1

n )

T of x wrt T is
defined by

x
( 1

n )

T = sup{z ∈ [0, 1] | z
(n)
T ≤ x}

and for m,n ∈ N , x
( m

n )

T =
(
x

( 1
n )

T

)(m)

T
.

Lemma 2.1. [8] If k, m, n ∈ N, k, n 6= 0 then

x
( km

kn )

T = x
( m

n )

T .

Assuming continuity for the t-norm T , the powers
x

( m
n )

T can be extended to irrational exponents in a
straightforward way.

Definition 2.2. If r ∈ R+ is a positive real number,
let {an}n∈N be a sequence of rational numbers with
limn→∞an = r. For any x ∈ [0, 1], the power x

(r)
T is

x
(r)
T = limn→∞x

(an)
T .

Continuity assures the existence of last limit and in-
dependence of the sequence {an}n∈N .

Proposition 2.3. Let T be an archimedean t-norm
with additive generator t, x ∈ [0, 1] and r ∈ R+. Then

x
(r)
T = t[−1](rt(x)).

Proof. Due to continuity of t we need to prove it only
for rational r.

If r is a natural number m, then trivially x
(m)
T =

t[−1](mt(x)).

If r = 1
n with n ∈ N , then x

( 1
n )

T = z with z
(n)
T = x or

t[−1](nt(z)) = x and x
( 1

n )

T = t[−1]
(

t(x)
n

)
.

For a rational number m
n ,

x
( m

n )

T =
(
x

( 1
n )

T

)(m)

T
= t[−1]

(
mt
(
x

( 1
n )

T

))
=

t[−1]

(
mt

(
t[−1]

(
t(x)
n

)))
= t[−1]

(m

n
t(x)

)
.

Definition 2.4. The residuation
→
T of a t-norm T is

defined by

→
T (x|y) = sup{α ∈ [0, 1] | T (x, α) ≤ y).

Definition 2.5. The natural T -indistinguishability
ET associated to a given t-norm T is the fuzzy relation
on [0,1] defined by

ET (x, y) = T (
→
T (x|y),

→
T (y|x)).

ET is indeed a special kind of T -indistinguishability
operator (Definition 2.6) [2] and in a logical context
where T plays the role of the conjunction, ET is inter-
preted as the bi-implication associated to T [5].

Definition 2.6. Given a t-norm T , a T -
indistinguishability operator E on a set X is a
fuzzy relation E : X × X → [0, 1] satisfying for all
x, y, z ∈ X

1. E(x, x) = 1 (Reflexivity)

2. E(x, y) = E(y, x) (Symmetry)

3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

Example 2.7.

1. If T is the Lukasiewicz t-norm, then ET (x, y) =
1− |x− y| for all x, y ∈ [0, 1].

2. If T is the Product t-norm, then ET (x, y) =
Min(x

y , y
x ) for all x, y ∈ [0, 1] where z

0 = 1.

3. If T is the Minimum t-norm, then ET (x, y) ={
Min(x, y) if x 6= y

1 otherwise.

Theorem 2.8. Representation Theorem [11]. Let R
be a fuzzy relation on a set X and T a continuous
t-norm. R is a T -indistinguishability operator if and
only if there exists a family (hi)i∈I of fuzzy subsets of
X such that for all x, y ∈ X

R(x, y) = infi∈IET (hi(x), hi(y)).

(hi)i∈I is called a generating family of R.

In particular, given a proximity matrix or relation R on
X (i.e. a reflexive and symmetric fuzzy relation), we
can build the T -indistinguishability operator R gen-
erated by the set of the columns of R (i.e. the fuzzy
subsets R(x, ·), x ∈ X).



Proposition 2.9. R ≤ R.
Definition 2.10. Let R be a proximity matrix or re-
lation (i.e. a reflexive and symmetric fuzzy relation)
on X and T a continuous t-norm. The T -transitive
closure R of R is the smallest T -indistinguishability
operator on X satisfying R ≤ R.
Definition 2.11. Let R and S be two fuzzy relations
on X and T a continuous t-norm. The Sup-T product
of R and S is the fuzzy relation R◦S on X defined for
all x, y ∈ X by

(R ◦ S)(x, y) = supz∈XT (R(x, z), S(z, y)).

Since the Sup-T product is associative or continuous
t-norms, we can define for n ∈ N the nth power Rn

T of
a fuzzy relation R:

Rn
T =

n times︷ ︸︸ ︷
R ◦ ... ◦R .

Definition 2.12. Let R be a fuzzy relation on a set
X and T a continuous t-norm. The transitive closure
of R with respect to T is the fuzzy relation

RT = supn∈NRn
T .

Proposition 2.13. Let R be a proximity relation on
a finite set X of cardinality n. Then

RT = sups∈{1,...,n−1}R
s
T .

3 Aggregating the transitive closure
and a T -indistinguishability smaller
than R

Given a proximity relation R on X, it is necessary in
many cases to replace it by a T -indistinguishability
operator E, since T -transitivity is required. In these
cases, we want to find E close to R, where the closeness
or similarity between fuzzy relations can be defined in
many different ways.

Let X be a finite set of cardinality n. Ordering its
elements linearly, we can view the fuzzy subsets of X
as vectors: X = {x1, ..., xn} and a fuzzy set h is the
vector (h(x1), ..., h(xn)). A proximity relation R on X
can be represented by a matrix (also called R) deter-
mined by the

(
n
2

)
entries rij 1 ≤ i < j ≤ n of R above

the diagonal.
Proposition 3.1. Let E = (eij)i,j=1,...,n be a proxim-
ity matrix on a set X of cardinality n and T a con-
tinuous archimedean t-norm with additive generator t.
E is a T -indistinguishability operator if and only if for
all i, j, k 1 ≤ i < j < k ≤ n

t(eij) + t(ejk) ≥ t(eik)
t(eij) + t(eik) ≥ t(ejk)
t(eik) + t(ejk) ≥ t(eij)

Example 3.2. If T is the Lukasiewicz t-norm, then
we can take t(x) = 1− x and last inequalities become

eij + ejk − eik ≤ 1
eij + eik − ejk ≤ 1
eik + ejk − eij ≤ 1

Example 3.3. If T is the Product t-norm, then we
can take t(x) = −log(x) and last inequalities become

eij · ejk ≤ eik

eij · eik ≤ ejk

eik · ejk ≤ eij

Given a proximity matrix R, we must then search for
(one of) the closest matrices E satisfying the last 3

(
n
3

)
inequalities which is a non-linear programming prob-
lem.

Instead of this, we propose alternative methods to ob-
tain not the best but reasonably good approximations
of proximity relations by T -indistinguishability opera-
tors.

Definition 3.4. [1], [8] Given a continuous monotonic
map t : [0, 1] → [−∞,∞] and p, q positive integers with
p + q = 1, the weighted quasi-arithmetic mean mp,q

t

generated by t and weights p and q is defined for all
x, y ∈ [0, 1] by

mp,q
t (x, y) = t−1 (p · t(x) + q · t(y)) .

mt is continuous if and only if Ran t 6= [−∞,∞].

Proposition 3.5. Fixed the weights p and q, the
map assigning to every continuous Archimedean t-
norm T with generator t the weighted mean mp,q

t gen-
erated by t is a bijection between the set of continuous
Archimedean t-norms and the set of continuous quasi-
arithmetic means with these weights.

Proposition 3.6. Let T be a continuous archimedean
t-norm with additive generator t, p ∈ [0, 1] and
E,F two T -indistinguishability operator on X. The
weighted quasi-arithmetic mean mp,1−p

t with weights p
and 1− p of E and F is a T -indistinguishability oper-
ator.

Thanks to this last proposition, given a proximity ma-
trix R we can calculate its transitive closure R and
a smaller T -indistinguishability operator than R, for
example R and find the weights p, 1− p to obtain the
closest average of R and R to R.

The similarity between two fuzzy relations on X will
be calculated in the following way.

Definition 3.7. Let T be a continuous archimedean
t-norm with additive generator t and R,S two fuzzy



relations on a finite set X of cardinality n. The degree
DS(R,S) of similarity or closeness between R and S
is defined by

DS(R,S) = t−1

(∑
1≤i,j≤n |t(rij)− t(sij)|

n

)
.

Proposition 3.8. DS is a T -indistinguishability op-
erator on the set of fuzzy relations on X.

Corollary 3.9. Let R = (rij) be a proximity ma-
trix on a finite set X of cardinality n, T a contin-
uous archimedean t-norm with additive generator t,
R = (ri,j) its transitive closure, R = (rij) the T -
indistinguishability operator obtained from R with the
Representation Theorem, p ∈ [0, 1] and mp,1−p

t (R,R)
the T -indistinguishability operator quasi-arithmetic
mean of R and R with weights p and 1− p. Then

DS(R,mp,1−p
t (E,F )) =

t−1

(∑
1≤i,j≤n

∣∣p · t(rij) + (1− p) · t(rij)− t(rij)
∣∣

n

)
.

We are looking for the value (or values) of p that max-
imize the last equality. Since t−1 is a decreasing map,
this is equivalent to minimize∑

1≤i,j≤n

∣∣p · t(rij) + (1− p) · t(rij)− t(rij)
∣∣

and, since R is reflexive and symmetric, is equivalent
to minimize

f(p) =
∑

1≤i<j≤n

∣∣p · t(rij) + (1− p) · t(rij)− t(rij)
∣∣

Proposition 3.10. Let f1, ..., fn : [0, 1] → R be n
concave functions. Then

∑n
1 fi is a concave function.

Proof. By definition, given two points x1, x2 of [0, 1],
the segments joining their images by fi i = 1, .., n are
above fi.

∑n
1 fi will then be bellow the sum of all the

segments.

Corollary 3.11. f(p) is a concave function.

Proof. Each summand∣∣p · t(rij) + (1− p) · t(rij)− t(rij)
∣∣ of f is a con-

cave function.

Proposition 3.12. The set of minima of f(p) consists
of a single point or of a closed interval.

Proof. f is a concave function and its graphic is a
polygonal line.

Proposition 3.13. The computation of mt(R,R)
with maximum DS(R,mt(R,R)) can be done taking
O(n3) time complexity.

Proof:

The computation of R and R can be done in O(n3)
complexity time [9].

The addition (aggregation of distances) takes O(n2)
time complexity.

The minimization of f(p) takes at most O(n2) time
complexity.

So the most complex part of this process is the compu-
tation of R and R, which still takes O(n3) complexity
time.

Example 3.14. Let X be a set of cardinality 7 and R
the proximity relation given by

R =



1 1 0.3 0.3 0.1 0.3 0.4
1 1 0.6 0.4 0.5 0.4 0.2

0.3 0.6 1 0.1 0.3 0.2 0.5
0.3 0.4 0.1 1 1 1 1
0.1 0.5 0.3 1 1 1 1
0.3 0.4 0.2 1 1 1 1
0.4 0.2 0.5 1 1 1 1


.

Then, for T the Lukasiewicz t-norm,

R =



1 1 0.6 0.4 0.5 0.4 0.4
1 1 0.6 0.5 0.5 0.5 0.5

0.6 0.6 1 0.5 0.5 0.5 0.5
0.4 0.5 0.5 1 1 1 1
0.5 0.5 0.5 1 1 1 1
0.4 0.5 0.5 1 1 1 1
0.4 0.5 0.5 1 1 1 1


and

R =



1 0.6 0.3 0.1 0.1 0.1 0.1
0.6 1 0.3 0.2 0.1 0.2 0.2
0.3 0.3 1 0.1 0.1 0.1 0.1
0.1 0.2 0.1 1 0.8 0.9 0.6
0.1 0.1 0.1 0.8 1 0.8 0.7
0.1 0.2 0.1 0.9 0.8 1 0.7
0.1 0.2 0.1 0.6 0.7 0.7 1


.

f(p) = |0.4p|+|0.3p− 0.3|+|0.3p− 0.1|+|0.4p− 0.4|+

|0.3p− 0.1|+|0.3p|+|0.3p|+|0.3p− 0.1|+|0.4p|+|0.3p− 0.1|+

|0.3p− 0.3|+|0.4p− 0.4|+|0.4p− 0.2|+|0.4p− 0.3|+|0.4p|+

|0.2p|+ |0.1p|+ |0.4p|+ |0.2p|+ |0.3p|+ |0.3p|

which attains its minimum for p = 1
3 .

A good T -transitive approximation of R (for T the
Lukasiewicz t-norm) is then





1 0.733 0.4 0.2 0.233 0.2 0.2
0.733 1 0.4 0.3 0.233 0.3 0.3
0.4 0.4 1 0.233 0.233 0.233 0.233
0.2 0.3 0.233 1 0.867 0.933 0.733

0.233 0.233 0.233 0.867 1 0.867 0.8
0.2 0.3 0.233 0.933 0.867 1 0.8
0.2 0.3 0.233 0.733 0.8 0.8 1


.

Example 3.15. Let X be a set of cardinality 7 and R
the proximity relation given by

R =



1 0.5 0.7 0.7 0.5 0.7 0.8
0.5 1 1 0.8 0.9 0.8 0.6
0.7 1 1 0.5 0.7 0.6 0.9
0.7 0.8 0.5 1 0.5 0.5 0.5
0.5 0.9 0.7 0.5 1 0.5 0.5
0.7 0.8 0.6 0.5 0.5 1 0.5
0.8 0.6 0.9 0.5 0.5 0.5 1


.

Then, for T the Product t-norm,

R =



1 0.7 0.72 0.7 0.5 0.7 0.8
0.7 1 1 0.8 0.9 0.8 0.9
0.72 1 1 0.8 0.9 0.8 0.9
0.7 0.8 0.8 1 0.72 0.64 0.56
0.5 0.9 0.9 0.72 1 0.72 0.63
0.7 0.8 0.8 0.64 0.72 1 0.56
0.8 0.9 0.9 0.56 0.63 0.56 1


and

R =

1 0.5 0.5 0.625 0.5 0.625 0.714
0.5 1 0.625 0.5 0.625 0.555 0.555
0.5 0.625 1 0.5 0.555 0.555 0.6

0.625 0.5 0.5 1 0.5 0.5 0.5
0.5 0.625 0.555 0.5 1 0.5 0.5

0.625 0.555 0.555 0.5 0.5 1 0.5
0.714 0.555 0.6 0.5 0.5 0.5 1


.

f(p) attains its minimum for p = 0.521.

A good T -transitive approximation of R (for T the
Product t-norm) is then



1 0.587 0.595 0.660 0.5 0.660 0.754
0.587 1 0.783 0.626 0.744 0.662 0.700
0.595 0.783 1 0.626 0.700 0.662 0.729
0.660 0.626 0.626 1 0.595 0.563 0.528
0.5 0.744 0.700 0.595 1 0.595 0.559

0.660 0.662 0.662 0.563 0.595 1 0.528
0.754 0.700 0.729 0.528 0.559 0.528 1


.

The degree of closeness between two fuzzy relations
can also be calculated using the euclidean distance.

Definition 3.16. Let R = (rij) and S = (sij) be two
fuzzy relations on a finite set X of cardinality n. The
euclidean distance D between R and S is

D(R,S) =

 ∑
1≤i,j≤n

(rij − sij)
2

 1
2

Corollary 3.17. Let R = (rij) be a proximity ma-
trix on a finite set X of cardinality n, T a contin-
uous archimedean t-norm with additive generator t,
R = (ri,j) its transitive closure, R = (rij) the T -
indistinguishability operator obtained from R with the
Representation Theorem, p ∈ [0, 1] and mt(R,R) the
T -indistinguishability operator quasi-arithmetic mean
of R and R with weights p and 1− p. Then

D(R,mt(E,F )) =

 ∑
1≤i,j≤n

(
t−1

(
p · t (rij) + (1− p) · t

(
rij

))
− t(rij)

)2 1
2

.

Proposition 3.18. Let T be the Lukasiewicz t-norm
and R a proximity on a set X of cardinality n. The
closest mt(R,R) to R is attained for

p =

∑
1≤i<j≤n

(
rij − rij

) (
rij − rij

)∑
1≤i<j≤n

(
rij − rij

)2
Proof. Due to symmetry and reflexivity, it is enough
to minimize

f(p) =
∑

1≤i<j≤n

(
p
(
rij − rij

)
+ rij − rij

)2
.

f ′(p) = 2
∑

1≤i<j≤n

(
p
(
rij − rij

)
+ rij − rij

) (
rij − rij

)
= 0

and

p =

∑
1≤i<j≤n

(
rij − rij

) (
rij − rij

)∑
1≤i<j≤n

(
rij − rij

)2 .

Example 3.19. Let X be a set of cardinality 4 and R
the proximity relation on X given by

R =


1 0.8 0.2 0.4

0.8 1 0.7 0.1
0.2 0.7 1 0.6
0.4 0.1 0.6 1

 .

If T is the Lukasiewicz t-norm, the closest T -
indistinguishability operator of the type mt(R,R) (with
respect to the euclidean distance) is attained for p =
0.6388889.



A good T -approximation of R is then
1 0.6917 0.3917 0.3639

0.6917 1 0.5917 0.2278
0.3917 0.5917 1 0.5278
0.3639 0.2278 0.5278 1


4 Applying a homotecy to a

T -indistinguishability operator

In this Section, the fact that the power of
a T -indistinguishability operator is again a T -
indistinguishability operator will be exploited to mod-
ify the entries of R or R to find a better approximation
of R.

Proposition 4.1. Let T be a continuous t-norm, E a
T -indistinguishability operator on X and p > 0. Then
E(p) is a T -indistinguishability operator.

Example 4.2.

• If T is a continuous archimedean t-norm
with additive generator t and E a T -
indistinguishability operator, then t[−1] (p · t(E))
is a T -indistinguishability operator.

• If T is the Lukasiewicz t-norm and E a T -
indistinguishability operator, then Max(0, 1− p+
p · E) is a T -indistinguishability operator.

• If T is the Product t-norm and E a T -
indistinguishability operator, then Ep is a T -
indistinguishability operator.

Let R = (rij) be a proximity matrix on a set
X of cardinality X, p > 0 and E = (eij) a T -
indistinguishability operator on X with T a continuous
archimedean t-norm with additive generator t. Then

DS(R,E(p)) = t−1

(∑
1≤i,j≤n |t(rij)− p · t(eij))|

n

)
.

To maximize the previous expression is equivalent to
minimize ∑

1≤i,j≤n

|t(rij)− p · t(eij))| .

Since R is reflexive and symmetric, this is equivalent
to minimize

g(p) =
∑

1≤i<j≤n

|t(rij)− p · t(eij))| .

Again g is a sum of concave functions in [0, 1] and
therefore has a minimum or a close interval of minima.

Example 4.3. Let us consider the same matrix

R =


1 0.8 0.2 0.4

0.8 1 0.7 0.1
0.2 0.7 1 0.6
0.4 0.1 0.6 1

 .

Then, for T the Lukasiewicz t-norm,

R =


1 0.5 0.2 0.3

0.5 1 0.4 0.1
0.2 0.4 1 0.4
0.3 0.1 0.4 1

 .

g(p) = |0.5 · p− 0.2|+ |0.8 · p− 0.8|+ |0.7 · p− 0.6|+

|0.6 · p− 0.3|+ |0.9 · p− 0.9|+ |0.6 · p− 0.4|

which attains its minimum for p = 0.857.

A good approximation of R is then

R(0.857) =


1 0.5715 0.3144 0.4001

0.5715 1 0.4858 0.2287
0.3144 0.4858 1 0.4858
0.4001 0.2287 0.4858 1

 .

If we consider the euclidean distance between R and
the power E(p) of a T -indistinguishability operator
E = (eij), then

Proposition 4.4.

D(R,E(p) =

 ∑
1≤i,j≤n

(
t−1 (p · t (eij))− rij

)2 1
2

.

Example 4.5. Continuing the last example,
D(R,R

(p)
) is maximum for p = 1.208633 and

D(R,R(p)) is maximum for p = 0.821306.

Good approximations of R are therefore

R
(1.208633)

=


1 0.7583 0.3957 0.2748

0.7583 1 0.6374 0.1540
0.3957 0.6374 1 0.5165
0.2748 0.1540 0.5165 1

 .

and

R(0.821306) =


1 0.8357 0.5893 0.5072

0.8357 1 0.7536 0.4251
0.5893 0.7536 1 0.6715
0.5072 0.4251 0.6715 1

 .

5 Concluding Remarks

In this paper we have presented two ways to find good
approximations of a proximity relation by T -transitive
ones (T archimedean) in a reasonable computational
way.



The obtained approximation R′ is in general not com-
parable with R in the sense that neither R′ ≥ R nor
R ≥ R′ must hold.

The simple examples show that in general these ap-
proximations are better than the transitive closure or
openings of the proximity R.

The methods of the paper cannot be applied to the
Minimum t-norm. Other ways to obtain similar results
for this t-norm are therefore needed and the authors
will work on it in forthcoming papers.
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