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Abstract 

 

We report the development of a Si-based micro thermogenerator build from silicon-on-

insulator by using standard CMOS processing. Ultrathin layers of Si, 100 nm in 

thickness, with embedded n and p-type doped regions electrically connected in series 

and thermally in parallel, are the active elements of the thermoelectric device that 

generate the thermopower under various thermal gradients. This proof-of-concept 

device produces an output power density of 4.5 µW/cm
2
 under a temperature difference 

of 5 K across the hot and cold regions.     
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1. Introduction 

 

 

The potential decrease of fossil fuel supplies and the urgent need to reduce green-house 

gas emissions drives mankind into the necessity to search for alternative, greener, 

sources of energy. Among the various available energy sources, waste-heat energy is 

universally present since any heat engine, from biological entities at nearly room 

temperature to high-temperature combustion processes, will dissipate part of its energy 

in the form of heat. An efficient conversion of this excess heat into useful forms of 

energy, i.e. electricity, remains a challenge and it is the object of intense investigation 

[1-4]. In this respect, thermoelectric materials that convert heat differences across the 

material into electricity could help meeting the energy challenge of the future. The 

efficiency of this energy conversion relies on the capacity of the material to transport 

electrical charges while impeding the flow of heat. A useful indicator of the goodness of 

a TE material is the Figure-of-Merit, ZT, an adimensional parameter that relates the 

Seebeck coefficient, S, the electrical conductivity, σ, and the thermal conductivity, κ , at 

a given temperature, as ZT=(S
2
σ/κ)*T. A material with large ZT can be termed phonon 

glass-electron crystal, but unfortunately, no material in nature fulfills these requirements 

to the desired level. Currently, heavy semiconductors of the BiSbTe family with 

consistent values of ZT up to 1.5 are the best thermoelectric materials at medium-to-low 

temperatures [5,6]. However, Bi(Sb)Te, already used in commercial Peltier devices, 

lacks proper integration with standard CMOS processing. Therefore, integration of 

these materials into chip-harvesting devices is technically challenging. On the contrary, 

doped bulk-Si may be appealing but its figure-of-merit is remarkably low, ZT=0.01 at 

300 K, precluding its use as a thermoelectric converter.  In fact, poly-silicon 



thermogenerators with many elements per device have been fabricated in an augmented 

BiCMOS process [7,8], however their low power output limit the range of applications.  

Nanostructuration can be a convenient route to improve the figure of merit [9] and a 

recent breakthrough has challenged the view that Si is a poor thermoelectric [10,11]. It 

was shown that Si nanowires exhibit a figure of merit enhanced by 100x compared to its 

bulk counterpart. This remarkable behavior is mainly due to the reduction of the thermal 

conductivity associated to phonon scattering with the boundaries of the NW, while 

preserving bulk values for the electrical conductivity and the Seebeck coefficient. 

Although still insufficient for many applications that require ZT in excess of 3, this 

finding opens the use of low-dimensional Si as a thermoelectric material in miniaturized 

chips that can be monolithically integrated into CMOS-compatible devices for low-

power applications. There are already several examples that employ low-dimensional Si 

obtained from bottom-up or top-down approaches in planar or vertical geometries [12-

14]. The most extended device structure has a vertical configuration with the n-p legs 

connected thermally in parallel and electrically in series. Several vertical n-p type TEG 

using top-down Si NWs were recently fabricated and tested [12, 13].  The output power 

in the device fabricated by Li et al. was limited to few µW per device due to the reduced 

ΔT=0.12K achieved across the 1 µm Si NWs [12]. A power output of 29.3 µW with ΔT 

of 56 K for a 50 µm x 50 µm device was achieved by Bowers and coworkers in a unileg 

device using a highly ordered Si nanowire array composite [13]. A planar device also 

based on Si NWs was fabricated by Davila et al [14]. The NWs were grown by the VLS 

method at high temperature. This unileg device has a high density of NWs with a total 

distance between the hot and cold regions up to 90 µm. Power outputs of 9 µW/cm
2  

and 

1.4 mW/cm
2
 were achieved under temperature differences of 27 and 300 K across the 

device, respectively.  



Thin films can also be used to build a thermoelectric generator [6, 15]. In this case the 

vertical geometry is sometimes not adequate since the temperature of the cold side 

increases rapidly by heat conduction and radiation from the hot side. A planar 

configuration has been shown to be more effective for a thin film TEG since the heat 

flow is parallel to the thin film and larger ΔT can be achieved [15].  The reduction of 

film thickness to the nm range will increase phonon scattering with the boundaries 

compared to bulk materials, enabling higher temperature differences and therefore 

higher power outputs.   

Bottom-up approaches to fabricate the desired nanostructured material integrated in the 

chip-harvesting module often lack enough reproducibility to guarantee the required 

fabrication yield. Therefore, we propose a top-down strategy in combination with a 

planar configuration to fabricate a TEG device that uses low-dimensional Si as the main 

thermoelectric material. In this article we detail the fabrication procedure and the 

critical steps towards obtaining a reliable and efficient TEG comprising n and p-type 

legs made from an ultrathin Si membrane. We model the thermoelectrical behavior of 

the device and characterize the power output at various ΔT by measuring IV curves 

under different loads.     

 

2. Material and Methods 

2.1. Device design and microfabrication procedure 

The design of the TEG is shown in Figure 1. It consists on a planar device with a 

suspended very thin Si platform at the center (500x500 µm
2
) contacted to a Si frame 

through ultrathin n and p-type Si membranes, 50um wide x 150 um long. The distance 

between hot and cold regions is also approximately 100 µm. In this particular design, 20 

np couples are distributed along the 4 sides of the central platform.  



We start the microfabrication process (See Figure 2) with a Silicon on Insulator, SOI, 

wafer with a Si thickness of 340 nm and buried oxide of 400 nm. The upper Si layer is 

reduced to 100 nm by wet oxidation and subsequent HF etching. This layer is patterned 

and etched (RIE) until the buried oxide is reached, to create a central squared silicon 

region of 500umx500um (undoped region) and 40 50umx150um “legs” sourrounding it 

(doped n,p regions). A thin, 50 nm, low-stress SiNx layer is grown by low-pressure 

chemical vapor deposition, LPCVD, at the top and bottom surfaces of the wafer.  The 

bottom SiNx layer is patterned by photolithography and then etched by reactive ion 

etching (RIE), leaving windows to facilitate the removal of the Si wafer in the last step. 

The n, p regions are defined by using a photoresist mask, followed by sequential 

implantation of Boron and Phosphorous and Rapid Thermal Annealing RTA at 900
o
C. 

Details of this step will be covered in the next section. After dopant activation, vias are 

opened at the edges of the doped regions to permit contacts with the metal and also in 

the middle of the n, p regions to decrease the thermal link between the Si frame and the 

suspended membrane.  Ni, 50 nm thick, is grown by sputtering, followed by a thermal 

treatment at 300
o
C to form NiSi and achieve ohmic contacts with the doped Si regions. 

The final step consists on a KOH wet etching of the back side to leave the central Si 

platform suspended.   

2.2. n and p-type doping of ultrathin Si layers 

Ion implantation followed by rapid thermal annealing to recrystallize the material and 

activate the dopants is the standard technique to increase carrier concentration in 

semiconductors. Although the microscopic processes behind an effective doping are 

complex, very well established recipes exist for bulk Si. However, unlike their bulk 

counterpart, doping ultrathin layers require additional strategies to achieve the adequate 

carrier concentration without compromising the stability of the film. Since the high 



mobility of the carriers depends on the crystalline quality of the material, epitaxial 

recrystallization must be ensured by appropriate post-processing annealings. This 

requires that a single-crystalline layer, free of defects, that will act as a seed for epitaxial 

ordering of the damaged region during rapid thermal processing, must be ensured at the 

bottom of the implanted layer. We use SRIM software packaging to determine the doses 

and energies required to achieve the desired carrier concentration, and guarantee a low-

damaged region at the bottom of the Si layer.  The temperature of the rapid thermal 

processing is another key aspect of impurity activation when dealing with very thin 

layers of Si on SiO2. Temperatures above 950
o
C will rupture the film by dewetting 

induced by the surface tension between crystalline Si and SiO2 [16, 17]. As the best 

compromise to facilitate activation and avoid structural damaging of the layer we have 

adopted a RTA procedure with T=900
o
C. 

 

3. Finite Element Modeling  

3D modeling of the output power under different temperature loads is realized by 

COMSOL Multiphysics simulation package, which allows the solution of common 

arbitrary partial differential equations (PDEs) of a field variable on a given volume. 

Finite Element Modeling, FEM, was carried out with the cold region at room 

temperature and the materials parameters listed in Table I. The main results are shown 

in figure 4. Figure 4 show the voltage output (a) and the output power density (b)as a 

function of  current, measured  by varying the Rload. Maximum power densities of 6.7 

and 168 µW/cm
2
 are attained at RL=Rint for ΔT=5 and 25 K, respectively. The inset of 

Figure 4b shows the 2D Temperature contour in the device. The structure yields a 

Seebeck voltage at open circuit of 285 µV/K, which reflects S is dominated by the n and 

p-type doped Si regions embedded in the Si membrane.  



 

Table I. Material properties, thermal conductivity κ, electrical resistivity ρ, and Seebeck 

coefficient S, used in the Multiphysics modeling of the TEG.  

 

Material k  [W/mK] ρ [Ωcm] S (V/K) 

SiO2 1.4  10
16

  

SiNx 3  1000   

Ni 93   6.24x10
-8

   -15x10
-6

  

Si (central region) 150 14-22  0 

Si (doped legs) 60  1x10
-2

  4.0x10
-4 

 

Contact resistance  Ni/NiSi/Si  = 1.7x10-6 Ωcm2 

 

 

4. Experimental results on TEG behavior 

The experimental conditions to achieve a good contact resistance between Ni and n and 

p-type doped Si were evaluated by using specific test structures to determine the contact 

resistance. As briefly mentioned in section 2.1, after Ni growth, the devices were 

annealed at 300
o
C to form NiSi. This procedure reduced the interfacial contact 

resistance to values around 1.7 µΩ cm
-2

. The resistance of the Si layer and the mobility 

of the carriers were evaluated with a Hall setup.  In the n-type material for a doping 

level of 2x10
19

 cm
-3

 we measured a mobility of 80 cm
2
/Vs, and for p-type Si with a 

doping of 6.5x10
18 

cm
-3 

we obtained  µ=50 cm
2
/Vs. Those values are compatible with 

bulk Si [18] and reinforce the epitaxial regrowth of the thin Si layer in the conditions 

stated above. The internal resistance of a single device with 20 np regions connected 

electrically in series is about 40 kΩ. This value closely agrees with the calculated one, 



38 kΩ, based on the dimensions of the material and the electrical resistivity of both n 

and p-type regions.  

 

4.1 TE characterization 

 

We impose a temperature gradient between the hot and cold regions of the device by 

contacting the Si frame to a hot plate, that served as a heat-source in harvesting 

configuration, while cooling the central part of the chip (suspended Si membrane) by 

convective cooling with a fan (Figure 5a). In steady-state the temperatures of the central 

and outside regions of the device are measured by means of two metal resistances 

located at both sides. The Seebeck voltage at open circuit was quantified under various 

temperature differences across the structure ranging from 1 to 5.5 K. The length of the 

active region of the device is 150 µm. The results for the 100 nm thin Si membrane are 

shown in Figure 5b-d. The measured Seebeck coefficient, obtained from the slope of the 

open circuit voltage versus the temperature difference (Figure 6b), is 354 µV/K per a 

unileg (7.1 mV across a 10 np legs device). Previous studies have shown that the 

Seebeck coefficient of SOI wafers with Si thicknesses above 6 nm is similar to bulk Si 

[19]. As the Seebeck coefficient of the structure is largely dominated by the n,p Si 

regions, we infer an average doping level of ~10
19

 cm
-3

, that roughly matches our 

estimations from the test structures. Since, in a 100 nm thick single-crystalline layer the 

electrical resistivity is also analogous to bulk Si, the main impact of the reduced 

thickness of the Si membrane on the figure of merit is the decrease of the thermal 

conductivity by approximately 3-fold compared to bulk Si [20]. That basically means 

the device is able to withstand higher temperature differences under the same applied 

temperature loads compared to previous devices that used much thicker films of poly-Si 



[7,8].  Further reduction of the Si thickness will diminish the thermal conductivity even 

further at the expense of an increase of the internal resistance which may require 

complex signal conditioning steps to power output devices.  

The thermoelectric characterization of the microdevice is accomplished by using a load 

resistor connected in series with the TE generator. I-V curves are obtained by changing 

the value of the load resistor. The results for various temperature differences are shown 

in figure 6b and c. As expected and shown above in Figure 4 from the modeling of the 

thermoelectric response, the maximum power output occurs at Rload ~ Rint. From the 

measured data a power output of 4.5µW/cm
2 
under a temperature difference of 5.5 K is 

obtained, which is comparable to the value obtained from Finite Element Modeling of 

the structure. This value compares well to previously reported Si-based 

micro/nanogenerators [12-14, 21]. Considering that the maximum power output 

increases parabolically with ΔT, P α ΔT
2 

[1], the power output achieved with our device 

at ΔT= 5 K is higher than those found in other planar Si-based thermo generators, such 

as the one based on Si-Al thermopiles [7] or on bottom-up Si NWs [14]. In future 

devices optimization of the structure could improve the power output. A simultaneous 

reduction of the Si thickness together with an improved design that maximizes the 

parallel configuration of the n,p regions to reduce the internal resistance will certainly 

result in improved power outputs and thermal gradients across the structure. Thermal 

coupling of the central membrane to a heat sink and encapsulation of the device are also 

important considerations for practical applications. Under optimum conditions the 

microgenerator could ultimately be used as an energy harvester to power small devices 

such as mobile and wireless electronics. For sensing applications requiring 

discontinuous monitorization, the proposed device can be integrated into wearable 

thermoelectrics for body scavenging purposes or into higher temperature sources such 



as exhaust hot pipes. A back-of-the-envelope calculation shows a 10 cm
2
 TEG device 

could provide power outputs around 50 µW during energy body scavenging in 

appropriate ambient conditions. Collecting energy for about 2 min would provide about 

6 mJ, that is enough to run a low power device such as a heart rate monitor.   

 

 Conclusions 

We have fabricated a first prototype of a CMOS compatible planar microthermoelectric 

generator that contains ultrathin Si membranes as the active TE material and therefore 

can be integrated into standard Si chips. A power output of 4.5 µW/cm
2
 was achieved 

under a temperature difference of 5.5 K. Patterning the membrane into Si nanowires or 

reducing its thickness to few nm could result in substantial improvements by reducing 

the thermal conductivity of the structure. In addition, the proposed design permits the 

fabrication of multiple optimized generators on a single wafer to be connected in series 

to boost the voltage performance or in parallel to increase current output to match the 

desired application. 
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FIGURES 

 

FIGURE 1. Schematics of the device. (a) Front view. Gray colour show the metal lines. 

Red and blue represent the n, p Si regions. Purple represents the SiNx membrane. In this 

version of the device the central region is filled with a metal for heating/sensing 

purposes.  (b) Back view after etching the bulk Si of the SOI wafer.  

 

FIGURE 2. Sketch of the main microfabrications steps: 1. Thining of the Si layer. 2. 

Patterning of the Si membrane. 3. Growth of SiNx. 4. RIE in the backside to open 

window. 5&6. n,p implantation. 7. Post annealing to activate dopants. 8.  

Photolithograpgy to define metal lines and contacts. 9. Deep RIE to suspend the central 

region.  

 

FIGURE 3. Optical microscope images of a fabricated device before opening the back 

side (a,b) and after (c,d). Figure d shows a detailed view of the n,p regions and the open 

vias used for contacts.   

 

FIGURE 4. Finite Element Modeling of the thermoelectric microgenerator. Output 

voltage (a) and Power density (b) as a function of current for two temperature 

differences accross the structure. The inset in figure b shows the 2D map use for the 

simulations.  

 

FIGURE 5. (a) Schematic design of the experimental setup to measure thermoelectric 

behavior. (b) Voltage at open circuit as a function of the temperature difference 

Measured voltage (c) and power generation per unit area (d) versus current for the TEG 

device  Different values of temperature difference were used for each series as shown in 

the legend. 
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Figure 2 
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Figure 3  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  
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Figure 5 
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Highlights 

 We describe the microfabrication of a planar CMOS compatible Si-based 

generator.  

 The device contains a 100 nm thick Si membrane with embedded n,p doped 

regions.  

 A power output of 4.5 µW/cm
2
 is achieved for a temperaure difference of 5.5 K. 

 The chip could be suited for body-energy scavening to feed low-power devices.  


