
XII International Conference on Computational Plasticity. Fundamentals and Applications
COMPLAS XII

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds)

STEPWISE ADVANCING STRATEGY FOR THE SIMULATION OF 
FATIGUE PROBLEMS

L. G. BARBU*, S. OLLER†, X. MARTINEZ† AND A. BARBAT†

*, †
International Center for Numerical Methods in Engineering (CIMNE)

Universidad Politécnica de Cataluña
Campus Norte UPC, 08034 Barcelona, Spain

e-mail: lgratiela@cimne.upc.edu; sergio.oller@upc.edu; x.martinez@upc.edu; alex.barbat@upc.edu

Key words: High cycle fatigue, Continuum damage mechanics, Time-advance strategy, 
cyclical load combination.

Abstract. A time advance strategy for cyclic loading will be presented, applied to the fatigue 
formulation first proposed by [1]. The coupling of both formulations provides a 
comprehensive approach to simulate high cycle fatigue problems accurately and with an 
important computational cost reduction. The capabilities of the proposed procedure are shown 
in a numerical example.

1 INTRODUCTION
Fatigue is a phenomenon generally understood as an alteration in material properties 

leading to failure under cyclic loads below its elastic threshold. Habitually, the number of 
cycles required for the total fracture of the mechanical part was found to be in the range of 104

– 107 cycles or more. 
However, it has been observed that when either the entire load or some cycles of it, induce

stresses superior to the elastic limit of the material, an alteration of material properties still 
occurs, not only due to the inelastic nature of the load but also due to its cyclic application. In 
this case the number of cycles required for rupture is found to be drastically reduced and is
generally below 103 -104 cycles. Based on these observations, fatigue processes can be
differentiated into high cycle, low cycle and ultra-low-cycle fatigue, as further inquiry into 
mechanical behaviour showed fundamental differences between them.

Regarding the high cycle fatigue phenomenon, it has been documented that the type of 
fracture involved at macroscale level is a brittle type. Therefore, high – cycle fatigue (HCF) 
does not introduce macroscopic plastic strain. When looking at the same phenomena from the 
microscale, however, it can be seen that a large part of the material’s internal energy is spent 
in a rearrangement of its internal structure to accommodate better the elastic cyclical load, 
followed by the gliding of the interatomic planes phase. Therefore, metal grains suffer plastic 
slip and non-linear behaviour [2], and these irreversible processes are responsible for crack 
initiation under cyclic loading.

The model hereby proposed is based on the classical continuum damage formulation made 
sensible to fatigue effects by incorporating the number of cycles as a new internal variable.

High cycle fatigue experiments habitually exhibit a fatigue life in the order of millions or 
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dozens of millions of loading cycles. If a single loading cycle is described by n loading steps, 
then the number of loading steps required to complete a HCF analysis would be in the order 
of 107 x n. Furthermore, if the mechanical piece has a complex geometry and a high level of 
discretization is required at finite element level, then at each of the 107 x n load steps a large 
number of constitutive operations need to be computed for each integration point.

The above serve as a clear example of why time-advance strategies are of the utmost 
importance in HCF simulations. The strategy presented in this paper is based on the model 
defined in [1], utilizing, however, the stages of the algorithm in a wider display of situations, 
as will be presented later on. 

2 DAMAGE MODEL

2.1 Mechanical formulation
The free Helmholtz energy is formulated in the reference configuration for elastic Green 

strains, 𝐸𝐸𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑖𝑖𝑖𝑖𝑒𝑒 , as [3][4]

𝛹𝛹 =  𝛹𝛹�𝐸𝐸𝑖𝑖𝑖𝑖 ,𝑑𝑑� = (1 − 𝑑𝑑) 
1

2𝑚𝑚0 �𝐸𝐸𝑖𝑖𝑖𝑖  𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 𝐸𝐸𝑘𝑘𝑘𝑘� (1)

Considering the second thermodynamic law (Clausius-Duhem inequality – [5] [6] [7]), the 
mechanical dissipation can be obtained as [3]

𝚵𝚵 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 𝑑̇𝑑 ≥ 0 (2)

The accomplishment of this dissipation condition (Equation 2) demands that the expression 
of the stress should be defined as (Coleman method; see [7])

𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑚𝑚0 𝜕𝜕𝜕𝜕
𝜕𝜕𝐸𝐸𝑖𝑖𝑖𝑖

= (1 − 𝑑𝑑)𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 𝐸𝐸𝑘𝑘𝑘𝑘 (3a)

Also, from the last expressions, the secant constitutive tensor can be obtained as:

𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 (𝑑𝑑) =
𝜕𝜕𝑆𝑆𝑖𝑖𝑖𝑖
𝜕𝜕𝐸𝐸𝑖𝑖𝑖𝑖

= 𝑚𝑚0 𝜕𝜕2𝛹𝛹
𝜕𝜕𝐸𝐸𝑖𝑖𝑖𝑖𝜕𝜕𝐸𝐸𝑘𝑘𝑘𝑘

= (1 − 𝑑𝑑)𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 (3b)

where 𝑚𝑚0 is the material density, 𝐸𝐸𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑖𝑖𝑖𝑖𝑒𝑒 is the total strain tensors, 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑑𝑑 ≤ 1 is the 
internal damage variable enclosed between its initial value 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 and its maximum value 1,  
𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 and  𝑪𝑪𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 are the original and secant constitutive tensors and  𝑆𝑆𝑖𝑖𝑖𝑖 is the stress tensor for 
a single material point. 

2.2 Threshold damage function oriented to fatigue analysis. Macroscopic approach
The effects caused by applying an increasing number of loading cycles are taken into 

account by means of a proposed 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟(𝑁𝑁, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑅𝑅) function. This function is introduced in the 
above formulation in the expression of the discontinuity threshold proposed by [7], [8] and 
[9], 𝐹𝐹𝐷𝐷�𝑆𝑆𝑖𝑖𝑖𝑖,𝑑𝑑�. The number of cycles can then be incorporated as a state value. 

This enables the classical constitutive damage formulation to account for fatigue 
phenomena by translating the accumulation of number of cycles into a readjustment and/or 
movement of the damage threshold function.
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The non-lineal behaviour caused by fatigue is introduced in this procedure implicitly, by 
incorporating a fatigue state variable that is irreversible and depends on the number of cycles, 
the amplitude and the maximum value of the stresses in the material, and on the factor of 
reversion of the load. This state variable affects the residual strength of the material by 
modifying the damage threshold either on the strength threshold (left term) or on the 
equivalent stress function (right term)[1].

𝐹𝐹𝐷𝐷�𝑆𝑆𝑖𝑖𝑖𝑖 ,𝑑𝑑,𝑁𝑁� = 𝑓𝑓𝐷𝐷�𝑆𝑆𝑖𝑖𝑖𝑖� − 𝐾𝐾
𝐷𝐷
�𝑆𝑆𝑖𝑖𝑖𝑖 ,𝑑𝑑� ∙ 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟(𝑁𝑁, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑅𝑅)�������������������

𝐾𝐾𝐷𝐷�𝑆𝑆𝑖𝑖𝑖𝑖,𝑑𝑑,𝑁𝑁�

= 0 (4)

𝐹𝐹𝐷𝐷�𝑆𝑆𝑖𝑖𝑖𝑖 ,𝑑𝑑,𝑁𝑁� = �
𝑓𝑓𝐷𝐷�𝑆𝑆𝑖𝑖𝑖𝑖�

𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟(𝑁𝑁, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑅𝑅)��������������
𝑓𝑓𝐷𝐷′�𝑆𝑆𝑖𝑖𝑖𝑖,𝑁𝑁,𝑅𝑅�

− 𝐾𝐾
𝐷𝐷
�𝑆𝑆𝑖𝑖𝑖𝑖 ,𝑑𝑑� = 0

In Equation (4), N is the current number of cycles, 𝑅𝑅 = 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

is the stress reversion factor, 
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 the maximum applied stress (see Figure 2) and  𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟(𝑁𝑁, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑅𝑅) is the reduction 
function influenced by the number of the cycles N. Furthermore, in the above, 𝑓𝑓𝐷𝐷′ = 𝑓𝑓𝐷𝐷 𝑓𝑓𝑁𝑁⁄ ,
is the equivalent stress function in the undamaged space, 𝐾𝐾𝐷𝐷(𝑆𝑆𝑖𝑖𝑖𝑖,𝑑𝑑,𝑁𝑁) is the damage strength 
threshold, and   𝑑𝑑 = ∫ 𝑑𝑑 ̇ 𝑑𝑑𝑑𝑑𝑡𝑡

0 the damage internal variable. The evolution of the damage 
variable is defined as,

𝑑̇𝑑 = 𝜇̇𝜇
𝜕𝜕𝐹𝐹𝐷𝐷

𝜕𝜕𝑓𝑓𝐷𝐷
(5)

being µ the consistency damage factor, which is equivalent to the consistency plastic factor
defined in [3]. Consequently, for the isotropic damage case,

𝑑̇𝑑 =
𝜇̇𝜇
𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟

(6)

The reduction function 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟(𝑁𝑁, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑅𝑅) makes the damage model dependent on the 
phenomenon of fatigue.

Figure 1a: Stress evolution at a single point Figure 1b: S-N (Wöhler’s) Curves
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2.3 Function of residual strength reduction for fatigue – Wöhler curve definition
Wöhler or “Stress-Num. of cycles” (S-N) curves are experimentally obtained by subjecting 

identical smooth specimens to cyclic harmonic stresses and establishing their life span 
measured in number of cycles. The curves depend on the level of the maximum applied stress 
and the ratio between the lowest and the highest stresses (R=Smin/Smax).  Usually, S-N curves 
are obtained for fully reversed stress (R=Smin/Smax=-1) by rotating bending fatigue tests.

S-N curves are, therefore, fatigue life estimators for a material point with a fixed maximum 
stress and a given ratio R.   If, after a number of cycles lower than the cycles to failure, the 
cyclic load stops, a change in the material’s elastic threshold is expected due to accumulation 
of fatigue cycles. Furthermore, if the number of cycles exceeds Nf, being Nf the fatigue life as 
resulting from Figure 2, the material will fail with the consequent reduction of strength and 
stiffness. The change in strength is quantified by the strength reduction function 
𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟(𝑁𝑁, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑅𝑅).

Figure 2: Evolution of the residual strength with the applied load and number of cycles

In the case of a cyclic load with constant maximum value and reversion factor throughout 
the entire life of a material, the S-N curve is sufficient for determining fatigue life. However, 
when dealing with different load interactions the main focus resides on the residual strength 
curve. The curve quantifies the loss of strength in the material as the number of cycles 
accumulates and as load characteristics change.

All fatigue numerical simulations are based on experimentally obtained Wöhler curves.
These curves are described in an analytical form with the help of material parameters. Their 
expression, as well as the analytical definition of the strength reduction function, is connected 
to the experimental curve and, therefore, subjected to change if the material changes.

The analytical expression of the curves used in this paper can be found in [1]. Different
analytical definitions can also be found in [10], [11] and [12].
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3 STEPWISE TIME ADVANCEMENT STRATEGY

3.1 Introduction
The stepwise time-advancing strategy proposed in this paper is based on the formulation 

presented in [1] and consists of two different stages. The first one is defined by time-advance 
being conducted by small time increments with the consequent load variation following a 
cyclic path. The second stage is characterized by time-advance being done with large 
increments of number of cycles.

3.2 Load-tracking stage
The first stage is characterized by the load being applied in small increments. The purpose 

of this stage is to determine and save the characteristics of the cyclical load. After having 
detected the maximum and the minimum stress, at each integration point, the reversion factor 
is computed, R=Smin/Smax. Several more cycles are then described by small increments. After 
each one of them, a stabilization norm quantifying the sum of the normalized variation of the 
reversion factor, compared to its previous cycle value, is evaluated as shown below in 
equation 7.

01

1

→
−

=η ∑ +

+

GP
i
GP

i
GP

i
GP

R
RR

(7)

When this norm is below a given tolerance it can be said that the reversion factor has a 
stable value throughout the solid.

This stage is necessary at the beginning of each different cyclical load in order to 
determine the parameters that define the cyclic behavior at each Gauss point of the structure
(R and Smax). In case of modifying the cyclic load, a new activation of this stage is necessary
in order to recalculate these parameters. The flow chart for this stage is presented on the left 
side of Figure 3. 

In this stage the variable is the level of the load.

3.3 Large increments tracking stage
After the stress parameters, R and Smax, stabilize throughout the solid there is no need to 

keep applying small increments as there will be no change in the stress state unless either the 
elastic threshold is reached or the applied cyclical load changes. Therefore, the load level can 
be maintained at its maximum value and large number of cycles increments can be applied. 

In this stage the variable is not the level of the load, kept constant, but the number of 
cycles.

A flow chart is presented below in Figure 3 for each of the two stages. The algorithm for 
the large increments stage is presented on the right side of the figure. The pass from one stage 
to the other is indicated by red arrows.

A key point of the above formulation is the strength reduction function, 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟(𝑁𝑁, 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚,𝑅𝑅).
Its expression depends on the ratio between the maximum stress and the elastic threshold and 
on the fatigue life given by the Wöhler curve, as can be seen in [1]. These two parameters are
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determined at the beginning of the analysis at each Gauss point and they are constant unless
internal forces change. 

Figure 3: Flow chart for the two stages of the time-advance algorithm
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This intrinsic step can predict the exact number of cycles at which damage initiates. After 
evaluating the Wöhler’s Nf (see Figure 2) corresponding to each stress level at the beginning 
of the analysis, a search is made to find the minimum fatigue life throughout the solid. The 
resulting number of cycles is considered to be the first step of the large increments stage 
ensuring that the entire span of number of cycles before the damage process initiates is done 
in one step. The nonlinear processes occurring past the point damage initiates in the first 
Gauss point will be simulated with a user-defined Nc step.

3.4 Automatic load-tracking stage activation
The above mentioned strategy has the following implications:
When applying a single cyclical load, time advance will be done by passing once thru the 

load-tracking stage and then advancing by number of cycles increments both before and after 
reaching the elastic threshold. However, when inside the constitutive model a Gauss point 
surpasses its elastic threshold, the internal forces of the structure are modified in order to 
achieve a new equilibrium configuration. 

This situation leads to a variation of the reversion factor and, therefore, of the stress state at 
integration point level. At this point, the load-tracking stage it automatically activated.
Furthermore, it will be activated at each step where damage accumulates (𝑑̇𝑑 > 0).

In the case of applying different cyclic loads, damage can appear either due to fatigue or
due to a new load applied that leads to stress values over the elastic threshold. In both cases 
the model will jump automatically from large increments tracking stage to load-tracking 
stage.

4 NUMERICAL EXAMPLES

4.1 Test case geometry and material
In order to validate the proposed constitutive model a test case analysis of one linear 

hexahedral element with 8 integration points was performed. Geometry dimensions were 
1x1x1cm.  The material used has the following characteristics: Young modulus =
2.01 𝑥𝑥 105 𝑀𝑀𝑀𝑀𝑀𝑀 ; Poisson ratio = 0.1 ; Static elastic threshold is 𝑆𝑆𝑢𝑢 = 838.9 𝑀𝑀𝑀𝑀𝑀𝑀 and the 
material fracture energy has a value of 𝐺𝐺𝑡𝑡 = 𝐺𝐺𝑐𝑐 = 10 𝑘𝑘𝑘𝑘 𝑚𝑚⁄ . The damage model used has 
exponential softening and a Von Mises failure surface.

The element has one of its faces subjected to a cyclical displacement while the opposite 
face has boundary conditions that fix its longitudinal displacement, allowing transversal 
expansion and contraction.

One of the model’s particularities is the strength alteration occurring previous to the 
damage initiation moment. The progressive loss of resistance leading to the initiation of 
damage is represented in the strength reduction curve. In order for it to be clearly 
differentiated from the Wöhler curve, a direct jump to the point where damage initiates was 
not done. Rather, an approximation of the damage initiation point was made by choosing a 
suitable number of cycles as time step. 

Below, two different cases are presented. In the first case a cyclical load with a reversion 
factor of 0.3, minimum displacement of 0.0000114m and maximum displacement of 
0.000038m is applied. The load applied in the second case has a null reversion factor, a 
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maximum displacement of 0.000035m and a null minimum displacement. The number of 
cycles adopted as a step for the large increments stage in the first case is 106 cycles. The 
second case was calculated with a step of 105 cycles.

4.2 HCF1 load case
In the following table the stresses generated at integration point level by the imposed 

maximum and minimum displacements are displayed as well as the fatigue life resulting from 
the FEM model.

Table 1: Characterization of load HCF1

(normalized with threshold limit)

Case code Reversion 
factor

Max. 
Stress  PG

Min. Stress 
PG

Med. 
Stress PG

Nc at which 
damage initiates

hcf1 0,3 0,91 0,273 0,59 4,90E+06

The stresses induced by the cyclic displacement applied lead to a fatigue life, according to 
the material Wöhler curve, of 4,9 x 106 cycles. This number of cycles marks the beginning of 
the nonlinear process and, therefore, of the energy dissipation in the volume associated to the 
integration point presented.

Below, in Figure 4, strength, Wöhler stress and damage evolution are presented. It can be 
seen that, while the residual strength curve is above the Wohler fatigue life curve, there is no 
stress alteration or damage accumulation. The material is considered to be in an elastic stage. 
However, once the residual strength curve intersects the Wöhler fatigue life curve at exactly 
the maximum stress level induced in the material volume analysed, damage accumulation 
starts. 

Figure 4: Parameters of interest for the fatigue analysis under load HCF1
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From that point forward, after each large increment where 𝑑̇𝑑 > 0, the load-tracking stage is 
automatically activated so that damage evolution can be monitored from cycle to cycle. If, 
after describing several cycles with small increments, the stress state throughout the solid has 
stabilized, a new large increment will be applied. The process thus automatically repeats until 
the material reaches a state of complete degradation.

Figure 5: Parameters of interest for the fatigue analysis under load HCF1 in the nonlinear zone

The process can be observed with more detail in Figure 5 above, where a zoom on the 
variables’ evolution in the nonlinear zone is presented. Load-tracking and large increments 
tracking stages are indicated.

Both Figure 4 and Figure 5 have a logarithmical scale along the horizontal axis.

Figure 6: Stress-Strain at integration point for load HCF1
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In Figure 6, the effects of material degradation are shown in the stress-strain curve. The
large increments tracking stage, where the displacement is maintained at its maximum value, 
is represented by the vertical lines descending from the point of maximum stress. The stress 
interval represented by each descent quantifies the stress softening caused by a single, large 
number of cycles, interval. Each of these stress-softening intervals is followed by a few 
unloading (until minimum displacement) - loading cycles. These mark the load-tracking stage 
where a clear change in material stiffness is visible. 

It can be seen that, as the material progressively suffers loss of stiffness, for the same large 
step there is less stress softening. 

4.3 HCF3 load case
In the following table, same as for the previous case, the stresses generated at integration 

point level by the imposed maximum and minimum displacements are displayed as well as 
the fatigue life resulting from the FEM model.

Table 2: Characterization of load HCF3

(normalized with threshold limit)

Case code Reversion 
factor

Max. 
Stress  PG

Min. Stress 
PG

Med. 
Stress PG

Nc at which 
damage initiates

Hcf3 0 0,839 0 0,42 3,46E+06

Compared to the previous case, the maximum stress induced in the material is smaller, 
going from 0.91 of the elastic threshold limit to approximately 0.84. This can lead to believe 
that, since the material is subjected to lower stresses, fatigue life increases. However, the 
fatigue life resulting from applying load HCF3 is smaller than that corresponding to load 
HCF1.

Figure 7: Parameters of interest for the fatigue analysis under load HCF3
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This is due to the fact that load HCF3 has a different stress reversion factor (0 compared to 
0.3 for HCF1) and that the material used is more vulnerable to a smaller reversion factor. 
Thus, the first effect (smaller maximum stress leads to larger fatigue life) is countered by the 
second one (smaller reversion factor leads to shorter fatigue life).

The applied displacement for load case HCF3 induces a maximum stress of 0,839 of the 
elastic limit and unloads to 0, leading to a fatigue life of 3,46 x 106 cycles, as can be seen in 
Figure 7. Since by using a step of 106 cycles, as for the first case, the damage initiation point 
was not sufficiently well approximated, a 5 x 105 cycles step was used. A logarithmical scale 
has been used for the horizontal axis.

Figure 8 shows the stress – strain curve where the stiffness reduction can be seen at each 
automatic unloading made after having detected that 𝑑̇𝑑 > 0.

Figure 8: Stress-Strain at integration point for load HCF3

5 CONCLUSIONS
This paper has presented a fatigue formulation that takes into account the effects caused by 

the accumulation of number of cycles of loading by both an alteration in the strength and in 
the stiffness of the material. First, material strength is reduced until it reaches the induced 
maximum stress level. From that point on, energy dissipation in the mesoscale is done by 
means of stiffness reduction. 

The cyclical load is taken into consideration by means of two parameters: maximum 
generated stress and stress reversion factor. Both parameters have a direct influence on the 
onset of damage and on the strength reduction. This allows a quantification of the effects 
induced by different cyclical loads and discrimination between different load-applying orders. 

A stepwise time-advance strategy has been proposed in order to save computational time 
and improve convergence in a number of cases, such as load combinations and nonlinear 
material behaviour.
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The procedure divides the load in two different loading processes: load tracking and large 
increments tracking stages. The jump between the two loading schemes is made 
automatically, depending on the mechanical response of the structure. The capabilities of the 
algorithm have been proven with two numerical examples.
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