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Abstract 

In this paper, we present a new approach to evaluation of signal integrity that is 
based on signal energy density as a function of time and frequency, 
represented by its wavelet scalogram. Using signal integrity ratio and 
cumulative energy ratio, we illustrate signal integrity analysis with simulated 
examples, followed by the demonstration of their usefulness through analysis of 
experimental data of a real audio amplifier. These figures of merit represent the 
extent to which the integrity of a signal is diminished by the electromagnetic 
interference effects and/or nonlinear processes. 

IndexTerms: Electromagnetic interference (EMI) effects, signal integrity, signal 
processing with wavelets, wavelet scalogram. 

 
 
INTRODUCTION 

In recent years, we can notice a substantial growth of research that aims to 
detect, evaluate, and reduce electromagnetic interferences (EMIs) induced in 
electronic equipment. This trend is due to the increasing interest in improving 
the performance quality, reliability, and security of such equipment. 

One of the common methods of evaluation of signal characteristics is based on 
signal analysis in time domain. Other useful representations involve the 
frequency-domain view of a signal and are based on the Fourier transform. 
Although frequency-domain representations, such as the power spectrum of a 
signal, provide useful information, they do not show how the frequency content 
of a signal evolves over time. This task has to be approached by simultaneous 
analysis in the time and frequency domains. 

To analyze the low frequency content, we need to look at signals over longer 
time intervals, whereas the time-varying high frequency content has to be 
evaluated over shorter time intervals. This is the feature of the wavelet 
transform (WT) that provides high time resolution for the high frequency range 
and low time resolution for the low frequency range. 

Multiresolution and wavelet theory have been recently applied to analyze 
electromagnetic compatibility (EMC) issues. A wavelet-based analysis tool for 



EMI noise feature extraction, intended for identification of the noise source 
nature, appears in [1]. Continuous WT (CWT) can also be used to evaluate the 
effectiveness of the EMI reduction techniques applied to switched power 
converters [2]. On the other hand, wavelet concepts can be used to speed up 
the solution of some complex mathematical EMC problems by reducing the 
volume of computational requirements, as shown in [3] in the case of analysis of 
lightning effects induced on multiconductor transmission lines. Diagnosis of 
electronic hardware, such as a printed circuit board, is also within the scope of 
wavelet applications. In [4], line termination faults are identified by means of the 
wavelet-based analysis of the crosstalk phenomena. 

Similar applications have also been proposed in other remarkable disciplines 
such as data compression, signal processing, image analysis, system control, 
fault detection, statistics, and modeling of nonlinear dynamic processes [5], [6], 
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. A useful overview of the 
subject can be found in [18] and [19]. 

In this research, we have developed a general procedure along with new tools 
for evaluation of influence of the EMI and system nonlinearities on system 
performance as evaluated by signal integrity. For the first time, we have given 
the original formulation of this concept in [20], and with limited success, we 
attempted its application to the power quality evaluation. We propose to 
evaluate signal integrity using time–frequency representations of the energy 
density of signals. In particular, using the wavelet scalogram, we partition the 
time–frequency plane into frequency subbands used to represent the time 
evolution of frequency components of signal energy density. Implementing this 
concept, we are able to determine a time–frequency domain (which includes 
one or more frequency subbands), in which most, for example, 95%, of the 
energy of an input signal of a system is contained. As a result of nonlinearities 
and/or the EMI, substantial energy of the output signal may appear outside this 
frequency domain. We have introduced performance indexes related to this 
concept. However, it is a general-purpose methodology, and the evaluation of 
the EMI effect on system performance, as represented by signal integrity, is 
only one of its possible applications. 

We illustrate our methodology by showing its application to integrity evaluation 
of a signal that passes through an audio amplifier. This integrity may be 
compromised by the EMI, as well as inherent nonlinearities of an amplifier. It is 
natural to assume that the signal integrity is preserved if the frequency content 
of the amplifier output signal as a function of time is identical to that of the input 
signal. Since the gain of an audio amplifier should be constant in time and 
frequency within a required amplifier bandwidth, the introduced concept of 
signal integrity may, most conveniently, be represented in terms of local energy 
densities of an ideal output signal and an actual output signal. The energy 
density of signals as a function of frequency can be represented by their 
wavelet scalograms that are defined using a CWT. 

The problems of the wavelet applications to EMC are discussed in [21], [22], 
[23]. An interesting approach to identification of the EMI noise sources in power 
converters, using both discrete and continuous-time WTs, is presented in [24] 



but could be substantially enriched by the application of time–frequency energy 
density representation introduced in this paper. The effectiveness of the wavelet 
representation of audio transients, as well as their application to EMC/EMI 
system performance analysis, is evidenced in [25] and [26]. 

In Section II, we give a brief presentation of the relationship between scale and 
frequency, followed by an introduction to scalograms, and presentation of the 
proposed tools and simulated examples of signal integrity analysis. Their 
application to signal integrity analysis, using experimental data of a real audio 
amplifier, is presented in Section III, and Section IV summarizes this paper. 

 
 
SECTION II 

WT, SIGNAL ENERGY, AND SIGNAL INTEGRITY 
REPRESENTATION 

In this section, we first introduce the CWT with emphasis on the relationship 
between scale and frequency. This relationship is of fundamental importance to 
the scalogram representation of the local energy density of signals and, 
consequently, to the evaluation of the integrity of signals that may be corrupted 
by the EMI. 

The CWT of a finite-energy signal is defined as its scalar product 
with the wavelet as follows: 

   

with 

  

where  is a mother wavelet. Varying for the fixed scale , we are sliding a 
wavelet with a fixed bandwidth and with some fixed center frequency along 
the analyzed signal. 

We need to establish the relationship between the scale and the frequency 
content, at this scale, of a particular analyzing wavelet. This is accomplished by 
defining two frequency characteristics of the mother wavelet [18]: the center 
frequency 

  



and the bandwidth  

, centered around , with 

  

For a wavelet of the scale , the center frequency and the bandwidth are 
respectively defined by the following equations:  

 

with  and . Note that, by this convention, 
and . 

It is important to choose the mother wavelet with high frequency resolution or 
narrow bandwidth. The increase of the scale improves the frequency resolution 
at lower frequencies. This is illustrated in Fig. 1, showing the magnitude of the 
Fourier transform of the Morlet wavelet for several scales ( ). The 
Morlet mother wavelet is given by the following equation (used as justified in the 
Appendix):  

  

 
 

Fig. 1 Fourier transform of Morlet wavelet for different scales. 

 
 



 
 

Fig. 2. Signal energy density in the time–frequency domain illustrates the output signal distortion of a 
linear system.  

 

For the Morlet wavelet, , and (radian units). Using these two 
parameters, we can determine and for any value of . To convert frequency 

radians to radians per second, we have to multiply the ratio by the Nyquist 
frequency . For example, setting , we obtain the center 
frequency and the bandwidth 

. In other words, for a 
constant scale, we can vary the frequency range of analysis using different 
sampling frequencies . It is clear from Fig. 1 that the magnitude of the Fourier 
transform of the Morlet wavelet for is almost entirely positioned to the right 
of or to the right of the Nyquist frequency. In other words, it is almost 
completely uncorrelated with the discrete representation of the original signal, or 
the useful bandwidth of the Morlet mother wavelet is almost entirely above half 
of the sampling frequency. It is apparent from this figure that the frequency 
resolution is much better for the lower relative frequencies (or for the higher 
scales). This immediately offers a solution to the problem of poor resolution at 
higher frequencies, i.e., the analyzed signal can be oversampled at such a rate 
that lower scales and, in particular, will not contain any useful frequencies. 
In other words, the bands of the lower scale wavelets (or wavelets with 
frequency resolutions too small for the performed analysis) will be outside the 
essential bandwidth of the analyzed signal. 

Representing wavelet atoms in the frequency domain, we can say that 
most of their energy is in the frequency interval of the length of 
centered around or in the time domain around in the interval of 
the length with the standard deviation defined by the following integral: 

 



The standard deviation of the Morlet wavelet . Note that, in the time–
frequency plain, we have characterized a mother wavelet by three parameters: 

, (or ), and . This defines, for every wavelet , the Heisenberg box 
[18] in the time–frequency plane, centered at with the dimension of 

along the time axis and along the frequency axis. Its area is 
independent of frequency or scale, and its sides represent local time and 
frequency resolution. For a fixed scale (or frequency), the dimension of the 
Heisenberg boxes in time direction is constant but (for a fixed time) decreases 
as frequency increases or is proportional to scale. 

The scalogram of a signal , denoted by , is defined as 

 

The magnitude square of a wavelet coefficient in (8) represents a local time–
frequency energy density, which measures the energy of in the Heisenberg 
box of each wavelet centered at . This description of signal 
energy (in the timescale domain) facilitates the identification of time-varying 
energy flux, spectral evolution, and transient bursts not readily visible in time- or 
frequency-domain representations [6]. 

We will show now that the scalogram, defined for the CWT, actually represents 
a local time–frequency energy density of a signal . The energy of a signal 
can be represented by the integral of its square or its instantaneous power with 
respect to time. This energy, using the CWT expansion of and assuming that 
we represent by a finite number of its WT values in a bounded timescale 
domain (or a time–frequency rectangle related to it through the mother wavelet 
used) containing most of the signal energy, can be expressed as follows: 

 

 

Applying to (9) the orthonormality property of the wavelet basis, we obtain  

 

This can be represented as  

 



where the first sum is the signal energy in the highest frequency subband 
(corresponding to the lowest scaling level 1) and the last sum represents the 
signal energy in the lowest frequency subband (corresponding to the highest 
scaling level of interest ). The sequence of the squares of wavelet coefficients 

, involved in a particular sum (corresponding to a fixed value of ), 
represents the evolution in time of the energy density of in a bandwidth 
corresponding to the scaling level . Since (11) is the expression for the signal 
energy in the time interval of interest with sampling points , the squares of 
wavelet coefficients represent the local energy density of a signal in 
its time–frequency domain or its scalogram. 

Let us assume that we have a single frequency signal at the input of a 
linear system. The energy of such signal will appear concentrated in a certain 
domain in the time–frequency plane. This representation is made through the 
scalogram or time–frequency energy density of the signal and is shown in 
Fig. 2. 

Outside domain or in domain , the energy of the input signal is almost 
negligible. If the behavior of the linear system is completely ideal, the energy of 
the ideal output signal will also be contained within the same time–
frequency domain . However, if some disturbances or nonlinear effects 
appear in the output, resulting in the actual output signal , the time–
frequency analysis of the output signal will show essential amounts of energy in 
domain . In other words, the energy corresponding to the linear behavior will 
be always inside domain , while the energy in domain is associated with 
EMI and nonlinear processes. 

According to (10), we can define the domain , containing 95% of the input 
signal energy, as follows:  

 

We propose to evaluate EMI influence and/or nonlinear effects considering the 
energy contained in domain using the following signal integrity ratio (SIR): 

 

where is the time shift of the analyzing wavelet and actually represents time. 
At any time instant , corresponding to a particular , the SIR takes a value of 0 
dB when the energy of the actual output signal (due to nonlinear 
phenomena represented by the energy appearing in domain ) is identical to 
that of the ideal one . In other words, SIR will be particularly sensitive to 
the energy pockets appearing in domain and not to the energy changes that 
could appear inside . In addition, we define the following cumulative energy 
ratio (CER): 



  

that represents the total energy ratio between the actual and the ideal output. At 
any time instant , corresponding to a particular , the CER takes a value of 0 
dB when the total energy of the actual output signal , involving both linear 
and nonlinear effects, is identical to that of the ideal one . In other words, 
CER somehow compares the total energy content of both signals. 

Although this methodology holds for general application, in this paper, we deal 
with audio signals. For this reason, we adopt as an input a chirp signal, whose 
frequency sweeps linearly with time from 100 Hz up to 20 kHz in 10 ms. In order 
to better illustrate these ideas, we will consider simulated examples, in which 
we assume that this signal is an ideal output. The domains and , 
determined for such signal according to the definition given in (12), appear in 
Fig. 3. 

 
 

Fig. 3 Domains and for the ideal output chirp signal. 

 

A) Simulated Example 1 

Consider a chirp signal with three types of disturbances: step change of gain, 
saturation, and repetitive impulsive noise, known as electric fast transient (EFT). 
These disturbances may represent a wide variety of conditions. For instance, 



gain changes or saturation effects can appear as a consequence of the 
nonlinear behavior of a system. On the other hand, the EFT is a very common 
disturbance present in electronic systems as a consequence of EMI. Fig. 4 
shows an increasing frequency chirp signal with visible influence of the step 
change of gain and saturation. The undistorted signal consists of a chirp signal 
with constant amplitude that is equal to 1 V. The scalogram of the distorted 
output appears in Fig. 5. 

 
 

Fig. 4 Distorted increasing frequency chirp with step change of gain and saturation. 

 

 
 

Fig. 5. Scalogram of the distorted output signal. 

 



Fig. 5 clearly shows the increase in the signal energy density due to gain 
increase in the interval between 1 and 3 ms and the drop of energy density due 
to the saturation effect that occurs in the interval between 6 and 7 ms. In Fig. 6, 
the and for Simulated Example 1 appear. 

 
 

Fig. 6. (Upper panel) and (lower panel) as functions of time for Simulated Example 1. 

 

 

We can see that, due to the increase of gain in the interval between 1 and 3 ms, 
the value of SIR is 12 dB, corresponding to doubling the amplitude of the signal. 
On the other hand, the saturation at an amplitude level of 0.6 in the interval 
between 6 and 7 ms results in the value of SIR of 5 dB. 

A) Simulated Example 2 

Consider a chirp signal with added noise consisting of 15-kHz exponentially 
damped ringing, shown in Fig. 7. The scalogram of the distorted signal is not 
shown, but it exhibits an increase in signal energy over the time interval when 
the disturbance is present. It can also be observed that the maximum of 
distortion energy appears at 15 kHz, i.e., at the frequency of the ringing 
disturbance. Fig. 8 shows its and . 



 
 

Fig. 7. Chirp signal with exponentially damped ringing disturbance. 



 
 

Fig. 8. (Upper panel) and (lower panel) as functions of time for Simulated Example 2. 

From the results of these examples, it is interesting to point out some facts. It is 
clear that the waveforms of both and are similar. However, 
assumes a much higher value than in Simulated Example 2. The 
explanation of this fact follows directly from the definitions of these figures of 
merit. 

A much higher value of SIR than CER shows that a significant amount of 
energy is present in domain . For instance, in Simulated Example 2, the 
amplitude of the damped oscillation is 3 V in comparison to 1 V of the 
undistorted output. This leads us to the maximum values of 40 and 13 dB for 

and , respectively, while in Simulated Example 1, both functions 
take almost the same maximum value. 

 
 
 
 



SECTION III 

SIGNAL INTEGRITY ANALYSIS APPLIED TO THE EVALUATION 
OF AN AUDIO AMPLIFIER 

In order to validate the proposed methodology of the wavelet-based signal 
integrity analysis, introduced in Section II, we have applied it to the performance 
evaluation of a real audio amplifier, as reported in Experiment 1. 

A) Experiment 1 

We evaluate the performance of an audio amplifier with the saturation effect 
shown in Fig. 9. 

 
 

Fig. 9. (Upper trace) Input and (lower trace) output with saturation. 

The input signal has a constant frequency of 2 kHz, and its amplitude increases 
linearly with time. The output signal behaves in the same way, until saturation is 
reached. The amplifier gain remains constant and equals 20. 

Fig. 10 shows the scalograms of the input voltage (upper plot) and the output 
voltage (lower plot). The frequency content of the input signal remains constant, 
and the energy density of the signal increases with time. In this figure, it can be 
also seen that the most important part of the output signal energy remains 
around 2 kHz. However, a significant amount of energy appears centered 



around 6 kHz when saturation occurs. This is the energy corresponding to the 
third-order harmonic that appears as a consequence of the saturation effect. 

 
 

Fig. 10. Scalogram of (upper plot) the input signal and (lower plot) the output signal with saturation. 

This energy represents the main contribution to the full amount of energy 
contained in domain . The discussed effect is also reflected by the SIR, which 
appears in Fig. 11. The saturation effect is reflected by the CER as well, which 
is shown in Fig. 12. When there is no saturation effect, i.e., for time interval 
below 5 ms in Fig. 12, the value of CER is 0 dB. However, when the saturation 
effect is present in the output (for times above 5 ms), the value of CER drops. 
This happens because saturation entails the spread of energy in several 
harmonics, originally ideally concentrated around 2 kHz. It should be considered 
that wavelet analysis is carried out within a finite frequency range (up to 20 kHz 
in this case) and many of these harmonics are not accounted for because they 
are out of this range. In addition, it should be noticed that the energy content at 
the fundamental frequency (2 kHz in this case) is much bigger in the case of the 
ideal output than for the saturated output. 



 
 

Fig. 11. SIR for the output signal with saturation. 
 

 
 

Fig. 12. CER for output signal with saturation. 

 



A) Experiment 2 

In this experiment, we analyze a change in the time–frequency energy 
distribution of an audio amplifier output signal induced by an amplitude-
modulated noise added to the input (a chirp signal sweeping from 20 Hz up to 
20 kHz in 10 ms). In the upper panel of Fig. 13, one can see the undistorted 
output, while in the lower panel appears the output distorted with an amplitude-
modulated noise added to the same input. Looking at this distorted signal, one 
cannot tell anything about the kind of noise involved. 

 
 

Fig. 13 Output effect of noise added to the input chirp signal. 

 

We obtained scalograms of both output signals. They are shown in Fig. 14 for 
undistorted output and in Fig. 15 for distorted output. In Fig. 14, the energy of 
the signal is clearly concentrated inside the domain (typical for the chirp 
signal) with the borders similar to those shown in Fig. 3. 



 
 

Fig. 14. Wavelet scalogram of response to the undistorted input chirp signal. 

 

 



 
Fig. 15. Wavelet scalogram of the response to the distorted input chirp signal. 

In Fig. 15, the scalogram of the distorted output appears. The additional energy 
concentration at a fixed frequency of 10 kHz can be clearly observed. This is 
the carrier frequency of the amplitude-modulated noise. In order to clearly show 
this fact, we present for both signals (in Fig. 16) the energy density at 10 kHz 
over their duration. 

 
 

Fig. 16. Output energy density at 10 kHz in (upper panel) undistorted signal and (lower panel) distorted 
signal. 

The upper panel characterizes the undistorted signal and shows a peak of 
energy slightly below 5 ms, i.e., approximately in the middle of the frequency 
sweep of the chirp signal. At this time instant, the chirp signal reaches this 
frequency value. The energy content at 10 kHz for all the other values of time 
(below 3 ms and above 7 ms) is almost negligible. 

In the lower panel, the energy content at 10 kHz for distorted signal appears. 
There are several facts to underline. First of all, some energy content is present 
during the whole duration of the signal (10-ms interval). This energy 
corresponds to the amplitude-modulated noise carrier of 10 kHz present in the 
output (notice the energy below 3 ms and above 7 ms). Moreover, some peaks 
of energy appear with a period of 0.5 ms approximately. They are related to the 
modulation frequency of the amplitude-modulated noise. Finally, a large 
concentration of energy appears around 5 ms due to the original chirp signal, 
but its magnitude is influenced by the superimposed energy of the noise. 

 



SECTION IV 

CONCLUSION 

In this paper, we have developed a general procedure along with new tools for 
the evaluation of influence of EMI and nonlinear processes on system 
performance as represented by signal integrity. We propose to evaluate signal 
integrity using time–frequency energy density represented by the wavelet 
scalogram. Using this concept, we can determine the time–frequency domain in 
which most of the input signal energy is contained. As a result of nonlinear 
and/or EMI effects, substantial energy of the output signal may appear outside 
this time–frequency domain. In fact, our analysis considers the difference in 
energy distribution in the time–frequency domain between distorted and 
undistorted signals. The performance indexes SIR and CER represent the 
extent to which the integrity of a signal is diminished by EMI effects and/or 
nonlinear processes. Simulated examples are used to illustrate signal integrity 
analysis performed with these tools, followed by a demonstration of their 
usefulness using experimental data of a real audio amplifier. 

APPENDIX 

In the presented application, the WT scalogram of a signal represents its energy 
density localized in frequency and time that can best be achieved by the use of 
mother wavelet that is a windowed sinusoid. What makes the Morlet WT (MWT) 
best suited for our application is that the width of its Gaussian window is 
coupled to the center frequency . This reduces the window width at higher 
frequencies that ensures that the number of cycles under the Gaussian remains 
the same for all frequencies. The mother wavelet at frequency  

 

and the wavelet at frequency  

where the standard deviation is inversely proportional to the frequency in 
order to retain the wavelet scaling properties. For significant wavelet cycles, 
we have 

  

It is easy to show that, choosing a Gaussian window for the short-time Fourier 
transform (STFT), it can be made equivalent to the MWT for a particular 
frequency. Similar equivalence can be found applying the Hilbert transform to 
bandpass-filtered data (BP/HT). However, the STFT and BP/HT use the same 
window width at each frequency, whereas for the MWT, the width is a function 
of frequency. 
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