
Aeneas: a tool to enable applications to effectively
use non-relational databases

Cesare Cugnasco, Roger Hernandez
Barcelona Supercomputing Center

Barcelona, Spain
Email:{cesare.cugnasco, roger.hernandez}@bsc.es

Yolanda Becerra, Jordi Torres, Eduard Ayguadé
Universitat Politècnica de Catalunya - Barcelona Tech.

Barcelona supercomputing Center
Barcelona, Spain

{yolandab, torres, eduard}@ac.upc.edu

Abstract—Non-relational databases arise as a solution to solve
the scalability problems of relational databases when dealing
with big data applications. However, they are highly configurable
prone to user decisions that can heavily affect their performance.
In order to maximize the performance, different data models
and queries should be analyzed to choose the best fit. This may
involve a wide range of tests and may result in productivity
issues. We present Aeneas, a tool to support the design of data
management code for applications using non-relational databases.
Aeneas provides an easy and fast methodology to support the
decision about how to organize and retrieve data in order to
improve the performance.

Keywords—Non-relational database; distributed data-store; data
model design; benchmarking; Apache Cassandra

I. INTRODUCTION

The overwhelming amount of data that is currently invading
all social fields has made big data applications become a hot
topic in the research area [1]. One of the main challenges to
face is how to store and organize all information in order to
offer efficient and reliable access to users, and to make it easy
to share all information among various users with different
interests and requirements, and many times, those requirements
come together.

Non-relational databases arise as an alternative to tradi-
tional databases to deal with the challenges big data appli-
cations pose[2], [3], [4], [5]. Advances in this area, together
with the improvements in cloud computing technologies are
opening new options in varied application fields to exploit the
new power to store huge amounts of data.

However, the performance of non-relational databases is
very sensitive to user decisions[6] as, for example, data organi-
zation, type of query, and configuration parameters such as data
partitioning, number of replicas, amount of memory allocated,
etc. This means that, in order to get the best possible per-
formance, the user should test a lot of different organizations
and parameters. This requires the implementation of various
versions of data generator applications and data consumer
ones, as this code depends on the data model, and a framework
for measuring their performances. Moreover, the behavior of
each configuration depends not only on the particular cluster
but also on the particular workload that is being tested. Thus,
the experimentation has to be repeated each time that the
amount of involved data stored or the target data for a query
changes.

In this paper we present Aeneas1, a highly configurable tool
to support the design of data management code for applications
using non-relational databases. The user can configure this tool
by providing the data model, the query parameters, and the
performance metrics that he wants to evaluate. Then, Aeneas
automatically generates the code to define the specified data
model, to insert and to retrieve the data, and to evaluate the
performance of accessing these data. Thus, Aeneas provides
an easy and fast methodology to support the decision on how
to organize and retrieve data with good performance, whilst
solving the productivity limitations that could arise when using
non-relational databases.

The rest of the paper is organized as follows: section II
describes the database used by the current implementation of
Aeneas and section III presents the design of the tool and the
main aspects of its implementation; section IV describes a case
study based on an application from the life sciences domain
and section V shows the conclusions.

II. BACKGROUND

Apache Cassandra[3] is a distributed database management
initially developed by Facebook for internal usage, and later
released as an open source project. It inherits the data model
structure from Google BigTable[2] and the data replication
and distribution management from Amazon’s Dynamo[4]. We
have chosen this database because it is highly configurable,
making it possible to adapt it to the requirements of existing
applications.

Data is organized in column family objects, which are
similar to tables in the relational database model, and each
column family contains a set of columns, which are comparable
to attributes. A set of related columns compose a row, which
is identified by a key. The row key is the main resource used
to locate the data, and it is also used to distribute the data
across the cluster nodes.

Cassandra does not support relationships between column
families, such as foreign keys and join operations. Knowing
this, the best practice when designing a data model is to keep
related data in the same column family, duplicating the data if
required.

The architecture of Cassandra is completely decentralized.
All the nodes in a Cassandra cluster are equivalent: they all can

1Aeneas was one of the Cassandra relative’s that, after Cassandra prophecy
was intended to be Rome founder



receive read/write requests and are able to forward in parallel
those requests to the hosting nodes.

III. AENEAS

The main goal of Aeneas is to offer a methodology to
increase the productivity of the evaluation process, which will
lead the user to get the best configuration parameters to access
data. In this section, firstly we describe the main steps involved
in the evaluation of each of these configurations and how to
develop them without using Aeneas. Secondly, we describe the
main aspects of the Aeneas design and implementation.

A. Evaluation Methodology without using Aeneas

Let us consider that we have different data models and
different parameters to test. Then the main steps involved in
the evaluation are the following.

Configure the cluster according to the parameters: In terms
of database configuration, in a regular environment the user
would be required to configure all of the cluster and database
parameters such as replication factors and strategies, cache
configurations, partitioning strategies, etc. Moreover, it is nec-
essary to specify how the data is going to be organized in the
database. To this end, the user should use the proper interface
function and should specify all the organization characteristics.

Load all the data according to the data model to test: In
order to populate the database the user should write the specific
code to insert the data according to each model.

Generate queries workload: Once again, the code to query
the database depends on the data model configuration. This
means that for each configuration to test, the user should
implement a version of the query code to access the database.
In addition, in order to evaluate the concurrent access of several
clients, the user should provide an extra code to control the
execution of all the applications instances.

Collect statistics about the database system behavior: Up
to this point everything has been prepared, but it is necessary
to define the metrics and to implement the tools to collect
statistics about the performance of the system.

Summarizing, all the actions mentioned above would have
to be brought into consideration, executed and repeated for
every experiment that has to be tested, and it should be made
within the environment of the original application. Aeneas
implements an evaluation environment that provides the user
with an easy way to describe different data models, to specify
different performance metrics and to perform and evaluate
different data queries.

B. Aeneas design and implementation

Aeneas is composed by three main modules: Loader,
Workloader and Analysis reporter. Thus, each user can use
just the module that he needs to support his requirements.
Moreover, as it is based on interfaces, any specific case study
could be implemented by just extending those patterns and
implementing the required services. Even when adding those
new capabilities, the user interface and the module integration
will not change. In addition to this, the abstraction layer can
greatly improve the performance of data loading stage by

managing and optimizing the insertion operations.The current
implementation of Aeneas only supports the Apache Cassandra
database. However, notice that the modularity of Aeneas makes
it easy to add different modules to support different databases.
Figure 1 represents the main steps in the evaluation process
and the main components of Aeneas.

Fig. 1. Steps in the evaluation of a data model using Aeneas

The Loader is in charge of the configuration of the system
and the loading of the input data. The main complexity
involved in this task is to obtain a code independent of any
data sources and of any possible data models. To achieve
this, we have decoupled the definition of the data structure
from the implementation of the access code. On one side, the
user describes the structure of the data to be read, defining
a grammar through a meta language. On the other side, we
have defined a generic interface that allows to implement a
specific reader for different data sources. Each loader uses the
grammar to read information and to store it using the proper
structure. Then, Aeneas reorganizes and transforms the read
data in order to fit them into a specific model.

The Workloader performs a set of queries following dif-
ferent statistical distributions. The input for this module is the
following: which of the implementations is to be tested, the
number of tests to perform on it and the type of distribution
used to generate the query input arguments.

The Analysis reporter retrieves metrics from both the client
and the database sides, considering all the nodes in the cluster,
and stores them in a consistent data store. By default, Aeneas
gathers the most typical metrics such as the time required
to populate the cluster, the statistical behavior of a query
response time, memory usage, I/O and network frequency, and
additional internal metrics from Cassandra as, for example, the
amount of pending tasks per node but it is easily possible to
add new metrics.

IV. CASE STUDY

Life science applications constitute one of the fields that
can benefit from using non-relational databases. A usual sce-
nario in this domain is to have a long process generating a
huge amount of information that can feed other applications.
Some of these analysis may be required long after the data
generation, with different purposes and using different subsets
of the generated data. Thus, it is convenient to keep this data
stored as long as possible, to avoid wasting time to generate
it again. In fact, life science researchers aim to have shared
pools with such information (RSCB protein data bank[7] and
the molecular dynamic extended library[8] are two examples of
this kind of effort). In this domain, our case study is focused
on applications working on molecular dynamics, which is a
technique based on computer simulation that represents the
evolution in time of complex systems, modeled at atom level
[9]. The output of the simulation is the trajectory of a molecule,



that is, the coordinates of each atom in time. An application
analyzing these trajectories may need information about all
the atoms during a particular range of time; or it may need
information about a subset of atoms throughout the whole
simulation.

Given these types of queries, we can consider two different
data models: in the first one, each row represents the coordi-
nates that a given atom has in each snapshot of the trajectory,
and the row key is an atom identifier; in the second one, each
row represents the coordinates of all the atoms in a given
snapshot of the trajectory, and the row key is the snapshot
identifier. In a generic dataset, the number of atoms is several
order of magnitude smaller than the number of samples. This
produces data models which mainly grow on one dimension.
Since Cassandra distributes the data along the cluster nodes
basing on the key value, and persist the data ordering by rows,
there is a general trade-off between parallelism and efficient
I/O devices usage.

We have used Aeneas to perform hundreds of experiments
in order to get the best configuration to request the data
for one trajectory. To do this, we only needed to adapt the
configuration files according to each test. For example, one
set of experiments has been devoted to deciding how to split
a query, which is necessary to fit each sub-query results to
the amount of memory available. We have analyzed how
changing the amount of rows requested per each sub-query,
and consequentially the number of sub-queries performed, may
affect the response time of the accesses. We have observed that
the performance of the accesses increases as the number of
sub-queries decreases until reaching an inflection point. This
inflection point depends on several factors: the amount of rows
involved per sub-query, the amount of data requested per sub-
query, the resources available in the cluster and the amount
of nodes in the cluster. Thus, given a cluster configuration,
in order to get the best performance it is necessary to use
a query organization and a data model that allows to get a
parallelism degree and a memory usage close to the values
that characterize the inflection point. We have found that
depending on the query organization it is possible to improve
the performance of one of the queries by 13 times.

V. CONCLUSIONS AND FUTURE WORK

We have presented Aeneas, a tool which implements an
analysis environment that provides the user with an easy way to
describe different data models, to identify different metrics and
to execute and evaluate various queries. Its usage dramatically
increases the productivity when designing and tuning a non-
relational database.

As part of our future work, we plan to add new features to
Aeneas, such as support for automatic generation for a wider
range of query types. Additionally, we plan to provide Aeneas
with a model that is able to suggest query plans to maximize
the memory usage while reducing node congestion.

ACKNOWLEDGEMENTS

This work is partially supported by the BSC-CNS Severo Ochoa
program and the TIN2012-34557 project, with funding from the
Spanish Ministry of Economy and Competitivity and the European
Union’s FEDER founds.

REFERENCES

[1] R. Kouzes, G. Anderson, S. Elbert, I. Gorton, and D. Gracio, “The
changing paradigm of data-intensive computing,” Computer, vol. 42,
no. 1, pp. 26 –34, jan. 2009.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Trans. Comput. Syst., vol. 26,
no. 2, pp. 4:1–4:26, Jun. 2008.

[3] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
Apr. 2010.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, no. 6, pp. 205–220, Oct. 2007.

[5] L. George, HBase: The Definitive Guide, ser. Definitive Guide Series.
O’Reilly Media, 2011.

[6] E. Hewitt, Cassandra: the definitive guide, ser. Definitive Guide Series.
O’Reilly Media, 2011.

[7] “Rcsb protein data bank.” [Online]. Available:
http://www.rcsb.org/pdb/home/home.do

[8] “Model: molecular dynamics extended library.” [Online]. Available:
http://mmb.pcb.ub.es/MoDEL/

[9] R. Petrenko and J. Meller, Molecular Dynamics. John Wiley Sons,
Ltd, 2010.


