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Abstract This paper describes a practical and reliable 
algorithm for implementing an Attitude and Heading 
Reference System (AHRS). This kind of system is 
essential for real time vehicle navigation, guidance and 
control applications. When low cost sensors are used, 
efficient and robust algorithms are required for 
performance to be acceptable. The proposed method is 
based on an Extended Kalman Filter (EKF) in a direct 
configuration. In this case, the filter is explicitly derived 
from both the kinematic and error models. The selection 
of this kind of EKF configuration can help in ensuring a 
tight integration of the method for its use in filter-based 
localization and mapping systems in autonomous 
vehicles. Experiments with real data show that the 
proposed method is able to maintain an accurate and 
drift-free attitude and heading estimation. An additional 
result is to show that there is no ostensible reason for 
preferring that the filter have an indirect configuration 
over a direct configuration for implementing an AHRS 
system. 
 
Keywords Attitude Estimation, Sensor Fusion, Vehicle 
Navigation, Inertial Measurement, Kalman Filtering 
 
 

1. Introduction  
 
The orientation of a vehicle in space is often referred to as 
Attitude. A combination of instruments capable of 
maintaining an accurate estimate of the vehicle attitude, 
while it manoeuvres, is called an AHRS (Attitude and 
Heading Reference System). An AHRS is a fundamental 
prerequisite for addressing several navigation and control 
problems. The first implementations of AHRS were based 
only on gyroscopes. Gyros are prone to bias, which could 
produce large errors after long periods of integration. 
This fact meant that attitude estimation was limited to 
very expensive applications because sensors with long 
term bias stability are very expensive, even now.  
 
Filtering techniques are often required if less reliable (low 
cost) gyros are used. Using filtering techniques, other 
sensors (i.e., accelerometers and magnetometers) can be 
combined with gyros in order to limit the attitude errors 
over time. The recent production of solid-state or MEMS 
gyroscopes, 3-axis accelerometers and magnetometers 
and powerful microcontrollers have made the 
development of small, low cost and reliable AHRS 
devices possible. 
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With new hardware becoming available (i.e., MEMS 
sensors and microcontrollers), several approaches for 
AHRS systems have appeared in the literature, especially 
in the last decade. Different taxonomies can be employed 
in order to classify the AHRS methods available. Some of 
these criteria are: i) sensory input, ii) attitude 
representation and iii) estimation technique. 
 
Nowadays, AHRS are typically based on gyros that are 
updated by gravity sensors (i.e., accelerometers) for pitch 
and roll, and by magnetic field sensors for yaw. 
Nevertheless, depending on the application, it is common 
to find approaches which rely on alternative sensors to 
bound attitude errors in time; for example, GPS or air 
speed sensors for UAVs and star trackers for spacecraft 
[1-6]. 
 
The 3×3 orthogonal attitude matrix (Rotation Matrix or 
Direction Cosine Matrix) is the fundamental 
representation of the attitude. The requirement of 
orthogonality imposes six constraints on its nine 
elements, reflecting the fact that the special orthogonal 
group SO(3) of the rotation matrices has three 
dimensions. Therefore, although in some approaches 
attitude is computed directly over the Direction Cosine 
Matrix (DCM) [7-8], most approaches use lower-
dimensional parametrizations of SO(3), with earlier 
approaches using a three-dimensional parameterization 
(e.g., Euler angles) [1,3,7,9]. On the other hand, higher-
dimensional parametrizations can avoid the singularities 
or discontinuities present in all three-dimensional 
representations. The four-component quaternion has the 
lowest dimensionality possible for a globally non-
singular representation of SO(3). Unit quaternions 
provide a convenient mathematical notation for 
representing orientations and rotations of objects in three 
dimensions [2,10,4-6,11,12]. Compared with Euler angles, 
quaternions are simpler to compose and avoid the 
problem of gimbal lock. Compared to rotation matrices, 
quaternions are numerically more stable and may be 
more computationally efficient. A good review for 
attitude representations is given in [13]. 
 
Several estimation techniques have been used for attitude 
determination. Schemes presented in [1,2] use the Linear 
Filtering and Iterated least-squares methods, respectively. 
The linear Kalman Filter (KF) commonly used to estimate 
the system state variables and to suppress the 
measurement noise has been recognized as one of the 
most powerful state estimation techniques. Some 
methods which rely on linear Kalman Filtering are [3,10]. 
Due to the nonlinear nature of the problem, the nonlinear 
version of the Kalman Filter (The Extended Kalman Filter 
or EKF) has been the technique typically used to compute 
the attitude solution from multiple sensor sources. There 
are two basic ways of implementing the EKF:  total state 

space formulation (also referred to as the direct 
formulation) and error state space formulation (also 
referred as the indirect formulation).  
 
EKF in the indirect formulation estimates a state vector 
which represents the errors between the estimated state 
and the estimated nominal trajectory. An error model for 
each component of the state is needed in order to estimate 
the measurement residual. The measurement in the error 
state space formulation is made up entirely of system 
errors and is almost independent of the kinematic model. 
Most of the approaches follow this kind of configuration 
[4,5,7,11,12]. The differences among those methods 
mainly consist of variations in the design of the error 
models. 

 

Method Sensors 
Gyro
Bias

Estimation 
Technique 

Attitude 
Represen-
tation 

[1] 3G,GPS Y Linear Filtering Euler 

[2] 3G,3A,3M,
GPS 

Y Iterated least 
squares/KF 

Euler 

[3] 3G,3A,3M,
GPS 

Y KF Quaternion 

[10] 3G,1A,3M Y KF + KF1 DCM 

[4] 3G,Star- 
Tracker 

Y i-EKF Quaternion 

[7] 3G,3A,3M Y i-EKF Euler 

[5] 3G,3A,3M 
Air-Speed 

Y i-EKF Quaternion 

[11] 3G,3A,3M Y i-EKF Quaternion 

[12] 3G,3A,3M N i-EKF Quaternion 
[6] 3G,3A, Air-

Speed 
N Complementary 

Filtering 
Quaternion 

[8] 3G,3A,3M Y Complementary 
Filtering 

DCM/ 
Quaternion 

[9] 3G,3A,3M N Neural Network Euler 

[15] 3G,3A,3M Y UKF Quaternion 

This work 3G,3A,3M Y d-EKF Quaternion 

Table 1. In the "Sensors" column, the initials stand for: G = 
gyroscope, A = accelerometer, M = Magnetometer; the number 
before the initial means the number of axes, (e.g., 3G = 3-axis 
gyroscope). The "Gyro Bias" column indicates whether the 
method estimates the bias of gyros online. In the "Estimation 
Technique" column, KF = Linear Kalman Filter, i-EKF = Extended 
Kalman Filter in the indirect configuration, d-EKF = Extended 
Kalman Filter in the direct configuration, UKF = Unscented 
Kalman Filter. KF1 indicates that an extra linear Kalman Filter is 
used for the Gyro Bias estimation. In the "Attitude 
Representation" column, DCM stands for Direction Cosine 
Matrix.  
 
In EKF in the direct configuration, the vector state is 
updated implicitly with the predicted state and the 
measurement residual (the difference between the 
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predicted and current measurement). In this kind of EKF 
configuration, the system is essentially derived from the 
system kinematics. One of the characteristics of the direct 
configuration is its conceptual clarity and simplicity. The 
differences between both kinds of configurations can 
considerably impact the development process of 
applications based on the EKF. A good review of EKF and 
its configurations can be found in [14].  
 
In addition, it is possible to find other methods which 
rely on variations of Kalman filtering, such as the 
Unscented Kalman filtering [15]. Another interesting 
family of methods for attitude estimation is nonlinear 
observers [6,8]. Nonlinear observers often exhibit global 
convergence which means they can converge from any 
initial guess. A good review of several filtering methods 
for attitude estimation is given in [16]. Another kind of 
method relies on estimation techniques coming from the 
artificial intelligence (AI) research community. For 
instance in [9], attitude estimation relies on a digital 
neural network.  
 
Although it is possible to find different methodologies in 
the literature, EKF is still the standard estimation 
technique for attitude estimation. Nevertheless, the use of 
EKF in direct configuration has been much less explored 
than its counterpart, the EKF in indirect configuration 
(see Table I). This happens especially when system errors 
(e.g., gyro bias) are to be included in the vector state. An 
example of direct linear Kalman filtering for attitude and 
position estimation (GPS + Inertial navigation system) can 
be found in [17]. Nevertheless, since this method is also 
intended for position estimation, it is highly dependent 
on GPS measurements, and thus limits its usability for 
applications which rely solely on attitude estimation. 
Moreover, the LTI (linear time invariant) approach of this 
method can affect the performance of the estimations due 
to the non-linear nature of the problem.  
 
On the other hand, the EKF in its direct configuration has 
been widely used (for about two decades) by the research 
community on autonomous robots, to implement 
methods of localization, mapping or both: SLAM 
(Simultaneous Localization and Mapping), see [18]. 
 
The method presented in this work is motivated by the 
necessity of having a practical and reliable method for 
attitude and heading estimation that can be tightly 
integrated with filter-based SLAM methods in a 
straightforward manner. In this sense, it is important to 
note that most of the currently available algorithms for 
SLAM use a loosely-coupled approach for incorporating 
attitude measurements. In other words, in a loosely-
coupled approach, the SLAM algorithm takes the attitude 
and orientation estimated by an AHRS unit as a high-
level input. On the other hand, since the proposed 

method was derived using the indirect configuration of 
the EKF, it can be easily plugged into a filter-based SLAM 
algorithm using a tightly-coupled approach. Thus, low-level 
measurements (i.e., from gyros, accelerometers, 
magnetometers) can be incorporated directly into the SLAM 
scheme to aid in attitude and heading determination. 
 
This paper considerably extends the authors' previous 
work [19] where the idea of an AHRS based on an EKF in 
a direct configuration is introduced. Some of the most 
important additions included in this work are: 

• A new (discrete) kinematic nonlinear model is used in 
the prediction equations of the filter, in order to 
improve the performance of the method when 
operating at a low sample rate. 

•The actual rotational speed of the body is included in 
the system state vector, in order to improve the 
observability of the bias of gyros.  

• In order to detect instants when the body is in a 
non-accelerating mode, the Stance Hypothesis 
Optimal Detector (SHOE) [20] is used. 

• A novel method is developed for updating yaw 
(heading) measurements, in order to improve the 
modularity and scalability of the method. 

• In order to validate the performance of the proposed 
method, a comparative study with real data is 
presented, where the proposed method is compared 
(in different conditions) with a related method. In 
experiments, the high-performance miniature unit 
3DM-GX3®45 from MicroStrain® is used as ground 
truth. 

 
The paper is organized as follows: in Section 2, the 
proposed method is described. It is important to note that 
the paper is presented in a self-contained style, since all 
the required equations for implementing the proposed 
method are included. Section 3 presents the experimental 
results. In Section 4, the final remarks are presented. An 
appendix with the transformations required for 
implementing the proposed method is also included. 
 
2. Method description  
 
2.1 Vector state and system specification  
 
The goal of the proposed method is to estimate the 
following system state x:̂
 

x̂ xnb b
gq ω ′ =                             (1) 

 
where qnb = [q1,q2,q3,q4] is a unit quaternion representing 
the orientation (roll, pitch and yaw) of the body (device); 
ωb = [ωx ωy ωz] is the bias-compensated velocity rotation of 
the body expressed in the body frame; xg = [xg_xxg_y xg_z] is 
the bias of gyros. 
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Figure 1 shows the relationship between the body frame b 
and the local reference frame n. In this work, the axes of 
the coordinate systems follow the NED (North, East, 
Down) convention. For simplicity’s sake, in Fig. 1, the 
orientation of the body is illustrated by Euler angles α, β 
and γ, denoting roll, pitch and yaw, respectively. Euler 
angles can be computed from quaternion qnb using Eq. 
(34). 
 
In order to estimate the system state x̂, measurements 
obtained with an inertial measurement unit (IMU) of 9-
DOF are considered. The IMU is formed by a 3-axis 
gyroscope, a 3-axis accelerometer, and a 3-axis 
magnetometer. 
 

 

Figure 1. The rotation between the body (device) frame (in red) 
and the local reference frame (in blue) is illustrated by Euler 
angles α, β and γ (roll, pitch and yaw respectively). Attitude and 
heading reference systems are often used for stabilization 
applications, for instance, to control a quadrotor.  
 
2.1.1 Gyroscope measurements  
 
The angular rate ωb of the vehicle, measured by the gyros (in 
the body frame) and indicated as yg, can be modelled by:  
 

gxb
g gy vω= + +                             (2) 

 
where xg is an additive error (bias) and vg is a Gaussian 
white noise with a power spectral density (PSD) σg

2. 
 
2.1.2 Accelerometer measurements 
 
The acceleration of the device ab, measured by the 
accelerometers (in the body frame) as ya, can be modelled by: 
 

axb
a a

by a g v= − + +                       (3) 

 
where gb is the gravity vector expressed in the body 
frame, xa is an additive error (bias), and va is a Gaussian 
white noise with PSD σa

2. Bias in the accelerometers triads 
is often relatively small, thus in this work it is neglected. 
 

2.1.3 Magnetometer measurements 
 
The Earth field mb measured (in the body frame) as ym can 
be modelled by: 
 

mx m
b

my m v= + +                              (4) 

 
where vm is a Gaussian white noise with PSD σm

2. 
Magnetometer bias xm could be fairly large but extremely 
slow in time-varying; therefore, in this work it is not 
considered for online estimations; instead a calibration 
technique, as presented in [21], could be used to set its 
initial value. 
 
2.2 Architecture of the system   
 
Figure 2 shows the architecture of the system, which is 
defined by the typical loop of the prediction-update steps 
in the EKF in the direct configuration: 

• System Prediction: Prediction equations propagate 
during the estimation of the system state, by means 
of the measurements obtained from gyroscopes. 
Prediction equations offer correct estimates at a high 
frequency, but only for a short period of time. 

• System Update: The unavoidable small errors in 
gyro readings produce large errors in attitude 
estimation after long periods of integration. The use 
of aiding sensors capable of measuring external 
references becomes essential in order to limit the 
estimation error. In this work, the gravity vector g 
and the magnetic Earth field m are used as external 
references for correcting roll, pitch and yaw 
estimations: 

i) During the periods when the device is in a non-
accelerating mode (variable rate), information about 
the attitude of the device-vehicle (roll and pitch) is 
incorporated into the system by observing the 
gravity vector.  

ii) Information about the heading (yaw) of the device-
vehicle is incorporated into the system (at a 
predefined constant rate) by observing the Earth’s 
magnetic field. 

 
2.3 System Prediction 
 
At every step k, when gyroscope measurements are 
available, the system state x ̂ is updated by the following 
(discrete) nonlinear model. 
 

( ) ( )

( )
4 4( 1) ( )

( 1) ( ) ( )

g(k 1) g(k)

sin w
cos w I W

w

x

x (1- )x

nb nb
k k

b
k g k g k

xg

q q

y

t

ω

λ

×+

+

+

+
 

=  
 

= − −

= Δ

        (5) 
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Figure 2. System architecture: the typical loop of prediction-update steps can be clearly observed, defined by an EKF in direct 
configuration (the vector state is implicitly updated from the predicted state and the measurement residual). We can observe that pitch 
and roll updates are only carried out when the device is in a non-accelerating mode (variable rate), whereas yaw updates are carried out 
at a fixed rate. Note that due to the modular design, for instance, replacing magnetometers with other sensors in order to correct yaw 
should be straightforward. 
 
In the model represented by Eq. (5), a closed form 
solution of q̇ = 1/2(W)q is used to integrate the current 
bias-compensated velocity rotation ωb over the 
quaternion qnb. In this case w = [ωb

(k+1)∆t/2]´ and: 

1 2 3

1 3 2

2 3 1

3 2 1

0 -w -w -w

w 0 -w w
W

w w 0 -w

w -w w 0

=

 
 
 
 
 
 

                  (6)

Furthermore, an alternative kinematic model for 
modelling the orientation of a camera using a quaternion 
can be found in a previous work by the authors [22]. 
Parameter λxg is a correlation time factor which models 
how fast the bias of the gyro varies. ∆t is the sampling 
time of the system. 
 
The state covariance matrix P takes a step forward by: 
 

( 1) ( )k x k x u uP F P F F U F+
′ ′= ∇ ∇ + ∇ ∇              (7) 

 
The measurement noise of the gyroscope vg is 
incorporated into the system by means of the process’ 
noise covariance matrix U, through parameter σg

2: 
 

2 2
3 3 3 3g xgU diag I Iσ σ× ×=                     (8) 

 
The full model used to propagate the sensor bias error is: 
biask+1=(1-λ∆t)biask + vb, where vb models the 
uncertainty in the bias drift. The uncertainty in the bias 
for the gyro vxg is incorporated into the system through 
the noise covariance matrix U via PSD parameter σxg

2. 

0

0 0
x
x

0 0
x

x

nb nb

nb b

b

g

g

g

F

fq fq
q

f

f

ω
ω

 
 
 
 
 ∇
 
 
 
 
 

∂ ∂
∂ ∂

∂=
∂
∂
∂ xg

0 0

0
y

x
0

b

u
g

g

F f

f
v

ω

 
 
 
 
 ∇
 
 
 
 
 

∂=
∂

∂
∂    

(9)

 
The Jacobian ∇Fx is formed by the partial derivatives of 
the nonlinear prediction model (Eq. 5) with respect to the 
system state x.̂ In Jacobian notation, "∂fx/∂y" is used for 
partial derivatives and it must be read as the partial 
derivative of the function f (which estimates the state 
variable x) with respect to the variable y. Jacobian ∇Fu is 
formed by the partial derivatives of the nonlinear 
prediction model (Eq.5) with respect to the system inputs. 

 
2.4 System Updates 
 
The filter can be updated as follows: 
 

1ˆ ˆx x ( )k k i iW z h+= + −                   (10)
 

1k k iP P WS W+ ′= −                        (11) 
 
where zi is the current measurement and hi = h(x)̂ is the 
predicted measurement; W is the Kalman gain computed 
from: 
 

1
1k i iW P H S −

+
′= ∇                        (12) 
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Si is the innovation covariance matrix: 
 

1 ii i ikS H P H R+
′∇= ∇ +                          (13) 

∇Hi is the Jacobian formed by the partial derivatives of 
the measurement prediction model h(x)̂ with respect to 
the system state x.̂ Ri is the measurement noise covariance 
matrix. Equations (10) to (13) will be used for system 
updates together with the proper definitions of zi, hi, ∇Hi 
and Ri. 
 
2.4.1 Roll and pitch updates 
 
If the device is not accelerating, (i.e. ab ≈ 0), then Eq. (3) 
can be approximated as ya ≈ −gb + va (xa is neglected). In 
this situation, accelerometer measurements ya provide 
noisy observations in the gravity vector (in the body 
frame). The gravity vector g is used as an external 
reference for correcting roll and pitch estimations.  
 
In order to detect the time (corresponding to k instants) 
that the body is in a non-accelerating mode, the Stance 
Hypothesis Optimal Detector (SHOE) is used [20]. 
 
The gravity vector g is predicted as measured by the 
accelerometers as hg: 
 

0
R 0nb

g

c

h
g

 
 =  
  

                            (14) 

 
where gc is the gravity constant and Rnb is the navigation 
to body rotation matrix, computed from the current 
quaternion qnb (using Eq. (33)). 
 
If the device is not accelerating and a minimum period 
(corresponding to t1 seconds) has elapsed since the last 
roll and pitch update, then the filter is updated (using 
Eqs. (10) to (13)) with: 
 

i az y=       i gh h=     
2

3 3 aIiR σ×=     x̂i gH h∇ = ∂ ∂  (15) 

 
2.4.2 Yaw updates 
 
The model hγ used for predicting the heading (yaw) of the 
device is defined as: 
 

( )2 2
2 3 1 4 3 4atan2 2( ),1 2( )h q q q q q qγ = − − +        (16) 

 
where qnb=[q1,q2,q3,q4]  is the current quaternion; atan2 is 
a two-argument function that computes the arctangent of 
y/x given y and x, within the range [-π, π].  
 
As can be observed in Eq. (16), the model does not predict 
how the Earth’s magnetic field will be measured. Instead, 

the model directly predicts the yaw angle to be measured. 
The selection of this measurement prediction model is 
based on the scalability of the system. In this sense, an 
alternative measurement device could be directly 
attached to the AHRS in order to correct the heading 
estimations. 
 
An example of the above case could be a vehicle 
equipped with GPS. Certainly, in order to update the yaw 
of the vehicle using GPS measurements, the heading 
(yaw) should coincide all the time with the vehicle's 
course, which is measured by the GPS. In the case of 
aerial vehicles (e.g., helicopters, quadrotors, etc.), where 
the above assumption is not valid, then another reference, 
such as the Earth´s magnetic field, could be used instead 
to update the yaw. 
 
In order to use the proposed measurement prediction 
model hγ in the 3-axis magnetometer which is included in 
the 9-DOF IMU, a yaw measurement zγn is obtained from 
the measured magnetic field ym. 
 
Due to the angle of the inclination of the magnetic field 
vector, the measured magnetic vector is first projected to 
the north-east plane, by removing its z component: 
 

n bn
mm R y=                                  (17)

 

1 [ 0]n n n
x ym m m=                         (18) 

 
where mn=[mx

n, my
n, mz

n] and Rbn is the body to 
navigation rotation matrix, computed from the current 
quaternion qnb. The magnetic field vector mn

1 
(expressed in the navigation frame), from which the z 
component has been removed, is projected back to the 
body frame by: 
 

1
b nb nm R m=                                   (19) 

 
where mb=[mx

b, my
b, mz

b] and Rnb is the navigation to body 
rotation matrix, computed from the current quaternion 
qnb. Finally, the measured yaw zγn is obtained by: 
 

( )atan2 ,n b b
y xz m mγ = −                        (20) 

 

In this work, it is assumed that the angle of the 
declination of the magnetic field is ignored or is 
previously known. Measurements zγn are assumed to be 
corrupted by Gaussian white noise vγ with PSD σγ2. 
 
At constants intervals of t2 seconds, the filter is updated 
(using Equations (10) to (13)) by: 
 

n
iz zγ=         ih hγ=

       
2

iR γσ=
     

x̂iH hγ∇ = ∂
   (21) 
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2.5 System Initialization  
 
An initial period of time t∈[0,T] is used for system 
initialization tasks. During this period, the device is 
assumed to be non-accelerating. 
 
2.5.1 Initial Attitude 
 
The method for estimating the initial orientation qnb

ini is 
based on the method proposed in [23]. The body frame 
gravity vector g b= [g1, g2, g3]' is estimated by: 
 

0

1
( )

T
b

ag y t dt
T

= −                             (22) 

 
The initial roll and pitch values can be computed 
respectively by: 
 

2 3atan2( , )ini g gα =                           (23) 

 
2 2

1 2 3) )atan2( , ( ( )ini g g gβ = − +                 (24) 

 
The initial yaw value is estimated as follows: 
 

w

cos( ) sin( ) sin( ) sin( ) cos( )
m 0 cos( ) sin( )

sin( ) cos( ) sin( ) cos( ) cos( )

bm
β β α θ α

α α
β β α θ α

= −
−

 
 
 
 

     (25) 

 
where mw=[mxw, myw, mzw]  and: 
 

b

0

1
m ( )

T

my t dt
T

=                              (26) 

 

and 
 

( )atan2 ,w w
y xini -m mγ =                           (27) 

 
The initial quaternion qnbini is computed from the initial 
Euler angles αini, βini and γini: 
 

( , , )nb
ini ini ini iniq f α β γ=                     (28) 

 
To compute the above transformation, an initial body to 
rotation matrix Rnbini is computed from the initial Euler 
angles using Eq. (35). Then the initial quaternion qnbini is 
computed from Rnbini using Eq. (36). 
 
2.5.2 Initial Gyro Bias 
 
Initial gyro bias xg(ini) is estimated from: 
 

g(i )
0

1
x ( )

T

ni gy t dt
T

=                              (29) 

 

2.5.3 Initial vector state and covariance matrix 
 
The system vector state is initialized as follows: 
 

1 3 g( )x̂ 0 xnb
ini ini iniq ×

′ =                (30) 

 
The covariance matrix of the system is initialized as 
follows: 

4 4

3 3

2

3 3

( ) 0 0

0 0

0 0

ε

σ

×

×

×

=

 
 
 
 
 
 
  

nb
ini

ini

g

P q

I

I
T

P             (31) 

 
where ε is a very small arbitrary positive value. The 
covariance matrix for the initial attitude P(qnbini) is 
computed from: 
 

2

2 2

2
P( )

0

0

a

nb
ini

m

q q q

I
T

T

σ

σ

× ′= ∇ ∇

 
 
 
 
  

             (32) 

 
∇q is the Jacobian formed by the partial derivatives of the 
transformation defined in Eq. (28) with respect to the 
Euler angles. 
 
3. Experimental Results   
 
In order to validate the performance of the proposed 
method, a comparative study with real data is presented. 
In this case, the output estimated by the proposed 
algorithm (Direct method) is compared with the output 
obtained from the method described in [11] and [23], 
which is based on an EKF in indirect formulation 
(Indirect method). For a comparative study, the output 
obtained from a commercial 3DM-GX3®45 AHRS unit is 
considered as the ground truth. This high-performance 
miniature unit from MicroStrain® has a retail cost of 
about 5,000 USD. 
 
For each test, the 3DM-GX3®45 was randomly gyrated 
while held in a hand. At the same time, raw data obtained 
from the accelerometers, gyroscopes and magnetometers 
included in the unit, along with the attitude computed by 
the same unit, were recorded in a plain text file at a 
frequency of 100 Hz. Several data captures were carried 
out trying to cover different dynamic circumstances such 
as periodic and soft turns, as well as random and strong 
shakes. Each capture lasts about three minutes. 
 
A MATLAB implementation of both the proposed 
approach (Direct method), as well as the Indirect method, 
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were executed in off-line mode on a desktop Intel i5 PC, 
using raw sensor data stored in plain text files as input 
signals. The execution time was: i) Direct method = 736 
microseconds/step; ii) Indirect method = 586 
microseconds/step. It is important to note that for the 
Indirect method the size of the system state is six (actual 
rotational velocity is not included), instead of nine. So (as is 
typical in EKF applications) difference in execution time 
should be mostly related to the size of the system state. 
 
The outputs obtained with: i) the Direct method, ii) the 
Indirect method and iii) the 3DM-GX3®45 unit have been 
compared. Table 3 shows the values for the parameters 
used in the experiments for both the Direct and the 
Indirect methods.  
 

No extra bias 100Hz 50 Hz 25 Hz 

Roll (Direct) 0.65 0.84 2.62 
Roll (Indirect) 0.66 0.83 2.50 
Pitch (Direct) 0.36 0.58 1.80 

Pitch (Indirect) 0.35 0.56 1.74 
Yaw (Direct) 0.68 0.96 2.42 

Yaw (Indirect) 0.81 1.02 2.10 
Extra Bias 100Hz 50 Hz 25 Hz 

Roll (Direct ) 1.12 1.28 3.01 
Roll (Indirect) 1.39 1.54 2.92 
Pitch (Direct) 0.87 1.07 2.30 

Pitch (Indirect) 0.98 1.19 2.33 
Yaw (Direct) 2.52 3.52 5.76 

Yaw (Indirect) 3.10 3.33 5.21 

Table 2. Mean absolute error (degrees) 
 
In experiments, the mean absolute error (MAE) was used 
to compare the performance of both methods: 
 

            1

1MAE
n

k k
k

f y
n =

= −
                          

 

 
where n is the number of samples, fk is the angle 
measured by the 3DM-GX3®45 unit at instant k, and yk is 
the angle estimated by any method at instant k. In 
experiments, for purposes of clarity, Euler angles are 
obtained every time that they are needed from the current 
estimated quaternion qnb using Eq. (34). 
 
For a comparative study, two aspects were evaluated: 

a) The methods’ performance at estimating the gyro 
bias xg. That is, the ability of the filters to converge 
when the initial conditions differ considerably from 
the actual value, in order to minimize the error in 
estimations. 

b) The performance of the methods when the frequency of 
operations is reduced (or the sample time is increased). 

For the case (a), the methods were executed over the 
input signals stored in the plain text files. After that, 

the methods were run again over the same input 
signals, a huge extra bias xg(a) was artificially 
introduced into each gyro measurement yg, so that: 
yg = ωb+ xg + vg+ xg(a) (see Eq. 2). In experiments xg(a) = 
[.05  -.05  .025] radians.  

For the case (b), the methods were first executed over 
all the samples captured. After this operation, the 
methods were executed again but in this case, 
samples were periodically skipped in order to 
emulate different frequencies of operation. In this 
case, 100Hz, 50Hz and 25Hz were considered.  

 
Table 2 shows the average MAE obtained with the Direct 
method and the Indirect method for several captures of 
data (considering all the conditions previously 
described). As can be appreciated, the computed MAE is 
in general very similar for both methods. In a more 
detailed observation, the Direct method performs slightly 
better for converging (and thus minimizing the error in 
estimation) when an initial huge gyro bias is present. On 
the other hand, the Indirect method shows a slightly 
better response at a very low frequency of operation. 
 
Figure 3 shows the progression over time for the 
estimations obtained for a test with random turns and 
strong shakes. The plots correspond to the response of 
both methods when an extra gyro bias and a frequency of 
operation of 100Hz are considered. In Fig. 3, at the 
beginning of the test (before second 30), the adverse effect 
in the estimated roll, pitch and yaw due to the integration 
of the contaminated gyro measurements can be clearly 
appreciated (observe the absolute error corresponding to 
this period). However, the estimated gyro bias rapidly 
converges to its actual value due to the system updates 
carried out in the filters. When the gyro bias is estimated 
then the absolute error is minimized. For this test, it can 
also be appreciated that the convergence of the Direct 
method is faster than the Indirect Method, thus 
accelerating the minimization of errors in estimation. 
 

Parameter Description Value Unit 

σg2 PSD for gyroscopes 2.2 ×10-3 (rad/s)2 

σa2 
PSD for 
accelerometers 1.2 ×10-2 (m/s2)2 

σγ2 
PSD for heading 
readings. 6.0 ×10-3 (rad)2 

σxg2 
PSD for drift rate of  
gyro bias 4.0 ×10-11 (rad/s2)2 

λxg 
Correlation time for  
gyro bias  1.0 ×10-3 s-1 

∆t
Sampling time 1.0 to 4.0 

×10-2 
s 

t1 

Minimum time 
between roll and 
pitch updates 

5.0 ×10-2 s 

t2 

Minimum time 
between yaw 
updates 

1.0 ×10-1 s 

Table 3. Values of parameters used in experiments 
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Figure 3. Estimation results for a test with random turns and strong shakes with a duration about 170 seconds. In the experiments the 
attitude obtained from the 3DM-GX3®45 is considered as a ground truth (shown in black). The experimental results obtained with the 
proposed scheme (Direct method) are shown in green. The results obtained with the scheme of [11] and [23], (Indirect method) are 
shown in red. Besides the computed Euler angles (roll α, pitch β, yaw γ), the estimated gyroscopes bias xg and the absolute error are also 
shown. The robustness of the methods for converging in the presence of a huge initial bias of gyro is tested. In this case measurements 
yg have been artificially contaminated with an extra bias xg(a) = [.05  -.05  .025]. Nevertheless, for both methods it can be observed how the 
MAE decreases as the estimated gyro bias converges to its actual value. Although both methods are able to minimize the error in 
estimates over the time, for this case it can be observed a slightly better transient response for the Direct method. Lower plots illustrate 
periods for roll and pitch (left) and yaw (right) updates. 
 
4. Conclusions   
 
This work presents a practical method for implementing 
an attitude and heading reference system. The estimated 
vector state is formed by 10 state variables representing: i) 
the orientation of the body (device), ii) the bias-
compensated velocity rotation of the body, and iii) the 

bias of the gyroscopes. The system input is obtained from 
a 9-DOF IMU formed by a 3-axis gyroscope, a 3-axis 
accelerometer and a 3-axis magnetometer. 
 
The architecture of the system is based on an Extended 
Kalman filtering approach in a direct configuration. 
Experiments with real data show that the proposed 
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method is able to maintain an accurate and drift-free 
attitude and heading estimation. Moreover, it is capable 
of estimating the parameters of the error of sensors (i.e., 
gyro bias) in a robust manner, thereby improving the 
system estimations even when the quality of the 
measurements obtained from the gyros is very poor. 
Therefore, the accuracy of the estimates is almost only 
limited by the pre-calibration of accelerometers and 
magnetometers. Based on the experimental results, it is 
considered that the method is robust enough for use 
along with low cost sensors. 
 
In its normal operation mode at 100 Hz and using the 
same input signals, the average difference between the 
orientation estimated by the proposed method and 
orientation obtained from a retail unit (3DM-GX3®45), 
is lower than one degree. Furthermore, a comparative 
study shows that the performance of the proposed 
scheme is at least similar to an EKF method in an 
indirect configuration but, at the same time, has the 
advantages of clarity and simplicity commonly 
associated with the implementation of the EKF in a 
direct configuration. The modularity of the proposed 
architecture allows for scalability in the system. In such 
a case, an alternative measurement device could be 
easily attached to the system (replacing the 
magnetometers), in order to correct the heading 
estimations. Moreover, since the proposed method was 
derived using the indirect configuration of the EKF, it 
can be easily plugged into a filter-based SLAM 
algorithm using a tightly-coupled approach. 
 
The EKF in general is not an optimal estimator (owing 
to its linearization nature). In addition, if the process is 
modelled incorrectly, the filter may quickly diverge. 
Furthermore, it has been seen that the EKF tends to 
underestimate the true covariance matrix and therefore 
the filter could become inconsistent. With the above fact 
in mind, and considering that other estimation 
techniques could be even more robust, for instance, to 
the presence of non-linearity (e.g., UKF or particle 
filters), EKF can provide a reasonable performance and 
is arguably still the de facto standard in navigation 
systems. However, to our knowledge, at least all of the 
recent approaches found in the literature are based on 
the filter having an indirect configuration (also called 
error configuration). In this sense, based on the 
experimental results presented in this work, an 
ostensible reason to prefer the indirect configuration of 
the filter over the direct configuration is not observed, at 
least for implementing an AHRS system. 
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7. Appendix   
 
In this appendix some useful transformations are 
included:  
 
The rotation matrix Rnb can be computed from the 
quaternion q by: 
 

nbR =
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                                                                                                  (33)  

 
Euler angles α, β and γ (roll, pitch and yaw, respectively) 
can be computed from a quaternion q by: 
 

( ) ( )( )
( )( )

( ) ( )( )

2 2
3 4 1 2 2 3

1 3 2 4

2 2
2 3 1 4 3 4

atan2 2 , 1 2

asin 2

atan2 2 , 1 2

q q q q q q

- q q q q

q q q q q q

α

β

γ

= − − +

= +

= − − +

    (34) 

 
The navigation to body rotation matrix Rnb can be 
computed from Euler angles α, β and γ by: 
 
 
 

nb

c c s c s
R s c c s s c c s s s c s

s s c s c c s s s c c c

γ β γ β β
γ ϕ γ β ϕ γ ϕ γ β α β α

γ ϕ γ β ϕ γ ϕ γ β α β α

− 
 = − + + 
 + − + 

(35) 

 
where cx = cos(x) and sx=sin(x).  
 
A quaternion qnb can be computed from rotation matrix 
Rnb by: 
 

1 1 (1,1) (2,2) (3,3)nb nb nbq R R R= + + +  
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(36) 

 
Since a rotation matrix is orthogonal, then 
 

( )nb bnR R ′=     and    ( )bn nbR R ′=                  (37) 
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