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Abstract. This note is a survey of the main results known about fixed sub-
groups of endomorphisms of finitely generated free groups. A historic point

of view is taken, emphasizing the evolution of this line of research, from its

beginning to the present time. The article concludes with a section containing
the main open problems and conjectures, with some comments and discussions

on them.

1. Introduction and notation

The purpose of this note is to survey what is known about fixed subgroups of
finitely generated free groups. Descriptions, comments and remarks on the proofs of
known results will be presented instead of the proofs themselves, for which we refer
the reader to the corresponding original papers. We will also take the opportunity
to review the history of this particular topic in Group Theory, which goes back to
the 1970’s. However, it is not our intention to be exhaustive in this survey. We
apologize to those authors who contributed to this line of research and are not cited
here. In sections 2-7 we will adopt a historic point of view, describing the results
chronologically as they appeared in the literature, even when some of them improve
older ones. Finally, in section 8, a list of some conjectures and open problems in
this area of research will be provided and discussed.

The whole paper is about finitely generated free groups. From now on, Fn will
denote a free group of rank n ≥ 0, while F will be used to denote an arbitrary free
group (possibly with infinite rank). It is well known that every subgroup of a free
group is also free (see, for example, Theorem I.8.4 in [11]). But, in general, its rank
can be larger than the rank of the ambient group. In fact, it is easy to see that the
subgroup H = 〈b−rabr, r ∈ Z〉 of F2 = 〈a, b〉 is free of countably infinite rank. So,
Fℵ0 is a subgroup of F2. Therefore, every free group of finite or countably infinite
rank can be viewed as a subgroup of every other, with the obvious exception of the
trivial group, and of the free group with rank 1, which is the group of integers. Also,
it is well known that the intersection of finitely generated subgroups of a free group
is again finitely generated (see [30] or Theorem I.8.8 in [11]), while its rank can be
of the order of the product of the two ranks. This behavior, which is completely
different from what happens in other more classical algebraic contexts, motivated
a lot of research dedicated to compute or bound the rank of several subgroups
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in different situations. We are interested in the case involving fixed subgroups of
endomorphisms of Fn.

The reduced rank of a free group F , denoted r̃(F ), is max{0, r(F )− 1}, that is,
one less than the rank, except for the trivial group where the reduced rank coincides
with the rank, which is zero. So, a free group has reduced rank zero if and only if
it is cyclic.

Let End(Fn) denote the monoid of endomorphisms of Fn, and Aut(Fn) the
group of automorphisms of Fn (so, Aut(Fn) is the group of units of End(Fn)). Let
Inj(Fn) denote the set of injective endomorphisms of Fn, a submonoid of End(Fn)
containing Aut(Fn). Finally, we denote by Out(Fn) the group of outer automor-
phisms of Fn, that is, Aut(Fn) modulo the (normal) subgroup of conjugations, also
called inner automorphisms. For each u ∈ Fn, we let u again denote the corre-
sponding right conjugation, u : Fn → Fn, x 7→ xu = u−1xu.

We let elements of End(Fn) act on the right of Fn and, if there is no risk of
confusion, we will omit the parenthesis for the argument. Thus, xφ denotes the
image of x under φ, and xφ1φ2 denotes (xφ1)φ2.

For any S ⊆ End(Fn), let Fix S denote the set consisting of the elements of
Fn which are fixed by every element of S (with the convention that Fix S = Fn

when S is empty). Then, Fix S is a subgroup of Fn, called the fixed subgroup of
S or the subgroup fixed by S. When S is a singleton, S = {φ}, we simply write
Fix φ instead of Fix {φ} for the fixed subgroup of φ. So, Fix S = ∩φ∈SFix φ.
Clearly, if S ⊆ End(Fn) and M is the submonoid of End(Fn) generated by S then
Fix S = Fix M .

Following the notation introduced in [38], a subgroup H ≤ Fn is called endo-
fixed if H = Fix S for some S ⊆ End(Fn). If S can be chosen to lie in Inj(Fn)
(resp. Aut(Fn)) we further say that H is a mono-fixed (resp. auto-fixed) subgroup
of Fn. And if S can be chosen to be a singleton, S = {φ} for some φ ∈ End(Fn)
(resp. φ ∈ Inj(Fn), φ ∈ Aut(Fn)) we say more explicitly that H is a 1-endo-fixed
(resp. 1-mono-fixed, 1-auto-fixed) subgroup of Fn.

Let φ ∈ End(Fn). We will concentrate on those results concerning Fix φ as
a subgroup of Fn and, for instance, only a few comments will be made about the
nice recent results on infinite words fixed by the extension of φ to the boundary of
Fn. Also, we will not be concerned in general about isolated fixed words, or about
similar results in non-free groups.

The study of fixed subgroups in free groups began in 1975 with the paper [15]
by J. Dyer and P. Scott. Since then, new results have been appearing constantly.
It is agreed that the main and deepest result in this line of research is the Bestvina-
Handel Theorem, published in [2]. For this reason, the present paper is organized
as follows. In section 2 we review the original motivations, as well as the first partial
results. In section 3 we review the main results about fixed subgroups obtained in
the period 1982-1992, before the Bestvina-Handel Theorem. Section 4 is entirely
dedicated to the Bestvina-Handel theory. Section 5 is about the results obtained by
using the Bestvina-Handel Theorem and by generalizing it. Section 6 considers the
maximal rank case, while section 7 is dedicated to the concept of inertia, probably
the strongest property currently known for fixed subgroups of finitely generated
free groups. Finally, section 8 contains a list of conjectures and open problems in
this line of research, as well as several comments and discussions.
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2. The Scott conjecture

In 1975, J. Dyer and P. Scott published the paper [15]. Using a theorem of
Karrass–Pietrowski–Solitar about the structure of free-by-finite groups, the authors
obtained the following result:

Theorem 2.1 (Dyer-Scott, [15]). If G is a finite group of automorphisms of a
free group F , then Fix G is a free factor of F . In particular, for every finite order
automorphism φ ∈ Aut(Fn), we have r(Fix φ) ≤ n.

This paper can be considered as the starting point of the line of research about
fixed subgroups in finitely generated free groups. In [15], the authors mentioned
that it was not known if Fix G is finitely generated for arbitrary subgroups G ≤
Aut(Fn). In view of his result, P. Scott conjectured that this is the case at least
for single automorphisms (i.e. when G is cyclic). His main motivation was the
following classical result due to J. Nielsen:

Theorem 2.2 (Nielsen, [41]). Let Gp be the fundamental group of a closed
orientable surface with genus p ≥ 1, and let H be the subgroup fixed by some
automorphism of Gp. Then, either H = Gp or H is free with rank at most 2p− 1.
Furthermore, if H is not cyclic, then Gp has a set of 2p generators such that some
subset of it generates H.

In 1975, no example was known of a 1-auto-fixed subgroup of Fn with rank
bigger than n. So, one could also conjecture that r(Fix φ) ≤ n for every φ ∈
Aut(Fn). The finiteness of this rank or the previous inequality can also be studied
for endomorphisms instead of automorphisms, and more generally, for arbitrary sets
of endomorphisms. Soon, all these statements became generically referred to as the
Scott conjecture. And time justified it, since it is now known that r(Fix S) ≤ n for
every subset S ⊆ End(Fn).

In 1977, W. Jaco and P. B. Shalen published [34], where they studied the
fixed and periodic subgroups of those automorphisms of the fundamental group
of a compact connected surface T induced by homeomorphisms of the surface T .
Such an automorphism is called geometric for T . In the case where T is closed and
orientable, this provides an alternative and entirely different proof for Nielsen’s
Theorem (using the fact that, for these particular surfaces, every automorphism of
π1(T ) is geometric for T ). For the cases where T has boundary, the Jaco-Shalen
Theorem gives the following corollary:

Theorem 2.3 (Jaco-Shalen, [34]). Let φ be an automorphism of Fn. If φ is
geometric (for some compact connected surface), then Fix φ is either cyclic or a
free factor of Fn. In particular, r(Fix φ) ≤ n.

However, this result did not completely solve the Scott conjecture because,
as J. Stallings showed in [44], there exist automorphisms of finitely generated free
groups which are not geometric (for any compact connected surface). Concretely, J.
Stallings introduced the concept of PV-automorphism of Fn: φ ∈ Aut(Fn) is a PV-
automorphism when the absolute value of all the eigenvalues of its abelianization
are less than 1, except exactly one which is larger than 1. With a simple homological
argument, he showed that no power of any PV-automorphism is geometric. The
simplest such automorphism is the one in F3 = 〈a, b, c〉 given by a 7→ b, b 7→ c,
c 7→ ab. Furthermore, J. Stallings also conjectured that any PV-automorphism of
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Fn with n ≥ 3 has trivial fixed subgroup. This was known as the Stallings PV-
conjecture, and it provided new evidence in support of the Scott conjecture. As a
motivation for his conjecture, J. Stallings proved (but did not write) that the fixed
subgroup of a PV-automorphism of Fn is contained in the third term in the lower
central series of Fn (see §1 in [46]).

The following step, in 1982, was the work [20] due to S. Gersten (and published
in 1984). Here, the author considered another family of automorphisms of Fn, with
motivations from one-dimensional geometry, i.e. from graphs. Let Fn be viewed
as the fundamental group of a bouquet Y with n petals. For every graph X and
every maximal subtree T in X, one can collapse T to a point and obtain X/T ,
which is a bouquet with as many petals as the rank of (the fundamental group of)
X. There is also the natural projection map X → X/T inducing an isomorphism
at the fundamental group level. An isomorphism φ of Fn = π(Y, ∗) is called a
change of maximal tree automorphism (CMT-automorphism for short) when there
exists a (rank n) graph X, two maximal subtrees T, T ′ in X, identifications of X/T
and X/T ′ with Y , and a vertex v in X such that the corresponding isomorphisms
η

T
: π(X, v) → π(X/T, ∗) ' F and η

T ′ : π(X, v) → π(X/T ′, ∗) ' F satisfy η−1
T

η
T ′ =

φ. In [20], S. Gersten solved the Scott conjecture for CMT-automorphisms proving
the following result, using only combinatorial arguments:

Theorem 2.4 (Gersten, [20]). Let φ be an automorphism of Fn. If φ is a
CMT-automorphism, then r(Fix φ) ≤ n.

Despite being finite for every n ≥ 1, the family of CMT-automorphisms of Fn

contains interesting elements. For example, all Whitehead automorphisms and all
Squier’s skew-Nielsen automorphisms of Fn are CMT-automorphisms.

In addition, S. Gersten gave a method such that, when it terminates, it com-
putes the fixed subgroup of a CMT-automorphism. However, this method is not
really an algorithm because it can go into an infinite loop. The author analyzed
some particular cases and provided the example given by the automorphism of
Fn = 〈x1, . . . , xn〉, n ≥ 2, given by xi 7→ xi+1x1 for i = 1, . . . , n − 1 and xn 7→ x1,
which is simultaneously a CMT-automorphism and a PV-automorphism, and has
trivial fixed subgroup. This was the first infinite family of examples for which the
PV-conjecture was known to be true.

3. Fixed subgroups before Bestvina-Handel

In the same year of its publication, an addendum to [20] appeared with more
information. First, the author gave a simpler revised version of his method to
compute fixed subgroups of CMT-automorphisms. Then, he announced a proof for
the Scott conjecture in general. This proof was outlined in [21] but the details did
not appear until 1987 in the paper [22]. The idea involves studying compositions
of Whitehead automorphisms. These automorphisms generate Aut(Fn), and they
are CMT-automorphisms so Gersten’s method applies to them. After a careful
combinatorial analysis, the author deduces that Fix φ is finitely generated for every
φ ∈ Aut(Fn). Then, using Howson’s Theorem, the same can be said for finitely
generated groups of automorphisms of Fn:

Theorem 3.1 (Gersten, [22]). Let G be a finitely generated group of automor-
phism of Fn. Then, Fix G is finitely generated.
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This solved the question originally asked by P. Scott for the finitely generated
case. However, when one studies the composition of CMT-automorphisms, one loses
control on the upper bound for the rank of the fixed subgroup, and the argument
given by S. Gersten says only that this subgroup is finitely generated. In [22], an
upper bound for r(Fix φ) is given, but it depends on the automorphism φ itself and
can be arbitrarily large, in contrast with the uniform bound r(Fix φ) ≤ n known
at the time for periodic, geometric and CMT-automorphisms of Fn.

During the period 1982-1987, using completely different techniques, other au-
thors obtained independent proofs of Gersten’s Theorem, as well as several exten-
sions of it. And due to the nuances of mathematical publication, many of Ger-
sten’s successors saw their work published before his paper appeared. For example,
see [24], [25], [26], [10] and [46], reviewed below.

In 1983, J. Stallings published [45], where some powerful graph-theoretical
techniques, e.g. the pull-back of graphs, were first introduced and used to give
alternative proofs for classical results on free groups. At the end of [45], the author
ventured a generalization of the Scott conjecture, which has become known as the
Stallings conjecture or the equalizer conjecture. Given two groups G, G′, and two
homomorphisms ϕ, φ : G → G′, the equalizer of ϕ and φ, denoted Eq(ϕ, φ), is the
maximal subgroup of G where both homomorphisms coincide,

Eq(ϕ, φ) = {x ∈ G |xϕ = xφ}.
The Stallings conjecture says that if ϕ, φ : F → F ′ are two homomorphisms of

free groups, F is finitely generated, and ϕ is injective, then Eq(ϕ, φ) is also finitely
generated. Note that this conjecture is stronger than the Scott conjecture since, if
ϕ is an isomorphism, then Eq(ϕ, φ) = Fix φϕ−1. Note also that this statement is
easily seen to be false when both morphisms have non-trivial kernel. Consider the
free group F2 = 〈a, b〉 and the two endomorphisms ϕ, φ given by aϕ = 1, bϕ = b
and aφ = 1, bφ = b−1; clearly, the equalizer Eq(ϕ, φ) is the normal closure of a in
F2, which has infinite rank. In [22], another example for this fact is produced but
with the common image of the equalizer being not finitely generated.

Assuming that ϕ must be injective, one can restrict the attention to the case
where F is a subgroup of F ′ and ϕ is the inclusion. Then, Eq(ϕ, φ) = Fix φ,
and φ : F → F ′ is an arbitrary homomorphism. This setting is more general than
working with endomorphisms of F ′, because the existence of an extension of φ to
an endomorphism of the whole of F ′ is not required.

Similarly to the case of fixed subgroups, one can also ask (or conjecture)
whether the rank of the equalizer of ϕ, φ : F → F ′ is bounded above by that of
F , when ϕ is injective. Or even more, one can ask if r(Eq(S)) ≤ r(F ) for every
set S of morphisms from F to F ′ containing at least one injective morphism. As
we will see below, the Stallings conjecture was proved some years later, while these
stronger questions are still open today. We will generically refer to all of them as
the equalizer conjecture.

At the 1983 AMS Summer meeting, J. Stallings pointed out that the graph
constructed and used by S. Gersten to prove the finiteness of the rank of 1-auto-
fixed subgroups of Fn, could also be constructed using the families of surfaces
described by the 3-dimensional model constructed by Whitehead in the 1930’s (see
[54] and [55]). R. Goldstein and E. Turner developed this idea in a series of two
papers, [24] and [25]. As is said in the introduction to the first paper, it so happens
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that the use of three dimensions provides a freedom that makes it easier to describe
and construct Gersten’s graph, and to prove its main properties. In the first of these
two papers, published in 1984, they gave an alternative proof for Gersten’s Theorem
and they improved Gersten’s upper bound for the rank of the fixed subgroup of a
given automorphism of Fn. In the second one, which appeared in 1985, they went
further using the same techniques and proved the Stallings conjecture for the case
of two injective homomorphisms.

Furthermore, in 1986, another paper by R. Goldstein and E. Turner appeared,
[26]. Here, the authors improved their previous result, solving completely the
Stallings conjecture:

Theorem 3.2 (Goldstein-Turner, [26]). Let F and F ′ be two free groups with
F finitely generated. If ϕ, φ : F → F ′ are two morphisms and ϕ is injective then
Eq(ϕ, φ) is finitely generated.

In this case, the proof is quite simple, short and independent of the previous
ones, and it proves a stronger result. In the situation where F is a subgroup of F ′

and ϕ is the inclusion, the authors provide a particular description of the covering
space X of a bouquet corresponding to the inclusion Fix φ ≤ F . Then, they choose
an appropriate orientation on the edges of X and use it to show that this graph
has finite rank, and then so does Fix φ.

In 1987, D. Cooper published [10] with another proof of Gersten’s Theorem.
This time, the methods used are of a topological and dynamical nature. They are
inspired by work of W. Thurston about surface groups. The idea was to extend
a given automorphism of Fn to a homeomorphism of its end completion F̂n, a
compact metric space where Fn is dense. The author then showed that the fixed
point set of this extension is finitely generated in a certain topological sense, which
implies the finite generation of the subgroup fixed by the original automorphism.

In part inspired by D. Cooper’s work, three more papers appeared, developing
new concepts and results involving infinite words. These works made it clear that
a close connection between the apparently different proofs of [10] and [26] exists.
Two of them are [31] and [32], both published in 1990. In [32], W. Imrich and E.
Turner considered an arbitrary homomorphism φ : F → F ′ from a subgroup F of
an arbitrary free group F ′, to F ′. By extending Goldstein-Turner techniques, they
obtained new upper bounds for the rank of Fix φ, and for the rank of the fixed
point set (à la Cooper) of an injective φ. These bounds are expressed in terms of a
Nielsen reduced basis for F .

The third paper mentioned above is [6], by M.M. Cohen and M. Lustig, and
published in 1989. In this interesting work, the authors extended the Goldstein-
Turner method by imposing a vector field (i.e. a preferred orientation of the edges of
the first barycentric subdivision) on the graph constructed in [26]. They introduced
the concepts of attractive edges, repulsive edges, attracting fixed infinite words and
attracting fixed points at infinity, and investigated the resulting dynamics.

In [6], the authors gave two explicit formulas for the exact value of the rank
of the fixed subgroup of a given automorphism of Fn, one in geometric terms and
the other in a completely algebraic context. In general, it is not easy to make
use of these formulas for concrete examples and, also, they do not seem to give
enough information to derive a uniform upper bound for the rank of the 1-auto-
fixed subgroups of Fn depending only on n. However, they applied their method
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to obtain an explicit algorithm for computing the fixed subgroup of a positive
automorphism of Fn. Recall that a positive automorphism is one for which there
exists a basis of Fn whose images are positive words, see section 6 in [6]. They also
obtained some useful results of which the following are a sample:

Theorem 3.3 (Cohen-Lustig, [6]). Let {x1, . . . , xn} be a basis of the free group
Fn, and let φ ∈ Aut(Fn). If ri denotes the number of occurrences of xi in (the
normal form of) xiφ of the form xiφ = v·xi·w, with v, w ∈ Fn and the abelianization
of w belonging to the image of Id− φ ab, then r(Fix φ) ≤

∑n
i=1 ri. In particular, if

for every i = 1, . . . , n, xi does not occur in xiφ, then Fix φ = 1.

Theorem 3.4 (Cohen-Lustig, [6]). Let {x1, . . . , xn} be a basis of the free group
Fn, and let φ ∈ Aut(Fn) be an automorphism such that x1φ, . . . , xnφ are positive
words. If no word xiφ begins or ends with xi, then Fix φ = 1.

Theorem 3.5 (Cohen-Lustig, [6]). Let Φ ∈ Out(Fn) be an outer automorphism
of Fn. Then, r(Fix φ) ≤ 1 for every φ ∈ Φ except for those belonging to a finite
number of conjugacy classes of elements in Φ.

There is also another extension of Gersten’s Theorem in a different direction,
due to J. Stallings in 1987. The paper [46], developed simultaneously to [25]
of Goldstein-Turner, provided a proof for the following variation of the Stallings
conjecture:

Theorem 3.6 (Stallings, [46]). Let F and F ′ be two free groups with F finitely
generated. Let ϕ, φ : F → F ′ be two homomorphisms with ker ϕ = kerφ. Then the
(common) image of Eq(ϕ, φ) under ϕ or φ is finitely generated. In particular, if ϕ
and φ are injective then Eq(ϕ, φ) is finitely generated.

Here, J. Stallings developed his dyads and the graphic techniques of folds and
ladder attachments. He used these techniques to build an extension of Gersten’s
proof suitable to study the more general situation treated in his paper. So, [46]
focuses on the graphic and combinatorial point of view, without involving either 3-
dimensional arguments or infinite words (although it contains an appendix relating
the dyads to Heegaard diagrams in 3-manifolds).

Additionally, [46] contains a list of the main questions and conjectures about
this topic at that time. This list contains the above mentioned questions about n
being a uniform upper bound for the rank of 1-auto-fixed, 1-endo-fixed, auto-fixed
or endo-fixed subgroups of Fn, or the corresponding ones for the equalizer of a
family of two or more homomorphisms (one of them being injective). There is also
another interesting question relating these problems with subgroups of Fn × Fn.

Furthermore, one finds the papers [27] and [28], published by A.H.M. Hoare
in 1988 and 1990, respectively. Here, the Whitehead 3-dimensional model ([54]
and [55]), Gersten’s graph ([22]), the Goldstein-Turner construction, ([24], [25])
and the dyads of Stallings ([46]) are considered and related to each other. At the
same time, the author offered some variations and extensions of all these construc-
tions, as well as a combinatorial proof for the classical Whitehead cut vertex lemma
using them. However, no new results about fixed subgroups were given.

It is also worth mentioning the extremely short paper [48] published by S.
Thomas in 1988. Using previously known results from A.G. Howson, J. Stallings
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and J. McCool, as well as Gersten’s Theorem, the author definitely closed the origi-
nal question of Dyer-Scott in [15] by dropping the hypothesis on G in Theorem 3.1:

Theorem 3.7 (Thomas, [48]). Let G be an arbitrary group of automorphisms
of Fn. Then, Fix G is finitely generated.

4. The work of Bestvina-Handel

The next step in this history is the deepest and most relevant one in the whole
line of research about fixed subgroups in free groups. In 1988 M. Bestvina and M.
Handel announced a proof for the stronger version of the Scott conjecture, namely
the upper bound n for the rank of 1-auto-fixed subgroups of Fn:

Theorem 4.1 (Bestvina-Handel, [2]). Let φ be an automorphism of Fn. Then,
r(Fix φ) ≤ n.

This result provides the first (and the best possible) uniform upper bound for
r(Fix φ), in contrast with the previously known ones, all of them being either not
uniform or valid only for special families of automorphisms. This result appeared
in published form, with a delay of almost four years, in the fifty-page paper [2] in
the Annals of Mathematics in 1992. Again, some applications and improvements
of the Bestvina-Handel Theorem appeared in print before [2] was published.

This excellent and dense work developed a new and powerful graphic theory to
represent arbitrary automorphisms of Fn, and ended up with a proof of Scott con-
jecture as a consequence. It has a highly topological flavor and it is notoriously hard
to read. It was inspired in the classical work of W. Thurston on homeomorphism
of surfaces.

W. Thurston, following a program started many years before by J. Nielsen,
gave a classification of homeomorphisms of a compact surface S, up to isotopy.
Furthermore, he constructed a particularly efficient representative for every isotopy
class, that is, for every element of the mapping class group of the surface, MCG(S).
This representative can always be chosen to be either of finite order, or pseudo-
Anosov, or reducible (i.e. constructible in a simple way, from homeomorphisms of
simpler surfaces, which are either of finite order or pseudo-Anosov). Thurston’s
work was first described in the preprint [49] in 1976, three years later in [16] (the
proceedings of a seminar held at Orsay in 1978), and finally published twelve years
later in [50]. See also [5] for an introduction, and [3] for an algorithmic proof of
Thurston’s Theorem, based on [2].

Mapping class groups of compact surfaces, MCG(S), and outer automorphism
groups of free groups, Out(Fn), are similar in many ways. In [2], M. Bestvina
and M. Handel developed a project analogous to Thurston’s, replacing surfaces by
graphs, and homeomorphisms by homotopy equivalences, a sort of one-dimensional
version of Thurston’s work. Their main result was the construction of a graph
Z and an efficient homotopy equivalence β : Z → Z, inducing a previously given
outer automorphism Φ ∈ Out(Fn) at the fundamental group level. Here, efficiency
consists of some good properties controlling the amount of cancellation appearing
in the images of single edges of Z under iterates of β.

One has to think of Fn as the fundamental group of the bouquet Rn, a graph
with a single vertex and n edges. A marked graph is a connected graph Z together
with a homotopy equivalence ρ : Rn → Z. Then, every homotopy equivalence
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β : Z → Z of a marked graph Z induces an automorphism of Fn up to conjugation,
that is, an outer automorphism Φ ∈ Out(Fn). It is then said that β is a topological
representative of Φ, or that β induces Φ.

In the first part of [2], the authors analyzed the case of irreducible outer auto-
morphisms. An outer automorphism Φ ∈ Out(Fn) is said to be reducible if there
exist free factors G1, . . . , Gk of Fn whose conjugacy classes are permuted by Φ, and
such that G1 ∗ · · · ∗Gk is still a free factor of Fn; otherwise, it is called irreducible.
See [13] for a classification of the simplest irreducible automorphisms. M. Bestvina
and M. Handel proved that every irreducible automorphism can be topologically
represented by a train track that is, a homotopy equivalence β : Z → Z such that
βk is locally injective in the interior of every edge (i.e., no cancellation appears in
the iterate images of every edge eβk, for e ∈ EZ, and k ≥ 1). Using these train
tracks, they proved the following two results:

Theorem 4.2 (Bestvina-Handel, [2]). Let Φ ∈ Out(Fn) be an irreducible outer
automorphism of Fn. Then, r(Fix φ) ≤ 1 for every φ ∈ Φ.

Theorem 4.3 (Bestvina-Handel, [2]). Let Φ ∈ Out(Fn) be such that Φk is
irreducible for every k ≥ 1. If there exist a cyclic word s such that sΦ = s or
sΦ = s−1, then Φ is geometrically realized by a pseudo-Anosov homeomorphism of
a compact surface with one boundary component.

The former is a stronger version of the Scott conjecture for irreducible auto-
morphisms. The latter was quickly used by S. Gersten and J. Stallings to solve the
PV-conjecture (see [23] and the next section).

In section 5 of [2], M. Bestvina and M. Handel extended their theory from ir-
reducible to arbitrary automorphisms of Fn. Any homotopy equivalence β : Z → Z
defines a natural filtration of Z by (not necessarily connected) β-invariant sub-
graphs, ∅ = Z0 < Z1 < · · · < Zr = Z, such that Zi−1 is a maximal proper
β-invariant subgraph of Zi, i = 1, . . . , r. The subgraph cl(Zi \ Zi−1) is called
the i-th stratum. It is proven that an outer automorphism is irreducible precisely
when all its topological representatives over core graphs (i.e. finite graphs with-
out vertices of valence one) containing no non-trivial β-invariant forests, contain
no non-trivial β-invariant subgraphs. In this case, the corresponding filtration has
only one stratum.

Now, they introduced the notion of relative train track which, up to technical
details, is a natural relativization of the notion of train track, with respect to the
previous filtration. With a considerable amount of technical work, the authors
ended up with the result that every automorphism of Fn admits a topological
representative which is a relative train track. Then, analyzing Nielsen paths, i.e.
paths in the graph fixed up to homotopy, they finally obtained the desired proof
for the Scott conjecture.

The process of building such a good topological representative is controlled by
a certain matrix. Here, the Perron-Frobenius Theorem (see Theorem 8.4.4 in [29]
or II.1 in [14]) plays a central role. A square non-negative integer matrix M is
called irreducible when for every entry (i, j) there exists k ≥ 0 such that the (i, j)-
th entry of Mk is positive; otherwise, M is reducible. Now, the Perron-Frobenius
Theorem states that every irreducible matrix M has the following properties: (i) it
has a unique eigenvalue with maximum modulus, (ii) this eigenvalue is real, i.e. the
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spectral radius of M is itself an eigenvalue, (iii) the corresponding eigenspace has
dimension one, and (iv) this eigenspace is generated by a vector with all positive
coordinates. Clearly, such a vector, when normalized, is uniquely determined by M
and it is called the Perron-Frobenius vector of M . Furthermore, if M has integer
entries, then its spectral radius cannot be a real number between 0 and 1, i.e. it is
0, 1 or larger than 1.

It is easily seen that, for every square non-negative integer matrix M , there
exists a permutation matrix P such that P−1MP has the block form

P−1MP =


M1 ∗

M2

. . .
0 Mr

 ,

where M1, . . . ,Mr are irreducible submatrices, and the entries in the lower trian-
gular part are zeros (note that M is itself irreducible if and only if r = 1). So,
we can associate to M the list of Perron-Frobenius eigenvalues of M1, . . . ,Mr, say
λ1, . . . , λr.

Let β : Z → Z be a homotopy equivalence. The transition matrix of β is
defined as the square non-negative integer matrix M(β) whose entries are indexed
by the set of edges in Z, and the (i, j)-th entry counts the number of times that
the β-image of the j-th edge crosses the i-th edge (in either direction). Note that,
in a suitable order of the edges of Z, the matrix M(β) has the previous block form
and this means that the subgraph Zi determined by the edges corresponding to
M1, . . . ,Mi is β-invariant, i = 0, . . . , r. Also, the irreducibility of Mi corresponds
to the maximality of Zi−1 as a β-invariant proper subgraph of Zi. This defines the
announced filtration ∅ = Z0 < Z1 < · · · < Zr = Z. Additionally, the i-th stratum
is called null, polynomial or exponential when the corresponding spectral radius λi

is 0, 1 or bigger that 1, respectively.
This construction allowed M. Bestvina and M. Handel to put a metric on the

i-th stratum, by setting the length of every edge in Zi \ Zi−1 to be equal to the
corresponding coordinate of the Perron-Frobenius vector of Mi. The useful property
of such a metric is that, for every path p in Zi, the length of pβk is λk

i times the
length of p (taking the length of the edges in Zi−1 equal to zero). Hence, if p is
reduced, the difference between λk

i times the length of p, and the length of the
reduction of pβk measures the amount of cancellation occurring in pβk. This,
together with the Bounded Cancellation Lemma (see [2] for details) are the main
tools for controlling cancellation.

The process of constructing a relative train track for Φ ∈ Out(Fn) (and getting
all the good technical properties) starts with a given topological representative of
Φ, for instance, the one over the bouquet. Then, M. Bestvina and M. Handel keep
performing elementary operations (simple moves previously defined and analyzed)
until they obtain a new representative of Φ with the desired properties. The key
point is that none of these basic operations increases any of the Perron-Frobenius
eigenvalues. This way, they control the whole process and are able to prove the
existence of the desired representative, with the desired good technical properties.

Summarizing, an efficient representative β : Z → Z is constructed for any given
automorphism φ ∈ Aut(Fn) (in fact, β represents the outer class Φ ∈ Out(Fn)
containing φ). The good technical properties of β are enough to analyze how
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Nielsen paths intersect any given stratum. With this information, the authors
construct a new graph X and a map X → Z inducing the inclusion Fix φ ≤ Fn at
the fundamental group level. Since, by construction, any component of X has rank
at most n, they finally deduce that r(Fix φ) ≤ n, obtaining a proof of the Scott
conjecture.

5. Fixed subgroups after Bestvina-Handel

Very soon after M. Bestvina and M. Handel announced their result in 1988,
some applications, extensions and alternative proofs for the already proven Scott
conjecture began to appear (some of them published even before [2]). The first one
was [33], by W. Imrich and E. Turner, and published in 1989. Here, the authors
extended Bestvina-Handel’s result to arbitrary endomorphisms:

Theorem 5.1 (Imrich-Turner, [33]). Let φ ∈ End(Fn) be an endomorphism of
Fn. Then, r(Fix φ) ≤ n.

In fact, they gave a simple algebraic argument to reduce the general situation
to the bijective case, and then used Bestvina-Handel’s result. Given φ ∈ End(Fn),
they considered the stable image Fnφ∞ = ∩∞m=1Fnφm. The key observation was
that Fnφ∞ is φ-invariant, and that the restriction of φ to this subgroup is bijective.
Since Fix φ ≤ Fnφ∞ and r(Fnφ∞) ≤ n, the Bestvina-Handel Theorem applies to
give the desired inequality, r(Fix φ) ≤ n.

In 1991, S. Gersten and J. Stallings published [23], where they used the special
results in [2] which deal with the irreducible case, to solve the PV-conjecture. Pre-
cisely, they proved that every PV-automorphism is irreducible. Then, using Theo-
rem 4.3 and the already known facts stating that any power of a PV-automorphism
is again a PV-automorphism, and that PV-automorphisms are not geometric, they
obtained the following result:

Theorem 5.2 (Gersten-Stallings, [23]). Every PV-automorphism of Fn, n ≥ 3,
has trivial fixed subgroup.

In 1994, D. Collins and E. Turner published [8]. Here, the authors reworked
the whole Bestvina-Handel theory in a more general context, to obtain the same
result for a larger class of groups. More precisely, they worked with free product
groups, i.e. groups admitting a free decomposition into finitely many freely inde-
composable factors. For those groups, there exists the notion of Kuroš rank, which
is analogous to that of rank for free groups. Replacing graphs by graphs of com-
plexes (i.e. graphs with several 2-complexes, called factor complexes, attached to
certain vertices) it is also true that any such group G is the fundamental group
of a graph of complexes Z, and that every automorphism of G can be represented
by a self-homotopy equivalence of Z which restricts to a homeomorphism on any
factor complex. Mimicking the Bestvina-Handel theory, they built an efficient rep-
resentative for any given automorphism of G, and they ended up with a proof of
the corresponding Scott conjecture for automorphisms of free product groups (and
with Kuroš rank in the place of the standard rank).

Another nice paper is [51], published in 1996 and dealing with retracts. A
subgroup H ≤ Fn is called a retract of Fn if the identity IdH extends to a morphism
r : Fn → H. Since, in this case, the composition of r with the inclusion gives an



12 E. VENTURA

idempotent endomorphism of Fn, called a retraction, retracts can alternatively be
defined as images of retractions of Fn. Let φ ∈ End(Fn) and let H = Fnφ∞ be its
stable image. In [51], E. Turner improved the result in [33] about stable images
and, with a simple algebraic argument, proved that H is always a retract. This had
two new consequences relating fixed subgroups.

On the one hand, proper retracts of Fn have rank strictly less that n, so we
have:

Theorem 5.3 (Turner, [51]). Let φ be an endomorphism of Fn. If φ is not
bijective, then r(Fix φ) ≤ n− 1.

In other words, 1-auto-fixed subgroups of Fn with the maximal possible rank,
n, can be fixed subgroups only of automorphisms. In particular, every 1-endo-fixed
subgroup of Fn having rank n is 1-auto-fixed.

On the other hand, the fact that the stable image is a retract allows a connection
with the concept of test word. A test word is an element w ∈ Fn such that every
endomorphism fixing w is necessarily an automorphism. For example, the classical
Nielsen commutator test says that [a, b] = a−1b−1ab is a test word of F2 = 〈a, b〉
(see [42]), and H. Zieschang improved this by proving that in Fn = 〈x1, . . . , xn〉, the
words xk

1 · · ·xk
n for all k ≥ 2, and [x1, x2][x3, x4] · · · [xn−1, xn] when n is even, are

test words (see [56]). The connection with retracts found in [51] is the following:

Theorem 5.4 (Turner, [51]). A word w ∈ Fn is a test word if and only if it is
not contained in any proper retract of Fn.

As seen below, retracts are essential to understand the relation between the
family of 1-endo-fixed subgroups of Fn, and the subfamily of 1-auto-fixed ones.

At this stage, the Scott conjecture was known to be true only for single en-
domorphisms. The next step in this direction was the corresponding result for
families. This was proved for arbitrary families of injective endomorphisms by W.
Dicks and E. Ventura in [14]:

Theorem 5.5 (Dicks-Ventura [14]). Let S be an arbitrary family of injective
endomorphisms of Fn. Then, r(Fix S) ≤ n.

In [14], this was proved as a corollary of the main result there, namely the
inertia property for fixed subgroups of injective endomorphisms. We postpone the
discussion of this and other related results to section 7.

In [43], Z. Sela gave another proof of this result using completely different
methods. Motivated by Thurston’s classification of automorphisms of a surface
and the corresponding decomposition of such automorphisms, Z. Sela constructed
in [43] a hierarchical decomposition of a free group with respect to a given automor-
phism. His basic tool was a certain commutative diagram which establishes a link
between algebraic invariants of automorphisms of hyperbolic groups (in particular
free groups) and the dynamics of some associated actions on real trees. Using this
commutative diagram, Z. Sela obtained Thurston’s classification on the algebraic
level, from a new point of view. The main technique involved is Rips’ theory of
stable actions of groups on real trees. As an application of his construction, Z. Sela
deduced Theorem 5.5.

In 1998 two more related papers appeared. The recently developed theory of
R-trees provides powerful new techniques in combinatorial and geometric group
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theory. A nice application of these techniques was given by D. Gaboriau, G. Levitt
and M. Lustig, who gave in [19] another proof for the Scott conjecture. This new
proof is much shorter and simpler than Bestvina-Handel’s, but, like Sela’s proof,
it is strongly based on the theory of group actions on real trees. The main result
in [19] was the following. Given an outer automorphism Φ ∈ Out(Fn), it is said
that φ1, φ2 ∈ Φ are similar when φ1 = c−1φ2c for some inner automorphism c of
Fn. Observe that, in this event, Fix φ1 = (Fix φ2)c so, these fixed subgroups have
the same rank.

Theorem 5.6 (Gaboriau-Levitt-Lustig, [19]). Let Φ ∈ Out(Fn) be an outer
automorphism of Fn, and let φ0, φ1, . . . , φk ∈ Φ belong to different similarity classes.
Then,

(5.1)
k∑

i=0

r̃(Fix φi) ≤ n− 1.

In particular, Φ contains only finitely many similarity classes with a non-cyclic
fixed subgroup.

As noted in [19], this theorem is only superficially stronger than 4.1. It follows
by applying Theorem 4.1 to the automorphism of Fn ∗ Fk acting as φ0 on Fn and
sending the i-th generator ti of Fk to uiti, where ui is such that φi = φ0ui. Some
authors use the term eigengroup of φ ∈ Aut(Fn) with eigenvalue u to refer to the
fixed subgroup of φu:

Fix(φu) = {x ∈ Fn : u−1(xφ)u = x} = {x ∈ Fn : xφ = uxu−1}

(see [39] or Definitions I.5.5 in [14]). In this language, Theorem 5.6 can be stated
by saying that the reduced ranks of the conjugacy classes of eigengroups of any
given automorphism of Fn add up to at most n− 1.

In fact, the graph X in the Bestvina-Handel construction is not connected
in general and, as mentioned above, one of its components corresponds to the
fixed subgroup of the automorphism under study. With a close look at section 6
in [2], one can conclude that the non-cyclic components of X correspond exactly
to the similarity classes of Φ with non-cyclic fixed subgroups. Hence, although not
explicitly stated, the same argument in [2] shows Theorem 5.6.

The interpretation of Theorem 5.6 should read as follows: given φ ∈ Aut(Fn),
the bigger r(Fix φ) is, the smaller r(Fix(φu)) will be for every inner automorphism
u such that φu 6∼ φ. In the extremal case, if r(Fix φ) = n then every eigengroup of
φ is either conjugate to Fix φ or cyclic.

Also in 1998, the paper [17] appeared, due to D. Gaboriau, A. Jaeger, G. Levitt
and M. Lustig. This paper elaborates further on the techniques initiated in [19].
Actions on real trees are used to explore fixed infinite words or, more precisely, to
relate the rank of the fixed subgroup with the number of fixed points at infinity.
So, the results in [17] are in the line of those previously obtained by D. Cooper
in [10], and by M. Cohen and M. Lustig in [6].

Let φ ∈ Aut(Fn) be an automorphism of Fn = 〈X〉, X = {x1, . . . , xn}. The
boundary of Fn, denoted ∂Fn, is the set of reduced infinite words in X±1, equipped
with a natural topology, which makes Fn∪∂Fn a compact topological space. Then,
the automorphism φ : Fn → Fn extends naturally to a homeomorphism φ : ∂Fn →
∂Fn, and one can consider also the fixed points of this extension, that is, the so
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called infinite words fixed by φ. Such an infinite word W is called an attracting
fixed point of φ when, for every W ′ ∈ Fn ∪ ∂Fn close enough to W , one has
limp→∞ φp(W ′) = W . An algebraic version of this notion is the following (see [6]):
the fixed infinite reduced word W = a1a2 · · · , with ai ∈ X±1, is attractive when
for every r > 0 there exist an integer s0 such that for every s ≥ s0, a1a2 · · · as+r is
an initial segment of (a1a2 · · · as)φ.

Two fixed infinite words W1 and W2 are said to be equivalent when W2 = gW1

for some finite word g ∈ Fix φ. Note that any infinite word equivalent to an
attracting fixed point of φ is itself an attracting fixed point of φ. Then, let a(φ)
denote the number of equivalence classes of attracting fixed points of φ. The main
result in [17] is the following improvement of Theorem 5.6, taking also into account
the number a(φ):

Theorem 5.7 (Gaboriau-Jaeger-Levitt-Lustig, [17]). Let Φ ∈ Out(Fn) be an
outer automorphism of Fn, and let φ0, φ1, . . . , φk ∈ Φ belonging to different simi-
larity classes. Then,

k∑
i=0

max(0, r(Fix φi) +
a(φi)

2
− 1) ≤ n− 1.

In particular, Φ contains only finitely many similarity classes with r(Fix φi) +
a(φi)

2 ≥ 2.

The two main ingredients of the proof are the existence of a certain φ-invariant
R-tree, and an inequality by D. Gaboriau and G. Levitt about stabilizers of branch
points in R-trees (see [18]).

In 1999, A. Martino published [37], giving a similar result to Theorem 5.7 but
for automorphisms of free product groups. This improved the result of Collins-
Turner in [8] about the Scott conjecture for these groups, and provided an alterna-
tive proof of Theorem 5.7 for the free case. The arguments used are in the line of
the Bestvina-Handel theory.

In 2000, O. Bogopolski published [4], where he considers the case of rank 2 and
gives a list, up to change of basis, of all automorphisms of F2 fixing a non-trivial
element, together with an explicit description of the corresponding fixed subgroups.
The paper also contains a complete list of the isomorphism types of the stabilizers
of non-trivial elements of F2 by the natural action of Aut(F2).

Finally, it is worth mentioning the three recent preprints [35], [39] and [40].
In [35], M. Lustig solves the conjugacy problems in Aut(Fn) and Out(Fn). As

a corollary to the algorithms given, he also provides an algorithm that, for any
given φ ∈ Aut(Fn), computes a basis for Fix φ. So, the fixed subgroup of an
automorphism of Fn is algorithmically computable.

The main result in [39], due to A. Martino and E. Ventura, is an explicit
description of what eigengroups of outer automorphisms of Fn look like. The proof
consists of closely analyzing the Bestvina-Handel construction at the fundamental
group level. The version of this result concerning single automorphisms is the
following:

Theorem 5.8 (Martino-Ventura, [39]). Let F be a non-trivial finitely generated
free group and let φ ∈ Aut(F ) be an automorphism. Then, there exist integers
r, s ≥ 0, φ-invariant subgroups K1, . . . ,Kr ≤ F , primitive elements y1, . . . , ys ∈ F ,
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a subgroup L ≤ F , and elements 1 6= h′j ∈ Hj = K1 ∗ · · · ∗ Kr ∗ 〈y1, . . . , yj〉,
j = 0, . . . , s− 1, such that

F = K1 ∗ · · · ∗Kr ∗ 〈y1, . . . , ys〉 ∗ L

and yjφ = h′j−1yj for j = 1, . . . , s; moreover,

Fix φ = 〈w1, . . . , wr, y
−1
1 h0y1, . . . , y

−1
s hs−1ys〉

for some non-proper powers 1 6= wi ∈ Ki and 1 6= hj ∈ Hj with hjφ = h′jhjh
′−1
j ,

i = 1, . . . , r, j = 0, . . . , s− 1.

Finally, the preprint [40], also by A. Martino and E. Ventura, analyzes the
relationship between the families of 1-auto-fixed and 1-endo-fixed subgroups of Fn.
It is easy to see that these two families coincide for n = 1, 2, but nothing was known
for higher values of n. There, it is proved that the family of 1-endo-fixed subgroups
of Fn coincides with the family of 1-auto-fixed subgroups of retracts of Fn. Then,
using Theorem 5.8, the first family of examples of retracts (and so 1-endo-fixed
subgroups) of Fn not being 1-auto-fixed is provided, for n ≥ 3. One of the simplest
such examples is the subgroup 〈b, cacbab−1c−1〉 of F3 = 〈a, b, c〉.

In the present section, the chronological order was not completely followed.
Some papers were skipped and will be considered in the following two sections.
In section 6 we will concentrate on the maximal rank case, which was studied for
instance in the papers [7], [9] and [53]. And section 7 will be dedicated to the
concept of inertia for fixed subgroups. This concept was first introduced in the
monograph [14], and further used in [1] and [38].

6. The maximal rank case

Once it was known that 1-auto-fixed subgroups of Fn have rank at most n,
it was a natural question to ask for particular properties or descriptions of those
subgroups with maximal rank. A 1-auto-fixed subgroup of Fn having rank n is
called a maximum-rank 1-auto-fixed subgroup of Fn.

In 1993 the first paper studying this case appeared. It was [7], due to D. Collins
and E. Turner. The authors analyzed the Bestvina-Handel theory in the case of
maximal rank and obtained the result that any such subgroup contains a primitive
element of Fn:

Theorem 6.1 (Collins-Turner, [7]). Every automorphism of Fn with fixed sub-
group of rank n fixes a primitive element of Fn.

A non-connected version of this result is given in section 3 of [19]. With the
techniques developed there, D. Gaboriau, G. Levitt and M. Lustig proved that, if
equality holds in (5.1), then some φi with r(Fix φi) ≥ 2 fixes a primitive element
of Fn.

Three years later, D. Collins and E. Turner published [9], where they went
further in their project. By making a closer analysis of the Bestvina-Handel theory
in the particular situation of maximal rank, the authors proved that in this case all
the strata in the filtration of a relative train track must be polynomial, and they
have to be of a very special type. They were able to read enough information from
this graphic context to obtain the following very explicit algebraic description of
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maximum-rank 1-auto-fixed subgroups of Fn. Here, F ab
n denotes the abelianization

of Fn, and for a, b ∈ Fn we write [a, b] = a−1b−1ab.

Theorem 6.2 (Collins-Turner, [9]). Let H be a subgroup of Fn, and let m
denote the rank of the (free abelian) image of H in F ab

n (called the abelian rank of
H). The following are equivalent:

a) H is a maximum-rank 1-auto-fixed subgroup of Fn,
b) there exists a basis {x1, . . . , xn} of Fn such that, setting Fl = 〈x1, . . . , xl〉

for 0 ≤ l ≤ n, there exists a basis {y1, . . . , yn} of H such that for 1 ≤ j ≤
m, yj = xj, and for m+1 ≤ k ≤ n, yk = [wk, xk] for some wk ∈ H∩Fk−1

not being a proper power of any element of Fn (so, in particular, wk 6= 1).
In this event, {y1, . . . , yl} is a basis of H ∩ Fl, for 0 ≤ l ≤ n. Furthermore,
every automorphism φ ∈ Aut(Fn) with H ≤ Fix φ is of the form xj 7→ xj and
xk 7→ wrk

k xk for some non-zero integers rk, 1 ≤ j ≤ m, m + 1 ≤ k ≤ n.

The typical example of a maximum-rank 1-auto-fixed subgroup is given by the
following automorphism of F2 = 〈a, b〉: a 7→ a, b 7→ arb, where r is an integer.
Its fixed subgroup is H = 〈a, [a, b]〉 = 〈a, b−1ab〉, and m = 1, except when r = 0
(in which case it is the whole F2). However, for n ≥ 3, the fixed subgroup of an
automorphism of the type described in the last paragraph of the previous theorem
can be bigger than H. For example, let r be a non-zero integer and consider
the automorphism φr of F3 = 〈a, b, c〉 given by a 7→ a, b 7→ ab, c 7→ arc. For
r 6= 1 we have Fix φr = 〈a, b−1ab, c−1ac〉, which has abelian rank m = 1. But
Fix φ1 is bigger since it also contains b−1c, and has abelian rank m = 2 (in fact,
Fix φ1 = 〈a, b−1c, b−1ab〉 = 〈a, b−1c, c−1ac〉).

Additionally, in [9] there is also an analogous result describing the fixed sub-
groups of automorphisms of free product groups, with maximal Kuroš rank.

Finally, the paper [53], published in 1997 by E. Ventura, also considered the
case of maximal rank. The main result in [53] was the following:

Theorem 6.3 (Ventura, [53]). Among the strictly ascending chains of maxi-
mum-rank 1-auto-fixed subgroups of Fn, the maximum length is exactly n.

The proof uses the Collins-Turner description of maximum-rank 1-auto-fixed
subgroups of Fn. Essentially, it is a graphic proof and it involves immersions and
coverings of graphs, as well as Stallings foldings. Also, a simple graphic proof of an
old result from M. Takahasi was provided. For the particular case n = 2, and being
H a maximum-rank 1-auto-fixed subgroup of F2, a description was given of all those
subgroups K ≤ F2 satisfying r(K) = r(H ∩K) = 2. The main consequence derived
from this result was the following theorem, which is clearly only valid in the rank
2 case:

Theorem 6.4 (Ventura, [53]). Let S be a non-empty set of non-identity en-
domorphisms of F2 such that r(FixS) = 2. Then, S ⊆ Aut(F2), and Fix S =
〈a, b−1ab〉 for some basis {a, b} of F2, and Fix S = Fix φ for each φ ∈ S.

In particular, this implies that every group of automorphisms G ≤ Aut(F2) with
r(Fix G) = 2 is either trivial or infinite cyclic. The paper [53] ends by showing
that, in the rank 2 case, the families of 1-auto-fixed, 1-endo-fixed, auto-fixed and
endo-fixed subgroups do coincide. As mentioned above, in [40] an example is given
of a 1-endo-fixed not 1-auto-fixed subgroup of Fn, for n ≥ 3.
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It is not known in general whether the families of 1-auto-fixed and auto-fixed
(or 1-endo-fixed and endo-fixed) subgroups of Fn coincide (see 8.9 and 8.10 below).
However, the paper [38] (reviewed later) gave a positive solution to this problem
in the maximal rank case, as a consequence of the main result there. The result is
the following:

Theorem 6.5 (Martino-Ventura, [38]). Let H ≤ Fn be a subgroup of Fn with
r(H) = n. The following are equivalent:

a) H is a 1-auto-fixed subgroup of Fn,
b) H is a 1-mono-fixed subgroup of Fn,
c) H is a 1-endo-fixed subgroup of Fn,
d) H is an auto-fixed subgroup of Fn,
e) H is a mono-fixed subgroup of Fn,
f) H is an endo-fixed subgroup of Fn.

7. Inertia and fixed subgroups

In the monograph [14], published in 1996 by W. Dicks and E. Ventura, a new
concept was introduced: inertia of subgroups of a free group. The main result in
this work was the inertia property for mono-fixed subgroups of Fn, a stronger result
than the Scott conjecture for those subgroups. This result is a partial solution for
the unsolved equalizer conjecture. A natural particular case of that conjecture was
the motivation to look at the notion of inertia.

The general equalizer conjecture says that the equalizer of two homomorphisms
ϕ, φ : Fm → Fn, one of them being injective, has rank bounded by m. If, for ex-
ample, ϕ is injective then there is no lose of generality in assuming that Fm is
a subgroup of Fn and ϕ is the inclusion. In this case, we have only one homo-
morphism to consider, φ : Fm → Fn, Fm ≤ Fn, and Eq(ϕ, φ) = Fix φ. So, the
equalizer conjecture is the Scott conjecture generalized to partial endomorphisms,
i.e. homomorphisms from a certain subgroup of Fn, to Fn.

The case Fm = Fn is the Scott conjecture already solved by Bestvina-Handel.
The simplest step to consider next is the case when φ : Fm → Fn extends to an
endomorphism φ̃ of Fn; in this case, Fix φ = Fm∩Fix φ̃. We can reset this situation
by taking φ ∈ End(Fn), and an arbitrary subgroup K ≤ Fn, and asking whether
r(K ∩Fix φ) ≤ r(K). This was the original motivation for the following definition.
A subgroup H ≤ Fn is called inert when r(K ∩ H) ≤ r(K) for every subgroup
K ≤ Fn. Of course, taking K = Fn, if H ≤ Fn is inert then r(H) ≤ n.

Easy examples of inert subgroups of Fn are the cyclic ones, and the free factors
of Fn. Not so obvious is the fact that every rank 2 subgroup of Fn is inert. This
is because of work by G. Tardos on the H. Neumann conjecture. In [47] this
conjecture, i.e. r̃(H ∩K) ≤ r̃(H)r̃(K) for every H,K ≤ Fn, was proved when one
of the two subgroups involved has rank 2. This is precisely the same as saying that
rank two subgroups of Fn are all inert.

The main result in [14] provided new examples of inert subgroups of Fn:

Theorem 7.1 (Dicks-Ventura, [14]). Every mono-fixed subgroup of Fn is inert.
In particular, r(Fix S) ≤ n for every S ⊆ Inj(Fn).

This result can be thought of both as the next step towards the solution of
the general Scott conjecture (before, it was only known for single endomorphisms,
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and this was the first result for families), or as a partial solution for the general
equalizer conjecture.

With a simple observation one can see that the family of inert subgroups of
Fn is closed under arbitrary intersections (this is clear for finite intersections, and
a standard argument on a descending chain of subgroups proves it in the infinite
case, see Corollary I.4.13 in [14]). Then, it is enough to prove Theorem 7.1 for
1-mono-fixed subgroups. This is what it is done in [14].

The work [14] contains a complete reformulation and extension of the Bestvi-
na-Handel theory, improving it in the following four directions.

Thought the paper [2], there is a topological flavor in many arguments (con-
tinuity, limits, density, Cantor sets, etc). However, one observes that this is not
essential because the final result, as well as all the intermediate ones, are of a purely
combinatorial and algebraic nature. One of the goals of [14] was to reformulate
the entire theory in [2] in a complete algebraic setting, making transparent its al-
gebraic nature. The only essential information that is carried by a path in a graph,
is the reduced sequence of edges crossed by the path. So, it turns out to be more
convenient to think of a graph just as a combinatorial object, and continuous maps
between graphs as formal maps sending edges (and reduced paths) to reduced paths.
A good way of modelling this is the categorical language of groupoids. Associated
to any graph Z, one has the fundamental groupoid πZ, which must be thought
of as the set of paths in Z modulo reduction, and with concatenation, which is a
partially defined operation. Then, continuous maps simply translate into groupoid
morphisms. One of the advantages of this setting is that the notion of tightening
in [2] disappears completely in the new language. This is because, when tightening
a given path p in a graph, one obtains another path p′, but they both give exactly
the same element of πZ. Another advantage is that the fundamental group of Z
at a vertex v is now viewed as a subgroup of the groupoid πZ. So, passing to the
fundamental group does not involve a move to a different context, it is just the
restriction to a certain subgroup. This way, continuous maps and what they induce
at the fundamental group level are unified in a common context. Also, the notion of
topological representability can just be expressed as a simple equivalence relation
in the context of groupoid morphisms.

Another important point of this reformulation of [2] is that it avoids talking
about the invariant filtration ∅ = Z0 < Z1 < · · · < Zr = Z. Following an idea of
Gaboriau-Levitt-Lustig, the entire argument of [2] is rewritten just looking at the
top stratum, and then arguing by induction on the reduced rank of the underlying
(not necessarily connected) graph. This simplifies considerably the technical details,
since one only has to work with a single invariant subgraph (instead of the whole
filtration) and a single matrix and Perron-Frobenius eigenvalue and eigenvector
(instead of one for each stratum in the filtration).

While translating into the algebraic setting, the technical details were arranged
in such a way that the surjectivity property of the automorphism is finally used
nowhere. Hence, the entire argument, and so the final conclusion, works for in-
jective endomorphisms and not just for automorphisms of Fn. This is the first
generalization provided. However, the construction is far from being valid in the
presence of a non-trivial kernel.
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The fourth and main improvement is the generalization of the theory to provide
a proof of the inertia for fixed subgroups. This was achieved by mixing the Bestvina-
Handel theory with the pull-back technique developed by J. Stallings in [45]. Given
an injective endomorphism φ ∈ Inj(Fn), the authors of [14] considered the graph
X and the map X → Z constructed in section 6 of [2], and inducing the inclusion
Fix φ ≤ Fn (see section 4). This is where M. Bestvina and M. Handel used the
good graphical properties of this graph and graph map to show that r̃(X) ≤ r̃(Z)
(and consequently, r(Fix φ) ≤ n). Instead, in [14] the authors consider another
arbitrary finite connected core-graph Y and map Y → Z (this represents an arbi-
trary different subgroup K ≤ Fn). Then, they look at the pull-back of these two
graphical maps (previously arranged to be immersions), say W → Z. By [45], the
latter immersion represents the intersection K ∩ Fix φ. And the good technical
properties were enough not only to show that r̃(X) ≤ r̃(Z), but also to prove that
the inequality passes through the pull-back diagram. In this way, it was proved
that r̃(W ) ≤ r̃(Y ), which means r(K ∩ Fix φ) ≤ r(K) for an arbitrary K ≤ Fn.
This is precisely the inertia of the fixed subgroup.

In fact, in [14] the non-connected version of the previous result was proved.
The analysis of the algebraic meaning of the different components of W yields
a final inequality involving the sum of reduced ranks of subgroups of the form
Ky ∩ Fix(φx−1), where x ranges over a set of representatives of Reidemeister
classes of φ, and, for every x, y ranges over a set of double coset representatives of
K\Fn/Fix(φx−1) (see Theorem IV.5.5 in [14] for the details). This non-connected
version of inertia was codified using sets acted on by Fn.

Another interesting fact about [14] is that all the details left to the reader in [2]
were meticulously verified in the new context.

Finally, another concept is introduced in [14] by relaxing the inertia condition.
A subgroup H ≤ Fn is called compressed when r(H) ≤ r(K) for every other
subgroup H ≤ K ≤ Fn. Clearly, inert subgroups are compressed, and it is easy
to see that retracts are also compressed. It is not known whether compressed
subgroups are inert. It is even unknown whether retracts are inert. These problems
are related with some conjectures and open questions about fixed subgroups (see
section 8).

After [14], two more papers appeared in the literature using, or building upon,
the concept of inertia. The first is [1], due to G. Bergman and published in 1999.
Among other results, [1] contains the following theorem, which definitely solved the
remaining piece of the general Scott conjecture:

Theorem 7.2 (Bergman, [1]). Let S ⊆ End(Fn) be an arbitrary family of
endomorphism of Fn. Then, r(Fix S) ≤ n.

So, the Scott conjecture was completely solved by 1999. However, a new prob-
lem came up naturally from [14]. In despite of Bergman’s result, one can ask if
Fix φ is inert when φ has non-trivial kernel. As far as we know, this is still an open
problem today (see section 8 for additional comments).

Bergman’s proof of Theorem 7.2 is based on a reduction to the injective case
by using his main result:

Theorem 7.3 (Bergman, [1]). Let G be a finitely generated torsion-free group,
L an arbitrary group, and consider the free product G ∗L and the projection π : G ∗
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L → G. If σ1, σ2 : G → G ∗L are two group-theoretic sections of π, then Eq(σ1, σ2)
is a free factor of G.

The proof of this result used results of Stallings-Swan and a detailed analysis
of supports of derivations. Also, at the end of [1], there is an interesting list of
questions. Some of them will be discussed in the next section.

It is also interesting to remark that W. Dicks and M. Dunwoody gave a different
and more general proof of Theorem 7.3. In [12], they proved exactly the same
result, but without using the torsion-free hypothesis. This new proof makes use of
the Almost Stability Theorem, of protrees and also of some new folding sequence
techniques.

Another work relying on the inertia property is [38], published in 2000 by A.
Martino and E. Ventura. Here it was conjectured that every auto-fixed subgroup
is 1-auto-fixed. The authors were not able to prove this fact (which is still open
today), but their main result provides support for this conjecture:

Theorem 7.4 (Martino-Ventura, [38]). Let S ⊆ End(Fn) and let M be the
submonoid of End(Fn) generated by S. Then, there exists φ ∈ M such that Fix S
is a free factor of Fix φ.

The proof was completely algebraic, and considered first S containing two ele-
ments, one of them injective, then S ⊆ Inj(Fn) and, finally, the general case using
Bergman’s result. Theorem 7.4 naturally raises the question of whether a free fac-
tor of a 1-endo-fixed subgroup is again 1-endo-fixed. This is obviously true when
n = 2 but it is not true for n ≥ 3, and the following counterexample is provided
in [38]. By Theorem 6.2, the subgroup

〈a, [a, b], [a, c]〉 = 〈a〉 ∗ 〈[a, b], [a, c]〉
of F3 = 〈a, b, c〉 is 1-auto-fixed. But the authors proved that any endomorphism
of F3 fixing [a, b] and [a, c] is forced to fix a. So, 〈[a, b], [a, c]〉 is a free factor of
a 1-auto-fixed subgroup of F3, which is not even endo-fixed. The example can be
easily generalized to an arbitrary n ≥ 3.

As mentioned in section 6, Theorem 7.4 also has consequences for the maximal
rank case (see Theorem 6.5).

The paper [38] also introduced the concept of auto-fixed closure. The auto-
fixed closure of a subgroup H ≤ Fn is Hc = Fix(AutH(Fn)), where AutH(Fn) is the
subgroup of Aut(Fn) of those automorphisms φ such that H ≤ Fix φ. As in classical
Galois theory, H ≤ Hc but the inequality can be strict. For example, the previous
example can be used to say that the auto-fixed closure of H = 〈[a, b], [a, c]〉 in F3

is Hc = 〈a, [a, b], [a, c]〉. In general, the relationship between any given subgroup H
of Fn, and its auto-fixed closure is quite obscure.

8. Conjectures and open problems

A list of interesting problems and conjectures that still remain open is given in
this final section. We further add some comments and discussions on them. Some
of the questions mentioned here are also asked and discussed in the last section
of [14] and [1].

First of all, it is completely satisfactory that the general Scott conjecture, the
original motivation for this line of research, is already completely solved. The
work of Bestvina-Handel, Imrich-Turner, Dicks-Ventura and Bergman, shows that
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r(Fix S) ≤ n for any arbitrary set S of endomorphisms of Fn. However, as usually
happens in mathematics, even when the original problem is completely solved,
the line of research is not exhausted because other interesting questions came up
naturally from the developed work. For example, it is not known if fixed subgroups
of endomorphisms of Fn are necessarily inert.

Conjecture 8.1 (Inertia conjecture). Every endo-fixed subgroup of Fn is inert.
Equivalently, retracts of Fn are inert.

Discussion. Let S ⊆ End(Fn). In [14] it is proved that Fix S is inert when
S ⊆ Inj(Fn). So, the open problem is about endomorphisms with non-trivial
kernel. In this case, Bergman showed in [1] that r(Fix S) ≤ n for arbitrary S,
giving supporting evidence for the conjecture.

The set of inert subgroups of Fn is closed under arbitrary intersections. So, it
is enough to consider 1-endo-fixed subgroups. Let φ ∈ End(Fn). By a result of
E. Turner [51], φ restricts to an isomorphism of the stable image Fnφ∞, which is
a retract of Fn containing Fix φ. So, Fix φ is inert as a subgroup of a retract of
Fn. Hence, the conjecture is equivalent to saying that retracts are inert. There is
a fairly explicit description of retracts of Fn (see exercise 15 in section 3.2 of [36]),
but this does not seem to help in solving this problem. 2

Question 8.2 (Bergman, [1]). Let R,H ≤ Fn be two finitely generated sub-
groups of Fn. Is it always true that if R is a retract of Fn then R ∩H is a retract
of H ?

Discussion. The motivation for this question is that an affirmative answer
would immediately give a proof for the inertia conjecture. Observe also that the
analogous question for free factors is true, namely the intersection of a free factor
R of Fn with any subgroup H ≤ Fn is a free factor of H.

Note that one of the results of Bergman in [1] is that an arbitrary intersection
of retracts of Fn is again a retract of Fn. 2

Conjecture 8.3 (Equalizer conjecture). If S is a set of homomorphisms from
Fm to Fn, one of them being injective, then r(Eq(S)) ≤ m. Equivalently, Eq(S) is
inert in Fm.

Discussion. By restricting the homomorphisms in S to a given subgroup K ≤
Fm, we see that the two statements of the conjecture are in fact equivalent.

By a result of Goldstein-Turner [26], Eq(S) is finitely generated when S is
finite. And by a result of Bergman [1], if there is a homomorphism ω : Fn → Fm

such that, for every φ ∈ S, φω is the identity of Fm then Eq(S) is a free factor of
Fm. In particular, r(Eq(S)) ≤ m in this case.

Using an injective element in S, we can restate the conjecture in the following
way: “Let Fm ≤ Fn and let S be an arbitrary set of morphisms from Fm to Fn.
Then, r(Fix S) ≤ m (equivalently, Fix S is inert in Fm)”. With this new formula-
tion, the result in [14] says that the conjecture is true when the homomorphisms
in S all extend to injective endomorphisms of Fn. 2

Conjecture 8.4 (Compressed-inert conjecture). Every compressed subgroup
of Fn is inert.

Discussion. First, let us note that, using the Schreier formula, the conjecture
is clearly true for subgroups of Fn of finite index.
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Since every retract of Fn is compressed, but there are compressed subgroups
which are not retracts, this conjecture is strictly stronger than the inertia con-
jecture. So a positive solution would imply that endo-fixed subgroups of Fn are
inert.

Let Fm be a compressed subgroup of Fn, and let S be an arbitrary family of
homomorphisms from Fm to Fn. In [52], the following is proved: if it is true that
compressed subgroups are inert, then Eq(S) is inert in Fm. So, this conjecture
seems to be of a similar level of difficulty as the equalizer conjecture. 2

Question 8.5. Is there an algorithm to decide if a given subgroup H ≤ Fn is
inert?

Discussion. In [53] a simple graphic algorithm is given to decide if a given
subgroup H ≤ Fn is compressed. However, the algorithm seems to be unable to
control subgroups not containing H. 2

Question 8.6. Is there an algorithm to decide whether a given subgroup H ≤
Fn is 1-auto-fixed and, in this case, find an automorphism fixing H? Analogous
questions can be asked for 1-mono-fixed, 1-endo-fixed, auto-fixed, mono-fixed and
endo-fixed subgroups.

Discussion. This question asks for an algorithm dual to the one provided by M.
Lustig in [35]. The description of 1-auto-fixed subgroups provided by Theorem 5.8,
although being quite explicit, does not seem to be good enough from the algorithmic
point of view. 2

Question 8.7. Is there any algebraic characterization of 1-auto-fixed subgroups
of Fn? Similarly for the other five types of fixed subgroups.

Discussion. Collins-Turner gave in [9] such a characterization for the maximal
rank case. The only result that is known in this direction for the general case is
Theorem 5.8 due to A. Martino and E. Ventura.

It is known that every endo-fixed subgroup H is pure (i.e. xr ∈ H implies
x ∈ H) and inert. However, these conditions, although being quite restrictive,
especially the second one, are not enough to characterize fixed subgroups. 2

Question 8.8. Is there any algorithm to compute the auto-fixed closure Hc of
a given subgroup H ≤ Fn?

Discussion. Given an automorphism φ of Fn, this question amounts to under-
standing which elements of Fn are forced to be fixed by φ, if some others are. This
can happen even with independent elements (see the example in [38] mentioned
in the previous section). It is not clear how these relationships work, nor it is
understood how a subgroup H of Fn determines its auto-fixed closure Hc. 2

Conjecture 8.9 (Martino-Ventura, [38]). Every auto-fixed subgroup of Fn is
1-auto-fixed.

Discussion. This was conjectured in [38], which gives much of the information
known in support of this conjecture. There, it was proved that every auto-fixed
(resp. mono-fixed, endo-fixed) subgroup of Fn is a free factor of some 1-auto-
fixed (resp. 1-mono-fixed, 1-endo-fixed) subgroup of Fn. However, an example was
shown of a free factor of a 1-auto-fixed subgroup of Fn with n ≥ 3, which is not
even endo-fixed.
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In particular, the conjecture is true for F2, and for maximum-rank auto-fixed
subgroups.

The same can conjectured with the prefix mono- or endo- instead of auto-. 2

Question 8.10. What are the relationships (with respect to inclusion) between
the families of 1-auto-fixed, 1-mono-fixed, 1-endo-fixed, auto-fixed, mono-fixed and
endo-fixed subgroups of Fn ?

Discussion. It is easy to see that these six families of subgroups of Fn coincide
when n = 2. By Theorem 6.5, they also coincide in the maximal rank case.

In general, apart from the obvious inclusions between them, the only informa-
tion known is that, for n ≥ 3, the family of 1-endo-fixed subgroups strictly contains
that of 1-auto-fixed ones (see [40]). In between, there is the family of 1-mono-fixed
subgroups, which is not known to coincide with any of the previous families.

Conjecture 8.9 and the discussion there are closely related with this question.
2

Question 8.11. Let F be a free group and φ ∈ End(F ). Is Fix φ inert in F ?

Discussion. If F is finitely generated, this question has already been considered,
and coincides with the inertia conjecture above (see 8.1). The only new question
asked here is about the infinitely generated case. The general Scott conjecture
is vacuous in this case, since the inequality r(H) ≤ r(F ) is immediate for every
subgroup H ≤ F . However, the inertia property changes the situation here. It is
not a trivial question to ask if the fixed subgroup of an endomorphism of F is inert
in F . A similar question about equalizers can also be asked. Nothing is known in
this direction. 2
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