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Abstract

Let F be a finitely generated free group, and let n denote its rank.
A subgroup H of F is said to be automorphism-fixed, or auto-fixed
for short, if there exists a set S of automorphisms of F such that H
is precisely the set of elements fixed by every element of S; similarly,
H is 1-auto-fixed if there exists a single automorphism of F whose
set of fixed elements is precisely H. We show that each auto-fixed
subgroup of F is a free factor of a 1-auto-fixed subgroup of F . We
show also that if (and only if) n ≥ 3, then there exist free factors
of 1-auto-fixed subgroups of F which are not auto-fixed subgroups
of F . A 1-auto-fixed subgroup H of F has rank at most n, by the
Bestvina-Handel Theorem, and if H has rank exactly n, then H is
said to be a maximum-rank 1-auto-fixed subgroup of F , and similarly
for auto-fixed subgroups. Hence a maximum-rank auto-fixed subgroup
of F is a (maximum-rank) 1-auto-fixed subgroup of F . We further
prove that if H is a maximum-rank 1-auto-fixed subgroup of F , then
the group of automorphisms of F which fix every element of H is
free abelian of rank at most n − 1. All of our results apply also to
endomorphisms.

1 Introduction

Recall that the rank of a group is the minimum of the set of the cardinals
of the generating sets of the group.
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Throughout, let n be a positive integer and Fn a free group of rank n.
Let End(Fn) denote the endomorphism monoid of Fn, and Aut(Fn) the

automorphism group of Fn, so Aut(Fn) is the group of units of End(Fn).
Let Inj(Fn) denote the set of injective (or monic) endomorphisms of Fn, a
submonoid of End(Fn) containing Aut(Fn).

Throughout, we let elements of End(Fn) act on the right on Fn, so
x 7→ (x)φ.

For any S ⊆ End(Fn), let Fix(S) denote the set consisting of the elements
of Fn which are fixed by every element of S (read Fix(S) = Fn for the case
where S is empty). Then Fix(S) is a subgroup of Fn, called the S-fixed
subgroup of Fn, or the subgroup of Fn fixed by S.

A subgroup H of Fn is called an endo-fixed subgroup of Fn if H = Fix(S)
for some subset S of End(Fn). If S can be chosen to lie in Inj(Fn) (resp.
Aut(Fn)) we further say that H is a mono-fixed (resp. auto-fixed) subgroup
of Fn.

A subgroup H of Fn is called a 1-endo-fixed subgroup of Fn if H = Fix(φ)
for some φ ∈ End(Fn) (here, and throughout, to simplify notation we write
Fix(φ) rather than Fix({φ})). If φ can be chosen to lie in Inj(Fn) (resp.
Aut(Fn)), we further say that H is a 1-mono-fixed (resp. 1-auto-fixed) sub-
group of Fn. For example, any maximal cyclic subgroup of Fn is 1-auto-fixed,
since it is the subgroup fixed by a suitable inner automorphism. Notice that
an auto-fixed subgroup is an intersection of 1-auto-fixed subgroups, and
vice-versa.

The most important results about 1-auto-fixed subgroups of Fn were
obtained by M. Bestvina and M. Handel, in [BH], where they showed that
every 1-auto-fixed subgroup of Fn has rank at most n, which had previously
been conjectured by G. P. Scott. In fact, Bestvina-Handel proved, but
did not state, that any 1-mono-fixed subgroup of Fn has rank at most n,
see [DV]. Imrich-Turner [IT], using the result of [BH], showed that any
1-endo-fixed subgroup of Fn has rank at most n. Dicks-Ventura [DV], using
the techniques of [BH], showed that any mono-fixed subgroup of Fn has rank
at most n, and G. M. Bergman [B], using the result of [DV], showed that
any endo-fixed subgroup of Fn has rank at most n. This brief history is
appropriate for our purposes, but is far from complete; for example, it does
not mention the ground-breaking work of S. M. Gersten, who showed that
1-auto-fixed subgroups are finitely generated.

A 1-auto-fixed subgroup of Fn which has rank n is said to be a maximum-
rank 1-auto-fixed subgroup of Fn, and similarly for the other five subgroup
qualifiers defined above.

The work of Bestvina-Handel has been extended in many other direc-
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tions; see, for example, [Tu], [CT], [V].
This paper continues the line of investigating auto-fixed subgroups of

Fn, addressing the question of whether the following holds.

Conjecture 1.1 Every auto-fixed subgroup of Fn is a 1-auto-fixed subgroup.

The case where n ≤ 2 was proved in Theorem 3.9 of [V]. We obtain
partial results which we believe constitute a useful step towards proving
Conjecture 1.1 in general. Recall that a free factor of a group is a member
of a free-product decomposition of the group. Our main result, Theorem 3.3,
is that, for any submonoid M of End(Fn), Fix(M) is a free factor of Fix(φ)
for some φ ∈ M . Thus we use results of [BH], [DV] and [B] to recover the
fact that endo-fixed subgroups have rank at most n. Observe that Theo-
rem 3.3 proves the case of Conjecture 1.1 where the auto-fixed subgroup has
maximum rank.

In the case where n ≤ 2, it is a simple matter to show that a free factor
of a 1-auto-fixed subgroup of Fn is 1-auto-fixed, so Theorem 3.3 can be used
to deduce this previously known case of Conjecture 1.1. However, the same
approach fails for larger n, since Proposition 5.4 shows that, for n ≥ 3, there
exist free factors of 1-auto-fixed subgroups of Fn which are not endo-fixed.

Section 5 considers the Galois correspondence between subgroups of Fn

and subgroups of Aut(Fn). We see that if H is a maximum-rank 1-auto-fixed
subgroup of Fn, then the corresponding set of automorphism of Fn which
fix every element of H is a free abelian subgroup of Aut(Fn) of rank at most
n− 1.

2 Background

In this section we collect together the results we shall use in the proof of our
main result.

The following is well known, and can be viewed as a special case of the
Kurosh Subgroup Theorem.

Lemma 2.1 If A, B, C are subgroups of a group G, and A is a free factor
of B, then A ∩ C is a free factor of B ∩ C.

Proof. Here A is a free factor of B, say B = A ∗ D. By Bass-Serre
Theory (see pp. 1–55 of [Se], or pp. 1–35 of [DD1]), B acts on a tree T with
trivial edge stabilizers, having A as a vertex stabilizer. Hence B ∩ C acts
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on T with trivial edge stabilizers, having A ∩ (B ∩ C) = A ∩ C as a vertex
stabilizer. By Bass-Serre Theory again, A ∩ C is a free factor of B ∩ C. ¤

In the case where G is a free group, which is the only case of interest
to us, we remark that it is straightforward to use Stallings’ graph pullback
techniques [St] to obtain an alternative proof.

We now turn to the free group setting, and recall two classical results of
M. Takahasi, and one of A. G. Howson.

Theorem 2.2 (Takahasi) If H is a finitely generated subgroup of Fn, then
there exists a finite set O of finitely generated subgroups of Fn which contain
H, such that each subgroup of Fn which contains H has a free factor which
belongs to O.

Proof. See Theorem 2 of [Ta]. A graph-theoretic proof can be found
in [V]. ¤

Theorem 2.3 (Takahasi) If (Hm | m ≥ 1) is a countable descending chain
of subgroups of a free group, and some positive integer bounds the rank of
Hm for all m, then the intersection

⋂
m≥1

Hm is a free factor of Hm for all

but finitely many m.

Proof. See [Ta], or Exercises 33–36 of Section 2.4 of [MKS]. A graph-
theoretic proof is contained in the proof of Theorem I.4.11 of [DV]. ¤

Theorem 2.4 (Howson) If A and B are finitely generated subgroups of a
free group then A ∩B is finitely generated.

Proof. See [H]. Gersten’s very short graph-theoretic proof is given in
Section 7.7 of [St]. ¤

For the final topic of this review, we consider endomorphisms of Fn. The
deepest result we shall use is the following.

Theorem 2.5 (Bestvina-Handel-Imrich-Turner) Every 1-endo-fixed
subgroup of Fn has rank at most n.

Proof. This was proved by W. Imrich and E. C. Turner [IT] using the
1-auto-fixed case proved by M. Bestvina and M. Handel [BH]. Essentially, it
suffices to consider the action of φ on the image of a sufficiently high power
of φ, since the rank of such images eventually stabilizes. ¤

We now recall a forerunner of the above.
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Theorem 2.6 (Dyer-Scott [DS]) If an automorphism φ of Fn has finite
order, then its fixed subgroup Fix(φ) is a free factor of Fn. ¤

These results have consequences which are known to experts, but do not
seem to have standard references, so we recall the (elementary) proofs.

Corollary 2.7 If φ ∈ End(Fn) and m is a positive integer, then Fix(φ) is
a free factor of Fix(φm).

Proof. By Theorem 2.5, Fix(φm) is free of finite rank, and φ acts on it
as an automorphism of finite order, so the result follows from Theorem 2.6.
¤

Corollary 2.8 If φ ∈ End(Fn) then {Fix(φm) | m ≥ 1} has a maximum
element under inclusion.

Proof. For each positive integer m, let us write Hm = Fix(φm). By
Theorem 2.5, each Hm is free of rank at most n. Thus we can choose m
such that Hm has maximum possible rank. By Corollary 2.7, if r is a positive
integer, then Hm and Hr are free factors of Hmr. By the maximality of the
rank of Hm, we see that Hm = Hmr, so Hr is a free factor of Hm. Thus Hm

is a maximum element. ¤
We remark that this maximum element consists of all the finite orbits of

φ, and is sometimes called the periodic set of φ.
We conclude with a recent result. Recall that endomorphisms act on the

right.

Theorem 2.9 (Bergman, [B]) If M is a submonoid of End(Fn), then
there exists ψ ∈ M such that Fix(M) is a free factor of Fix(Mψ), and
the subsemigroup Mψ of M viewed as a subsemigroup of End((Fn)ψ) lies in
Inj((Fn)ψ).

Proof. ([B], p. 1540) Take ψ ∈ M minimizing the rank of (Fn)ψ. It is
clear that Mψ acts injectively on (Fn)ψ so, Mψ can be viewed as a sub-
semigroup of Inj((Fn)ψ). Consider now H = (Fix(Mψ))ψ−1 ≤ Fn. For
every φ ∈ M , its restriction to Fix(Mψ) is a section of the surjective ho-
momorphism ψ : H → Fix(Mψ), since φψ ∈ Mψ. By Corollary 12 of [B],
the equalizer of this family of sections is a free factor of Fix(Mψ). But M
contains the identity so, the previous equalizer is precisely Fix(M). Thus,
Fix(M) is a free factor of Fix(Mψ).

For an alternative argument, see Remark 5.7 in [DD2]. ¤
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We remark that, since Mψ acts on both Fn and (Fn)ψ, there is an
apparent ambiguity about the interpretation of Fix(Mψ), but this causes
no problem since the two interpretations give the same subgroup.

3 Fixed subgroups

In this section, we prove that given a subset S ⊆ End(Fn) there exists φ in
the submonoid of End(Fn) generated by S such that Fix(S) is a free factor
of Fix(φ). In particular, any auto-fixed (resp. mono-fixed, endo-fixed) sub-
group of Fn is a free factor of a 1-auto-fixed (resp. 1-mono-fixed, 1-endo-fixed)
subgroup of Fn.

Let us consider first the injective case with only two morphisms, then
the general injective case and finally the general case. Recall that endomor-
phisms act on the right.

Lemma 3.1 If φ, ψ ∈ End(Fn) and ψ is injective, then there exists a posi-
tive integer t such that Fix(φ, ψ) is a free factor of Fix(φψt).

Proof. By Corollary 2.8, there exists a positive integer m such that
Fix(ψmr) = Fix(ψm) for every positive integer r. Let η = ψm, so Fix(ηr) =
Fix(η) for every positive integer r, and η is injective.

By Theorem 2.5 and Theorem 2.4, Fix(φ, η) is finitely generated. By
Theorem 2.2, there exists a finite set O of finitely generated subgroups of
Fn which contain Fix(φ, η), such that every subgroup of Fn which contains
Fix(φ, η) has some element of O as a free factor.

Let r be a positive integer. Then Fix(φηr) is a subgroup of Fn which
contains Fix(φ, η), so there exists some Mr ∈ O such that Mr is a free factor
of Fix(φηr).

For any positive integer s > r,

Fix(φ, η) ≤ Mr ∩Ms ≤ Fix(φηr, φηs).

But if x ∈ Fix(φηr, φηs) then (x)ηs−r = ((x)φηr)ηs−r = (x)φηs = x, so
(x)η = x. Hence (x)φηr = x = (x)ηr, but ηr is injective, so (x)φ = x. Thus
x ∈ Fix(φ, η). This shows that Fix(φηr, φηs) ≤ Fix(φ, η), so Fix(φ, η) =
Mr ∩Ms for all positive distinct integers r, s.

Since O is finite, there exist positive integers s > r such that Mr =
Ms, and hence Mr = Mr ∩Ms = Fix(φ, η), so Fix(φ, η) is a free factor of
Fix(φηr) = Fix(φψmr).
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By Corollary 2.7, Fix(ψ) is a free factor of Fix(η). And by Lemma 2.1,
Fix(φ) ∩ Fix(ψ) = Fix(φ, ψ) is a free factor of Fix(φ) ∩ Fix(η) = Fix(φ, η),
which we have seen is a free factor of Fix(φψmr). Hence Fix(φ, ψ) is a free
factor of Fix(φψmr). ¤

We can now prove the injective case of the main result.

Lemma 3.2 Let S be a nonempty subset of Inj(Fn), and M(S) the sub-
semigroup of Inj(Fn) generated by S. Then there exists φ ∈ M(S) such that
Fix(S) is a free factor of Fix(φ).

Proof. Let κ denote the cardinal of S, so 1 ≤ κ ≤ ℵ0.
The case κ = 1 is clearly valid.
Suppose that 2 ≤ κ < ℵ0, and that the result is true for smaller sets.

Let ψ ∈ S. By the induction hypothesis, there exists φ ∈ M(S − {ψ})
such that Fix(S − {ψ}) is a free factor of Fix(φ). By Lemma 2.1,

Fix(S − {ψ}) ∩ Fix(ψ) = Fix(S)

is a free factor of Fix(φ) ∩ Fix(ψ) = Fix(φ, ψ). And, by Lemma 3.1, there
exists a positive integer t such that Fix(φ, ψ) is a free factor of Fix(φψt).
Since φψt ∈ M(S), we see that, by induction, the result holds for finite sets.

It remains to consider the case where κ = ℵ0, so S is the union of a
countable ascending chain of finite nonempty subsets (Sm | m ≥ 1). Then
(Fix(Sm) | m ≥ 1) is a countable descending chain of subgroups whose
intersection is Fix(S). By the preceding paragraph, for each m ≥ 1, there
exists φm ∈ M(Sm) such that Fix(Sm) is a free factor of Fix(φm). By
Theorem 2.5, each Fix(Sm) has rank at most n, so, by Theorem 2.3, there
exists a positive integer m such that Fix(S) is a free factor of Fix(Sm), so
is a free factor of Fix(φm). ¤

We can now obtain our main result.

Theorem 3.3 Let n be a positive integer, Fn a free group of rank n, S a
subset of End(Fn), and M the submonoid of End(Fn) generated by S. Then
there exists φ ∈ M such that Fix(S) is a free factor of Fix(φ).

Proof. By Theorem 2.9, there exists ψ ∈ M such that Mψ can be viewed
as a subsemigroup of Inj((Fn)ψ), and such that Fix(M) is a free factor of
Fix(Mψ). By Lemma 3.2 applied to the nonempty subset (and subsemi-
group) Mψ of Inj((Fn)ψ), there exists φ ∈ Mψ ⊆ M ⊆ End(Fn) such that
Fix(Mψ) is a free factor of Fix(φ) (recall the two coinciding interpretations
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of the term “Fix” in this context). Hence Fix(S) = Fix(M) is a free factor
of Fix(φ). ¤

It is not known in general if the set of 1-endo-fixed subgroups is closed
under arbitrary (or even finite) intersections; this is precisely the fact conjec-
tured in Conjecture 1.1. However, the subset of those subgroups H = Fix(φ)
with φ2 = φ is closed under arbitrary intersections (see Lemma 18 in [B]).

In light of Theorem 3.3, it is natural to ask whether a free factor of a
1-auto-fixed subgroup of Fn is necessarily auto-fixed. It is straightforward
to prove this for n ≤ 2, but, in Proposition 5.4, we will see that there are
counter-examples for all n ≥ 3.

We record the following consequences of Theorem 3.3.

Corollary 3.4 Each auto-fixed subgroup of Fn is a free factor of some
1-auto-fixed subgroup.

Each mono-fixed subgroup of Fn is a free factor of some 1-mono-fixed
subgroup.

Each endo-fixed subgroup of Fn is a free factor of some 1-endo-fixed
subgroup. ¤

For completeness we mention the following.

Corollary 3.5 (Dicks-Ventura-Bergman) Every endo-fixed subgroup of
Fn has rank at most n. ¤

This result was originally obtained by G. M. Bergman in [B] using The-
orem 2.5, results of [DV] and Theorem 2.9; here we have used the first and
third, but completely bypassed the second.

4 Maximum-rank fixed subgroups

We have introduced six types of fixed subgroups of Fn, and, for each type,
the maximum possible rank is n. In this section we consider the case where
this maximum rank is achieved.

We begin by observing two consequences of Theorem 3.3 for the maxi-
mum-rank case.

Corollary 4.1 If S is a subset of End(Fn) such that Fix(S) has rank n,
then the submonoid of End(Fn) generated by S contains some element φ
such that Fix(S) = Fix(φ). ¤
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Corollary 4.2 Every maximum-rank auto-fixed subgroup of Fn is a maxi-
mum-rank 1-auto-fixed subgroup.

Every maximum-rank mono-fixed subgroup of Fn is a maximum-rank
1-mono-fixed subgroup.

Every maximum-rank endo-fixed subgroup of Fn is a maximum-rank
1-endo-fixed subgroup. ¤

Notice the first part is a special case of Conjecture 1.1.
Now recall the important work of Collins and Turner in this area.

Theorem 4.3 (Turner [Tu]) If φ ∈ End(Fn) and Fix(φ) has rank n, then
φ ∈ Aut(Fn). ¤

Let F ab
n denote the abelianization of Fn, a free abelian group of rank n.

For elements a, b of Fn, we write [a, b] = a−1b−1ab.

Theorem 4.4 (Collins-Turner [CT]) Let H be a subgroup of Fn, and let
m denote the rank of the (free abelian) image of H in F ab

n . Then H is a
maximum-rank 1-auto-fixed subgroup of Fn if and only if there exists a basis
(xi | 1 ≤ i ≤ n) of Fn, such that, setting Fl = 〈xi | 1 ≤ i ≤ l〉 for 0 ≤ l ≤ n,
there exists a basis (yi | 1 ≤ i ≤ n) of H, such that, for 1 ≤ j ≤ m, yj = xj,
and, for m+1 ≤ k ≤ n, yk = [wk, xk] for some wk ∈ H ∩Fk−1 such that wk

is not a proper power of any element of Fn (so, in particular, wk 6= 1).
In this event, (yi | 1 ≤ i ≤ l) is a basis of H ∩ Fl, for 0 ≤ l ≤ n. ¤

We now combine all the above results to obtain a generalization of The-
orem 3.9 of [V], which dealt with the case n = 2.

Theorem 4.5 Let n be a positive integer, Fn a free group of rank n, and
H a subgroup of Fn of rank n. Let m denote the rank of the (free abelian)
image of H in F ab

n . Then the following are equivalent:

(a) H is a 1-auto-fixed subgroup of Fn.

(b) H is a 1-mono-fixed subgroup of Fn.

(c) H is a 1-endo-fixed subgroup of Fn.

(d) H is an auto-fixed subgroup of Fn.

(e) H is a mono-fixed subgroup of Fn.

(f) H is an endo-fixed subgroup of Fn.
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(g) There exist a basis (xi | 1 ≤ i ≤ n) of Fn, and a basis (yi | 1 ≤ i ≤ n)
of H, such that, if 1 ≤ j ≤ m, then yj = xj, and, if m + 1 ≤ k ≤ n,
then yk = [wk, xk] for some wk ∈ H∩Fk−1 such that wk is not a proper
power.

Proof. Corollary 4.2 shows that (a) is equivalent to (d), that (b) is
equivalent to (e) and that (c) is equivalent (f). Theorem 4.3 shows that (a),
(b) and (c) are equivalent, while Theorem 4.4 shows that (a) and (g) are
equivalent. ¤

5 Galois groups

For any subgroup H of Fn, let us write AutH(Fn) for the set of elements
of Aut(Fn) which fix every element of H; this is sometimes called the
pointwise-stabilizer of H.

In the usual way, we have a Galois correspondence between subsets of
Aut(Fn) and subgroups of Fn, given by S 7→ Fix(S) in one direction, and
H 7→ AutH(Fn) in the other direction. This gives rise to the standard
bijection between the corresponding closed subsets on both sides. Thus the
closed subgroups of Fn are the auto-fixed subgroups of Fn, while the closed
subsets of Aut(Fn) are the pointwise-stabilizers of subgroups of Fn.

Thus for any subgroup H of Fn, we define the auto-fixed closure of H in
Fn to be Fix(AutH(Fn)), that is, the intersection of all those 1-auto-fixed
subgroups of Fn containing H.

Unlike the situation for finite field extensions, we get a different Galois
correspondence if we consider endomorphisms of Fn. We shall deal mostly
with the maximal rank case, where no difference arises. We define EndH(Fn)
in the natural way.

The purpose of this section is to calculate some interesting special cases.
We begin by describing those closed subgroups of Aut(Fn) which correspond
to maximum-rank auto-fixed subgroups.

Proposition 5.1 Let H be a maximum-rank auto-fixed subgroup of Fn,
and let m denote the rank of the (free abelian) image of H in F ab

n . Then
EndH(Fn) = AutH(Fn) is a free abelian subgroup of Aut(Fn) of rank n−m.

Proof. By Theorem 4.4, there is a basis (xi | 1 ≤ i ≤ n) of Fn, and a
basis (yi | 1 ≤ i ≤ n) of H, such that, for 1 ≤ j ≤ m, yj = xj , and, for
m + 1 ≤ k ≤ n, yk = [wk, xk] for some wk ∈ H ∩ Fk−1 not being a proper
power.
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Let l be an integer, m+1 ≤ l ≤ n. There exists a unique endomorphism
φl of Fn such that, for 1 ≤ i ≤ n, (xi)φl = xi if i 6= l, and (xl)φl = wlxl.
It is clear that φl is an automorphism, and fixes wl, and a straightforward
induction argument shows that φl fixes all the yi and all the wi, so φl ∈
AutH(Fn).

It is easy to see that the φl (m + 1 ≤ l ≤ n) commute with each other.
Now consider any φ ∈ EndH(Fn).
For 1 ≤ j ≤ m, we see (xj)φ = (yj)φ = yj = xj .
We claim that, if m + 1 ≤ k ≤ n, then there exists a unique integer rk

such that (xk)φ = wrk
k xk. To see this let Xk = (xk)φ, and notice that φ

simultaneously fixes wk and yk, since they both lie in H. So,

w−1
k x−1

k wkxk = yk = (yk)φ = ([wk, xk])φ = [wk, Xk] = w−1
k X−1

k wkXk.

Hence Xkx
−1
k commutes with wk, and so Xkx

−1
k = wrk

k for a unique integer
rk, since wk is not a proper power. This proves the claim.

Thus, we have proved that φ = φ
rm+1

m+1 · · ·φrn
n for unique integers rk. The

result now follows. ¤

Corollary 5.2 Suppose S is a subset of End(Fn) such that Fix(S) has rank
n, and let m denote the rank of the (free abelian) image of Fix(S) in F ab

n .
Then S lies in a free abelian subgroup of Aut(Fn) of rank n−m (and gen-
erates a free abelian subgroup of Aut(Fn) of rank at most n−m). ¤

Ignoring the trivial case n = m, we see that S can be chosen to consist
of a single element, in which case the rank of the (free abelian) subgroup it
generates is 1.

Lemma 5.3 Let a, b, c be distinct elements of some basis B of Fn. If A,
B, C are elements of Fn such that [A,B] = [a, b] and [A,C] = [a, c], then
there exist integers r, s such that A = a, B = arb, and C = asc.

Proof. Let Ared be the cyclic reduction of A and write A = αAredα−1

for some α ∈ Fn. We have that [a, b] = [A,B] belongs to the normal closure
of A so, by Proposition II.5.1 in [LS], Ared ∈ 〈a, b〉. In the same way, Ared ∈
〈a, c〉. Thus, Ared is a power of a. But killing Ared, a−1b−1ab = A−1B−1AB
becomes trivial, so Ared = aε and A = αaεα−1 for ε = ±1.

Write B = αB′α−1 and C = αC ′α−1. Note that [aε, B′] = α−1[a, b]α, so

〈a,B′−1aB′〉 = 〈a, a−εB′−1aεB′〉 = 〈a, α−1a−1b−1abα〉.
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Figure 1: Three B-labelled graphs for the subgroup H of Fn.

The B-labelled graphs depicted in figures 1(a) and 1(b) represent this
subgroup of Fn, say H, with basepoints in u1 and v1, respectively (see [V]
for notation). These two B-labelled graphs are locally injective everywhere
except, possibly, in vertices u1 and u2 and v1 and v2, respectively. And, after
folding, they both give the same B-labelled graph immersion. But r(H) = 2,
so B′ /∈ 〈a〉 and hence the path α in figure 1(b) must be completely folded.
Thus, α ∈ 〈a, b〉 and the B-labelled graph immersion for H is that depicted in
figure 1(c), with either w1 or w2 as a basepoint. We deduce that B′ = arbδap

for δ = ±1 and some integers r, p.
An analogous argument shows that α ∈ 〈a, c〉 and that C ′ = ascνaq for

ν = ±1 and some integers s, q.
So, α ∈ 〈a, b〉 ∩ 〈a, c〉 = 〈a〉 and we may assume α = 1. Hence, A = aε,

B = B′ = arbδap and C = C ′ = ascνaq. Now, writting the equations
[A,B] = [a, b] and [A,C] = [a, c], we deduce that p = 0 and δ = ε = 1 and
that q = 0 and ν = ε = 1, respectively. So, A = a, B = arb, and C = asc.
¤

Proposition 5.4 Let (n be at least three and) a, b, c be distinct elements
of some basis X of Fn, let H = 〈X − {a, b, c} ∪ {[a, b], [a, c]}〉, and let

K = 〈X − {b, c} ∪ {[a, b], [a, c]}〉 = H ∗ 〈a〉.

Then the endo-fixed closure of H is K, and H is a proper free factor of K,
and K is a maximum-rank 1-auto-fixed subgroup of Fn.

Proof. It follows from Lemma 5.3 that any endomorphsim of Fn which
fixes H also fixes a, so K lies in the endo-fixed closure of H. Since

X − {b, c} ∪ {[a, b], [a, c]}
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is a basis for K of the form given in Theorem 4.4, we see that K is a
maximum-rank 1-auto-fixed subgroup of Fn. ¤

Thus, for n ≥ 3, Proposition 5.4 provides examples of free factors of
1-auto-fixed subgroups of Fn which are not auto-fixed subgroups, in fact,
not even endo-fixed.

It is clear that the set of all auto-fixed subgroups of Fn is closed under
arbitrary intersections. By Proposition 5.4, this set is not closed under
taking free factors, if n ≥ 3. It is obvious that every 1-auto fixed subgroup
of Fn is an auto-fixed subgroup of Fn. The converse of this implication is
precisely Conjecture 1.1.
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