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We present numerical simulations of a flow in a rapidly rotating cylinder subjected to a time-periodic forcing
via axial oscillations of the sidewall. When the axial oscillation frequency is less than twice the rotation frequency,
inertial waves in the form of shear layers are present. For very fast rotations, these waves approach the form
of the characteristics predicted from the linearized inviscid problem first studied by Lord Kelvin. The driving
mechanism for the inertial waves is the oscillating Stokes layer on the sidewall and the corner discontinuities
where the sidewall meets the top and bottom end walls. A detailed numerical and theoretical analysis of the
internal shear layers is presented. The system is physically realizable, and attractive because of the robustness
of the Stokes layer that drives the inertial waves but beyond that does not interfere with them. We show that
the system loses stability to complicated three-dimensional flow when the sidewall oscillation displacement
amplitude is very large (of the order of the cylinder radius), but this is far removed from the displacement
amplitudes of interest, and there is a large range of governing parameters which are physically realizable in
experiments in which the inertial waves are robust. This is in contrast to many other physical realizations of
inertial waves where the driving mechanisms tend to lead to instabilities and complicate the study of the waves.
‘We have computed the response diagram of the system for a large range of forcing frequencies and compared the

results with inviscid eigenmodes and ray tracing techniques.
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I. INTRODUCTION

Rapidly rotating flows have long been a source of fas-
cination due to their ability to support waves with pecu-
liar properties. Inertial waves in rapidly rotating flows are
ubiquitous [1-4], they are present in some geophysical and
astrophysical flows [5-8], and may contribute in dynamo
action [5,9—13]; they also contribute to instabilities in military
payloads [14-16]. The study of inertial waves dates back to
Lord Kelvin [17].

Inertial waves arise in rotating fluids owing to the presence
of Coriolis-type restoring forces [1,3,17,18]. For rapidly rotat-
ing fluids (where the rotation period is much smaller than the
viscous diffusion time scale), the inviscid limit of the equations
of motion for an infinitesimal disturbance to a background
solid-body rotation reduces to a linear partial differential equa-
tion of hyperbolic type, provided the disturbance frequency is
less than twice the background rotation frequency, and inertial
waves may be excited through direct forcing. Most theoretical
investigations of the inertial wave problem are inviscid, based
on the free-slip (zero penetration) boundary conditions and
the inviscid internal wave equation within the fluid. Simple
geometries were studied first, namely circular or elliptical
cylinders and spheres. Such inviscid approaches provide the
radiated energy but not the wave profiles. For the latter, a
posteriori addition of the viscosity is necessary, although the
addition is not fully consistent in that the effect of viscosity
is taken into account on the propagation of the waves (in the
wave equation) but not on their generation (in the boundary
condition) [1,19-21]. This approximation implies that only
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the waves are retained while the other two components of the
motion are neglected: the boundary layers and the local wave
forcing within the fluid. In order to obtain all three components,
explicit consideration of the no-slip condition is required.

Forced rapidly rotating flows manifest wave beams. These
are the persistent responses to spatially localized periodic forc-
ings. These localized forcings may be due to intrinsic boundary
layer instabilities [22], boundary layer eruptions [23], or dis-
continuities in the boundary conditions (such as in the present
problem). In the inviscid setting, the characteristics of the wave
equation would emanate from these locations at directions
dictated by the dispersion relation. Viscosity regularizes the
discontinuities corresponding to the characteristics and they
manifest as internal shear layers (wave beams) that are also
called inertial waves, and the associated internal reflections
of wave characteristics are clearly observable in suitably
designed experiments [1]. They are analogous to internal
waves in linearly stratified flows, iconically identified with St.
Andrew’s cross.

The experimental work on inertial waves so far suggests that
inertial waves are generically unstable above a threshold am-
plitude. However, we note that, in all such experiments, either
the geometry has been subjected to significant distortions, such
as the “squeezed” rotating cylinders and spheres [24-26], or
the rotation vector has been subjected to significant distortions
in either its direction, such as in precessions [6,16,27-33],
or its magnitude, such as in librations [8,34,35]. Typically,
theoretical approaches have not and are not analytically
capable of taking these distortions into account, and the
distortions are prone to introduce instabilities that complicate
the analysis. We have chosen in the present study a robust way
of generating inertial waves, based on an oscillatory Stokes
flow: axial oscillations of the sidewall of a rotating cylinder.
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Direct numerical simulations of the full problem (Navier-
Stokes equations with very small Ekman number and no-slip
boundary conditions) are few and far between, especially for
fully three-dimensional simulations. Early attempts at full
direct numerical simulations [21] were extremely limited in
what they could resolve; the thin boundary layers caused
severe problems, and subsequent attempts utilized stress-free
boundary conditions to avoid the challenge of resolving the
viscous boundary layers [36,37]. This approach, however,
is unsatisfactory as there is the real danger of rejecting the
essential along with the inessential. We have seen in rapidly
rotating flow problems driven by steady differential rotation
(so that inertial waves are not driven directly by the forcing)
that the thin viscous boundary layers can become unstable and
the associated temporal frequencies then drive inertial waves
that transmit energy and shear deep into the interior that is
nominally in rapid solid-body rotation [22,38,39]. It is crucial
to take into account the effects of confinement in rotating flows.

We have solved the rapidly rotating cylinder flow with
oscillating sidewall by using no-slip boundary conditions and
an accurate numerical spectral method. We have found that
the corner vortex emanating from the discontinuity of the
boundary conditions is responsible for the formation of inertial
wave beams that are stable and robust in a large parameter
region, allowing for a detailed study of the inertial wave
properties.

The paper begins with a description of the physical
setting, the governing equations, boundary conditions and
nondimensional governing parameters, and the numerical
solution method used in Sec. II. In Sec. I1I, the Navier-Stokes
equations solutions for a frequency that produces an inertial
wave beam that starts at one corner, reflects on the axis at
midheight, and ends at the other corner are examined over a
wide range of rotation rates of the cylinder, giving asymptotic
estimates of the width and intensity of the wave beams.
The stability of these solutions is determined in Sec. IIT A,
and in Sec. IIIB the inertial wave beam solutions from
the Navier-Stokes simulations over a wide range of forcing
frequencies are compared with inviscid eigenmodes and ray
tracing. Finally, Sec. IV summarizes the results and draws
conclusions.

II. GOVERNING EQUATIONS
AND NUMERICAL METHODS

Consider the flow in a circular cylinder of radius a and
height &, completely filled with a fluid of kinematic viscosity
v, rotating with an angular speed w, and whose sidewall
oscillates in the axial direction with angular frequency w and
maximum axial displacement §/4; in dimensional variables,
Z*(t) = 8h sin(wt*), and the maximum speed of the wall is
Shwy. A schematic of the flow system is shown in Fig. 1. The
Navier-Stokes equations, nondimensionalized using a as the
length scale and the viscous time a”/v as the time scale, and
written in the rotating reference frame, are

@ +u-Vu=-Vp—-22xu+Viu, V-u=0, (1)

where u = (u,v,w) is the velocity field in polar coordinates
(r,0,z2) € [0,1] x [0,27] x [-T'/2,T'/2], p is the kinematic
pressure, and = Qe, is the rotation vector pointing in the
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FIG. 1. (Color online) Schematic of the apparatus.

axial direction. There are four governing parameters:

aspectratio: I' =h/a,
rotating frequency : Q2 = wa?/v,
oscillation frequency :  Q; = wra®/v,
oscillation amplitude : Re = dhwya/v.

The boundary conditions are no slip:

sidewall, » =1: (u,v,w) =[0,0,Recos(2¢1)], (2)

(u,v,w) = (0,0,0).
3)

The frequency ratio F = Q,/2€ is of great relevance,
as generally when it is less than one and Q2 is sufficiently
large, the system supports inertial waves. The movement of
the sidewall is given by z(¢) = dh/a sin(£2st). The maximum
excursion of the sidewall relative to the cylinder radius
is h/a =Re/Qy. The Ekman number is often used to
characterize viscous rotating flows. In terms of our parameters,
the Ekman number is Ek = Q7'T""2. We can also define a
Rossby number to measure the relative importance of Coriolis
to inertia as Ro = Re/ Q. For the study of inertial waves,
these two ratios should both be small, so that the flow is
rotation dominated and subjected to small perturbations. In
terms of the Rossby number, most of the results presented here
are for Re = 10?2 and Q = 10°, giving Ro = 1073, where the
flow is rotation dominated. For fixed Re = 102, we have also
considered smaller 2 and find that the dynamics are rotation
dominated down to  ~ 103, corresponding to Ro = 0.1.
Also, for Q = 107, inertia effects from the sidewall oscillation
become important at about Re = 10, again corresponding to
Ro =0.1.

The governing equations (1) have been solved using a
second-order time-splitting method, with space discretized via
a Galerkin-Fourier expansion in 8 and Chebyshev collocation

top and bottom end walls, z = £I"/2:
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FIG. 2. (Color online) Spectral resolution in the (a) radial and (b) axial directions, and (c) the sidewall boundary layer profile of the
azimuthal vorticity at the cylinder half-height at a phase where the displacement of the sidewall is maximum in the negative-z direction which
corresponds to maximum shear at the sidewall, all for Re = 10?, F = 0.707 106 8, and 2 as indicated.

in r and z:
2n,+1 n; k=ng/2—1

u(r,0,z,t) = Z Z Z ﬁmnk(t)En(r)Em(Z)eike’

n=0 m=0 k=—ngy/2

“4)

where E,, is the nth Chebyshev polynomial. The spectral solver
is based on that described in Ref. [40] and it has been used
extensively in a wide variety of enclosed cylinder flows. For
the solutions presented here, with I' = 2, we have used up to
n, =96 and n, = 128 Chebyshev modes in the radial and
axial directions. In this paper, we have mainly considered
axisymmetric cases. Typically, we have used between 1000
and 5000 time steps per modulation period, T =2m/Q/,
depending on the parameter regime.

The kinetic energies associated with each Chebyshev mode
in the radial and axial directions, n and m, provide a good
measure of the spectral resolution of the numerical solutions.
For axisymmetric flows, the azimuthal Fourier mode k = 0
and 1, (1) is real. The velocity field can be separated into its
radial and axial components:

u, = Z ﬁmnO(t)En(r)Em(Z) and

m=0
20,41
Uy = Z ﬁmnO(t)En(r)Em(Z)v (5)
n=0
and the corresponding modal kinetic energies are
1 [0S0 [l
KEm = _/ / ufnr dr dZ and
2 J osr Jo
1 0.5T 1
KE, = -/ / ulrdrdz. (6)
2 Josr Jo

Figures 2(a) and 2(b) show spectral convergence results
for the typical case of Q = 10° and the most demanding
case computed, 2 = 10° (corresponding to Ek = 2.5 x 1077),
giving a global measure of how well resolved the flows are.
The kinetic energies shown are in the rotating frame as in the
stationary frame the n = 0,n = 1, and m = O kinetic energies,
dominated by the solid-body rotation, are of order € and
hence are several orders of magnitude larger than the other
modal energies; in this way the decay in the higher modes
may be more readily appreciated. For Q < 103, the spectral
modes decay by at least four orders of magnitude, giving
well-resolved solutions to four significant figures. In the most
demanding case computed, Q = 10°, the spectral coefficients
still decay by two and three orders of magnitude for the axial
and radial modes, sufficient for a good description of the flow.
Another notable feature is that the even axial modes of the
depicted solutions are much smaller than the odd modes due
to the flow structure and symmetries (discussed in Sec. III), so
in Fig. 2(b) it seems as if there are two different curves for the
axial modes in each of the two cases analyzed.

The finest feature of the flows is the Stokes layer on the
oscillating sidewall in the high-frequency regime associated
with large Q. Figure 2(c) shows the sidewall boundary layer
profiles of the azimuthal vorticity at the cylinder half-height at
a phase where the displacement of the sidewall is maximum in
the negative-z direction, which corresponds to maximum shear
at the sidewall, for Re = 102, F = 0.707 1068, T" = 2, and
Q = 10° (the case shown in Fig. 1) and Q = 10° (the largest
Q2 considered), both solved using n, = 96 and n, = 128. In
the = 10° case, the boundary layer thickness is about 0.003
and there are six collocation points resolving it. Most of the
results focus on the = 10° case, whose sidewall boundary
layer is about three times thicker and it is resolved with 10
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FIG. 3. (Color online) Contours of the azimuthal vorticity for Re = 103, T =2, F =0.707 106 8, and R as indicated, at a phase where
the displacement of the sidewall is maximum in the negative-z direction. There are 10 contour levels in the range n € [—500,500]. For (a)—(d)
n, X n, =48 x 96 and 6t = 7/1000, and for (e) and (f) n, x n, = 96 x 128 and §t = T /5000.

collocation points. The two boundary layer profiles shown are
similar; scaling the radial distance from the wall by 1/4/10
and 7 by +/10 for the Q = 103 case (where 10 is the ratio of
the value of Q2 for the two cases) maps the 2 = 10° profile on
top of the = 10° profile, as is to be expected from the /Q
scaling for Stokes oscillatory boundary layers.

A. Symmetries

The governing equations and boundary conditions are
invariant under arbitrary rotations through angle ¢ about the
axis, Ry, whose action is

Ry(u,v,w)(r,0,z,t) = (u,v,w)(r,0 + ¢,z,1). (7)

They are also invariant to the half-period-flip space-time
symmetry corresponding to a half-forcing-period advance in
time composed with a reflection about the cylinder half-height.
The action H of this symmetry is

H(M,U,W)(F,G,Z,t) = (M,U,—W)(r,e,—z,t + OST) (8)

The symmetry group of the system is G = SO(2) x Z,, with
SO(2) generated by Ry and Z, by H.

III. F <1FORCING AND INERTIAL WAVES

The study of inertial waves dates back to Lord Kelvin [17]
who noted that a fluid in solid-body rotation can sustain waves
if their frequency o is less than twice the background rotation
rate. The dispersion relation of inertial waves [1,3] is

cos B =0 /2w, )

where B € [0,2) is the angle between the rotation vector
and the wave vector, or in our case the angle between the
horizontal plane (orthogonal to the cylinder axis) and the
direction of the wave beam. Inertial waves are rapidly damped
due to viscosity [19]. The only way to maintain them is
using some external forcing. When a rotating fluid is forced
continuously in time at a particular frequency, only inertial
waves with the same frequency as the forcing are excited. In
our periodically forced problem, the dispersion relation results

in cos B = F. For F < 1 the system supports inertial waves
if © is sufficiently large; here we address how large it needs
to be. We consider the most distinctive inertial wave in the
' =2 cylinder corresponding to F = 1/+/2 ~ 0.707 106 8.
This corresponds to a characteristic in the 2 — oo limit that
starts from one corner, reflects at the axis at midheight, and
terminates at the opposite corner. Figure 3 shows contours
of the azimuthal vorticity n at a phase corresponding to
the maximum displacement of the sidewall in the negative-z
direction for various € € [10,10°] and Re = 10%. For small
Q < 10°, the flow is very much like the © =0 problem
of [41] with a large roller being produced for each corner
alternately as the sidewall oscillates up and down. The flow
has the half-period-flip spatiotemporal symmetry (8). By
Q = 103, the nature of the flow changes considerably. Instead
of alternate rollers, we now have fairly well-defined shear
layers emanating from one corner and entering the opposite
corner, alternating in direction every half period, following
the corresponding €2 — oo characteristics fairly well. As €2 is
increased, the shear layers become much more sharply defined,
as evidenced from Fig. 3(f) at the largest considered value
of Q = 10°.

These changes in behavior correspond to the flow appearing
to become more symmetric. The additional symmetry that
seems apparent in Fig. 3 for > 10° looks like the reflection
about the midplane z = 0; however, the azimuthal vorticity
should change sign in such a reflection and it does not
change. To better illustrate the flow and its symmetries,
Fig. 4 shows for the = 10° case contours of azimuthal
velocity and vorticity, along with arrows corresponding to
the projection of the velocity field in the (r,z) plane. There
are four plots equispaced over one forcing period 7. The
velocity of the sidewall is indicated by a single arrow at
the sidewall; this provides a scale for the velocity vectors
of the flow. Movies showing animations over one period are
available online (see Supplemental Material [42]). From this
figure (and movies), we also see that the three components of
the velocity behave opposite to what should be expected in a
midplane symmetry. What we appear to observe is a different
symmetry K, whose actions on the velocity and vorticity
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Azimuthal vorticity n

FIG. 4. (Color online) Contours of the azimuthal velocity and vorticity for 2 = 10°, Re = 10?,T' = 2, and F = 0.707 106 8 at four phases
during one period (there are ten contours in the ranges v € [—15,15], n € [—500,500]), together with vectors of the velocity field in the (r,z)
plane (only one vector is drawn at the sidewall indicating its velocity). A pair of movies showing the azimuthal velocity and vorticity over one

period is available online [42].

are

Ku,v,w)r,0,z,t) = (—u,—v,w)(r,0,—z,t), (10)
K(S’rhé‘)(r’evz’t): ($9n7_§)(r79’_zat)' (11)

However, K is not a symmetry of the original problem
(1, 2, and 3), because the Navier-Stokes equations (1) are not
equivariant under K: the nonlinear and linear terms behave
differently. So what is the origin of the different apparent sym-
metry? The inviscid linearized equations for the inertial waves
and the corresponding nonpenetrating boundary conditions
sidewall, r =1: u =0, 12)

top and bottom end walls, z = £0.5T": w =0, (13)

are preserved under the actions of K. The flow tends to recover
this symmetry K of the inviscid linearized problem as 2

increases. This is because the boundary layer flow and the bulk
flow (in the limit of an infinitely long cylinder) are invariant
under K. K is not a symmetry of the complete problem;
the only symmetry, besides axisymmetry, is the space-time
symmetry H (8) that is preserved in our solutions, as can be
seen from Fig. 4. But the K symmetry preserves the boundary
condition at the sidewall, (2), which is the driving mechanism
of this problem; the only terms in the full problem that are not
preserved by K are the nonlinear terms in the Navier-Stokes
equations. So, we can expect that the symmetry K is approx-
imately fulfilled so long as the amplitude of the forcing Re is
not too large. This is precisely what is observed; there are very
small differences between the top and bottom corner flows and
in the boundary layers. These are barely visible in the solution
at Re = 107 shown in Fig. 4. For larger Re the differences
between the top and bottom corner flows become noticeable
(this is discussed further below). The approximate fulfillment
of the K symmetry can be seen in Fig. 2(b), showing that the
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FIG. 5. Radial profiles of 1 at midheight near the axis for Re =
102, T =2, F =0.707 106 8, and 2 as indicated.

even spectral axial modes of the solutions are much smaller
(by about two orders of magnitude) than the odd modes; if the
K symmetry were exact, the even modes should be zero.

The shear layer structure displayed in Fig. 4 has the
following properties: along the straight shear layers extending
from the corners to the center of the domain, the velocity field is
orthogonal to the wave vector, the wave is circularly polarized,
and the group velocity points from the corner towards the
cylinder’s geometric center, according to the selected forcing
frequency, Q; = V/2Q, resulting in a propagation angle of § =
/4. The inertial waves are axisymmetric and originate at the
corners where the boundary conditions are discontinuous and
the corner flows form. When the waves propagate towards the
axis, their energy concentrates in a region around the cylinder
center, where the inertial waves from both corners meet. This
results in the formation of a toroidal region where the velocity
and vorticity of the flow reach a large value, the largest in
the bulk of the flow, although smaller that the corresponding
values inside the (very thin) sidewall boundary layer.

It is of interest to determine how the thickness and intensity
of the shear layer scales with 2. From the contours of n for
Q € [10*,10°] shown in Fig. 3 it is apparent that the shear
layers vary self-similarly with Q. To quantify this, we use the
maximum of 7 at the midheight near the axis np,x (Which
corresponds to the maximum in the toroidal vortex) and its
radial location ry,x. Figure 5(a) shows radial profiles of n near
the axis at midheight from which 7y,.x and . are determined.
Figures 6(a) and 6(b) show log-log plots of 7yax Vs €2 and of
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Fmax VS €2, from which we have

Nmax ~ 2173 and rmay ~ Q715. (14)

Figure 6(c) shows that wy,x has a small variation (less than
15%) over the three decades of variation in 2 shown, with
the variation at the higher frequencies being much smaller.
This small variation suggest that the velocity field scales with
the amplitude of the forcing, that has been kept constant
(Re = 10?) for the results shown in the figure, and is almost
independent of the frequency 2. This explains the vorticity
scaling as the ratio of the velocity scaling (constant) divided
by the length scaling of the inertial waves ~!/3. It is also
interesting to determine the decay rate of the inertial wave
beams as they propagate. According to [19], inertial waves
decay exponentially with the spin-up time, which in terms of
our nondimensional variables is given by Q2. If ¢, is the
time taken by the inertial wave to travel a typical length L
(we will take L to be the radius of nondimensional length
one), we then expect a decay of the form exp (—aQ'/?1)),
where o is some O(1) constant. We can estimate t; = L/c,,
where ¢, is the group velocity of the inertial wave, given by
¢, = (22/k) sin B [3], where B is the angle in the dispersion
relation (9). We also need an estimate of the wave-vector
modulus k = 27 /A, where A is the wavelength. From Fig. 4,
we see that any geometric length of the inertial wave scales as
Fmax» SO A o< Q71/3, Putting everything together, we arrive at
an estimate for the attenuation rate of the inertial waves:

¥ = Yoexp[—aQ o(sin g)7'],

where the various constants of proportionality have been
included in «. ¥ is any velocity (or vorticity) component of
the flow along the inertial wave beam, at unit distance from the
beam source, where the value of ¥ is Y. The (sin 8)~! comes
from the group velocity dependence on sin 8. The variation
of the decay rate with Q2 is slow, due to the exponent —1/6.
We observe that with increasing €2 the attenuation of the wave
decreases; therefore, there is a critical value of 2 above which
the attenuation is small enough so that the inertial waves are
well established throughout the whole domain. From Fig. 3,
we observe that this value of Q is about 103.

The results presented so far are all for a fixed sidewall
oscillation amplitude of Re = 10?>. Now we explore what
happens when varying Re. Figure 7 shows the radial profiles of

15)

(b) (c)
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FIG. 6. Variation with € of the maximum w and 5 in (z =0, r € [0,0.5]) for Re = 10>, ' = 2, and F = 0.707 1068, together with the

radial location where the maximum occurs.
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FIG. 7. Radial profiles of 7, scaled by Re, at z = 0 near the axis,
forQ = 10°,T =2, F = 0.707 106 8, and Re = 1, 30, 100, 300, 10°,
3 x 10%, and 10*, showing linear scaling of  with Re except for the
Re = 10* case (dashed curve). All cases used 1, x n, = 96 x 128
and 6t = T/5000.

n scaled by Re, at midheight, for a wide range of Re € [1, 104
with fixed Q = 10°, T = 2, and F = 0.707 106 8. We see that
all the profiles, except for the largest Re = 10* case, collapse
with the linear Re scaling. So, we have

Nmax ~ ReQ2'/? and rpax ~ 713, (16)

These results are consistent with the asymptotic analysis
of [43] which gives that the thickness of the shear layers, for
forcing frequencies that are not too small, scale with Q~1/3 As
the vorticity is the space derivative of the velocity, n = d,u —
d,w, and the scale of the spatial variation is set by rpx, we
conclude that the scaling of the velocity is independent of €2,

W = O(max’max) = O(ReQ'?Q7'3) = ORe),  (17)

in good agreement with the scaling of the velocity of the
oscillating Stokes boundary layer [44,45].

The nonlinearities at the largest amplitude lead to the
departure from linear scaling. Figure 8 shows the 1 contours
at Re = 1 and Re = 10*. We see that the structure of 1/Re is
identical in the two cases except in the neighborhood of the
corners where there is a slight formation of a stronger corner
vortex at the top (bottom) corner when the sidewall moves
down (up) that breaks the K symmetry, as is to be expected
since increasing the forcing amplitude Re leads to larger
values of the nonlinear advection terms in the Navier-Stokes
equations, and these break the K symmetry.

A. Linear stability analysis

So far, we have discussed the properties of the inertial
waves in a confined fluid system, assuming that the flow
is axisymmetric. The stability of the computed flows to
three-dimensional perturbations must therefore be analyzed
in order to determine if these flows are stable and observable
in experiments. The oscillating Stokes boundary layer is very
robust [46], and this was one of the main reasons for choosing
the present setting. The linear stability analysis is performed
via time evolution of the Navier-Stokes equations. The stability
of the periodic axisymmetric basic state is determined by
introducing small random perturbations into all azimuthal
Fourier modes. For sufficiently small perturbations, the non-
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FIG. 8. (Color online) Contours of the azimuthal vorticity for
Q=10°, " =2, F =0.707 106 8, and Re as indicated, at a phase
where the displacement of the sidewall is maximum in the negative-z
direction. There are 10 contour levels in the ranges n € [—5,5]
for Re = 1.0 and n € [—5 x 10*,5 x 10*] for Re = 10*; n, x n, =
96 x 128 and §t = T /5000.

linear couplings between Fourier modes are below round-off
numerical noise and the growth rates and eigenfunctions
corresponding to the fastest growing perturbations at each
Fourier mode emerge from time evolution. This is analogous
to a matrix-free generalized power method for steady basic
states [47,48], generalized to periodic basic states. Figure 9(a)
shows an example of the time evolution of the modal kinetic
energies associated with three-dimensional perturbations for a
moderate forcing amplitude Re = 10? with Q@ = 10, ' = 2,
and F = 0.707 106 8. The modal kinetic energy of the Fourier
modes corresponding to azimuthal wave numbers m are

0.5 ol
E, = 0.5/ / Uy - w,rdrdz, (18)
—o0sr Jo

where u,, is the mth Fourier mode of the velocity field and u}), is
its complex conjugate. The energy of the axisymmetric state in
this case is Eg &~ 5.5 x 10*. The initial perturbation energies,
E,, with m > 0, introduced at t = 0, are 10'® times smaller
than E, and they decay, without any nonlinear interactions
between them, by about 14 orders of magnitude to machine
zero in about 0.2 viscous time units. We have used 128 Fourier
modes in the azimuthal direction, but only plotted the energies
of the first 64 because the energies decay faster with increasing
azimuthal wave number, as can be seen in Fig. 9(b). The least
damped eigenvalue corresponds to @ = —58.58. It is clear
from these results that the considered flow is stable.

If we increase the sidewall oscillation amplitude Re, the
flow eventually becomes unstable. For the case considered
in Fig. 9, but with Re = 10°, the flow is still stable.
However, for Re = 2 x 10° the axisymmetric flow has un-
dergone a symmetry-breaking bifurcation to a modulated
rotating wave state, illustrated in Fig. 10 and the associated
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(b)

—2000
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FIG. 9. Decay of the nonzero Fourier modes for the axisymmetric solution at 2 = 103, T =2,Re = 10%, and F = 0.707 106 8; 64 Fourier
modes displayed. (a) Time series of the energies E,,; (b) least damped eigenvalue u,, for each mode m.

online movie [42]. This figure shows isosurfaces of the
nonaxisymmetric contribution to the azimuthal vorticity 7, at
ten equispaced phases over one forcing period. It is evident
that the instability mechanism acts near the corners, where
the axial oscillations of the sidewall produce alternate rollers
in each corner during one forcing period. On these rollers,
braids are formed with an azimuthal wave number m = 12.
The instability mechanism is not associated with the inertial
wave beams. They are an instability of the rollers that form due
to the axial oscillations of the sidewall. The instability depends
critically on the amplitude of these oscillations, Re. Physically,
these rollers are fed by the volume of fluid in the sidewall
layer and, when the volume of fluid injected into the rollers
is sufficiently large, they become unstable. This volume of
fluid depends on the total displacement of the sidewall during

each oscillation half-cycle, measured by 8i/a = Re/Q2y. In
the case under consideration, 2y ~ 1414, and the instability
sets in between Re = 10° (8h/a =~ 0.707) and Re = 2 x 10°
(6h/a ~ 1.414), suggesting that the rollers become unstable
when A /a ~ 1, thatis, when the sidewall displacement during
each half-cycle is comparable to the cylinder radius. The iner-
tial waves continue to exist in the bulk of the flow, but are now
distorted by the three-dimensional instability of the rollers, as
shown in Fig. 11. The contours of 1 have been quadratically
spaced in order to show the inertial waves, that are much
weaker than the rollers; compare with Fig. 3(c) corresponding
to the axisymmetric solution at a much lower Re = 10°.
Figure 12 shows the power spectral density of the ax-
ial velocity at a point near the center of the sidewall,
showing that the bifurcated state is quasiperiodic with two

(c) 0.27

FIG. 10. (Color online) Isosurfaces of the nonaxisymmetric contributions to the azimuthal vorticity at levels n;p = £1000 for the modulated
rotating wave state at @ = 10°, ' = 2,Re = 2 x 10%,and F = 0.707 106 8 shown at 10 phases over one forcing period t = 27/ Q; = 7 /(FQ).

See the associated online movie [42].
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FIG. 11. (Color online) Contours of the azimuthal vorticity for the modulated rotating wave state at Q = 10°, I' =2, Re = 2 x 10°, and
F =0.707 106 8 shown at six phases over one forcing period t = 27/ Q; = 7 /(F2). There are 24 quadratically spaced contour levels in the

range n € [—5 x 10%,5 x 10*]. See the associated online movie [42].

frequencies, the forcing frequency €2, and another frequency
2, that corresponds to the precession of the modulated
rotating wave, as is obvious by looking at the movie of the
solution [42].

By increasing the rotation rate of the cylinder 2 while
keeping Re fixed, the Stokes boundary layer becomes more
stable. The rapid oscillations make it more difficult for
instabilities to develop because the time between oscillations is
smaller. We have verified this by computing the least damped
eigenvalues of the axisymmetric base state for Re = 100 and
different 2. The results presented in Fig. 13 show that the flow
becomes more stable with increasing €2 for a fixed Re. All the
axisymmetric solutions we have analyzed for Re = 100 are
stable, confirming the previous considerations.

So, in summary, for rapid rotations (2 large) subjected to
small amplitude forcing (Re small), which is the appropriate
setting for the study of inertial waves, the system under
consideration is extremely robust to perturbations and affords
one the ability to study inertial waves in a physically realizable
setting unencumbered by instabilities.

107 1
Q.
2 f
107 39/ B
A 100 T N _
2 dd &
0" o o) .
v P
' n ﬂ 1
10’2 1 il W 1 h i An

0 1000 2000 3000 4000 5000 6000 7000
frequency

FIG. 12. Power spectral density of the axial velocity at the
point (r,0,z) = (0.9,0,0) over about 260 forcing periods of the
modulated rotating wave state at Q@ =103, I' =2, Re =2 x 10°,
and F = 0.707 106 8.

B. Comparing the nonlinear wave beams
with inviscid modes and ray tracing

In order to measure the dependence of the inertial wave
beam intensity on the forcing frequency, i.e., the response di-
agram of our forced system, we have computed the maximum
absolute value of the azimuthal vorticity, max |n|, in the fluid
domain. As 7 is very large at the boundary layers, we have
excluded them from the maxima computation. We have fixed
Q =10%,T = 2, and Re = 102, and varied F (i.e., the forcing
frequency) over the range where inertial waves are present,
0.01 < F < linsteps of 0.01. The resulting values of max |7|
as a function of F are plotted in Fig. 14 as solid symbols, and
a spline fit (the blue line) has been added to guide the eye. The
most salient features of the figure are the large variations in
max |n| with very small changes in F. On average, the values
of max |n| closely follow the decay rate estimate given by (15).
The best fit to this decay rate is shown in the figure as the thick
orange monotonic line, given by

max || = A exp[—aQ~V/S(1 — F2)~1/2], (19)

0 T T T T T
A
[ ] : A
° A
° A
[ o A
u | ] - [ ] A A
-400 | ] ¢ e A
| | | - ° A
u y
A, CE
mp
TS
-800 - * W i
L 4 Q=10" MEE KR .
3
L e 0=10 TS
L = Q-10" ]
~1200 |- ¢ Q=10’ A
1 1 1 L <*
0 2 4 6 8 10
m

FIG. 13. (Color online) Least damped eigenvalues for the ax-
isymmetric base state at ' = 2, Re = 102, and F = 0.707 106 8, for
different 2 values as indicated.
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FIG. 14. (Color online) Response diagram: symbols are the max-
imum values of |5| in the whole domain excluding the boundary
layers, as a function of F,for Q@ = 10>,T" = 2, and Re = 10%. The thin
solid (blue) line is a spline fit to guide the eye. The thick gray (orange)
monotonic line is the theoretical value of || given by (19). The (red)
squares correspond to the F values of the inviscid Kelvin modes (IM)
and the (green) triangles correspond to the F values of the retracing
rays (RR), for values n + k < 6. The precise values of the IM and
RR cases are listed in Table I. The relevant peaks associated with
IM and/or RR have been numbered for further reference. Contours
of n for all the computed cases in the diagram are included in the
accompanying movie [42], where time is replaced by increasing F
values.

with A = 852.2 and o = 3.295. This is an important result,
that must however be completed with an explanation of the
large variations in the inertial wave intensity when varying F.
This will be accomplished by comparing these results with the
inviscid eigenmodes of the cylindrical cavity, and also with
ray-tracing techniques.

The eigenmodes of the cylindrical cavity are the solutions
of the inviscid linearized Euler equations, satisfying the
impenetrability boundary condition at the walls. They can be
expressed in terms of radial Bessel functions and trigonometric
functions in the axial and azimuthal coordinates [1,49]. The az-
imuthal vorticity n of the axisymmetric eigenmodes is given by

1
N k(r,2) = J1(8kr) sinnm (é + E)

. (20)
i=— F,

where n, k are positive integers characterizing the different
eigenmodes, §y, is the k zero of the Bessel function Jj, /3,5‘ i is the
angle between the horizontal plane and the wave beam (9), and
F!, is the F value associated to the inviscid (n,k) eigenmode.
The number of zeros of .k in the interior of the fluid domain,
in the r and z directions, are k — 1 and n — 1, respectively.
These functions are called the inviscid modes (IMs) or the
Kelvin eigenmodes of the cylindrical cavity. Figure 15 shows
some of these inviscid modes. Contours of the azimuthal
vorticity are depicted for the IMs in the first row, while the
second row shows the numerically obtained solution of the
Navier-Stokes equations for the same values of the parameters.
The solutions are very different for small values of n (n < 3);
however, they look increasingly similar with increasing n,
differing only near the boundary layers; for k > 1 and arbitrary

PHYSICAL REVIEW E 89, 013013 (2014)

n they are very different. The differences are due mainly to
the fact that the wave beams are generated at the corners, so
the Navier-Stokes solutions always exhibit strong wave beams
emerging from the corners, while the IMs do not have a well
defined origin of the waves. However, when F is very small,
the angle B is close to 7 /2, and the wave beams are almost
vertical; they emerge not from the corner but from the whole
sidewall boundary layer, resulting in vertical strips that closely
resemble the IM in the bulk. In general, one could expand the
Navier-Stokes solutions in the bulk in terms of the IM [1];
however, a very large number of IMs will be necessary to
reproduce viscous results, except when F is very small. In fact,
these expansions are not convergent due to the presence of the
boundary layers, and care must be taken when using them [50].

In Fig. 14 we have included the Navier-Stokes solutions
computed at the F values of the inertial modes, Fn’ o forn +
k < 6. We clearly see that they are not associated with the
large response peaks, and therefore the response peaks do not
appear at the eigenmode frequencies, except for small values of
the forcing frequency, F < 0.2. The small F cases precisely
coincide with the (n,k) values for which the Navier-Stokes
solutions and the inviscid modes are very similar.

In many rotating fluids the inertial wave beams originate
in specific locations inside the fluid container. From these
specific locations, beams of inertial waves emerge, at angles
given by the dispersion relation (9). Therefore, much can be
predicted by ray tracing the characteristics from the origin
of the inertial waves and successively reflecting the rays on
the container walls. Phenomena such as wave focusing and
wave attractors have been analyzed using ray tracing [51-54].
In our problem, the wave beams originate at the corners
where the end walls and the sidewall meet. These beams will
reflect at domain boundaries and in general they never retrace
themselves, densely filling the domain, except for particular
values of the angle 8. Due to the axisymmetry of the solutions
for the parameter values analyzed here, when the beam crosses
the cylinder axis it is the same as a reflection on the axis, and we
only need to consider the domain (r,z) € [0,1] x [-T"/2,["/2]
and reflections on its walls to trace the ray beam trajectories.
A trajectory starting in one corner is closed if it arrives at
any other corner after n — 1 vertical and k — 1 horizontal
reflections, where n and k are positive integers characterizing
the retracing ray (RR). The first row in Fig. 16 shows six RR
for the specified values of (n,k), where the RR emerging from
both sidewall corners have been plotted. The angle and F value
for the retracing ray (n,k) are given by

r _ Tk R _ _ n

tan B, = - b= cos Bk = —n—2 Tk
The second row in Fig. 16 shows the Navier-Stokes solutions
corresponding to the frequencies Fn’f  of the RR inrow one. The
ray structure of the Navier-Stokes solutions coincides with the
corresponding retracing ray. However, the rays are no longer
characteristic lines of zero width, but they have a finite width
due to viscous effects that smooth out the discontinuities of the
characteristics of the inviscid linearized hyperbolic problem.
We could expect that the viscous solutions corresponding to
FR, would correspond to the peaks in the response diagram,
ho§vever, this is not exactly the case. What we observe is that
there is always a peak response very close to the F,fk values,

2D
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FIG. 15. (Color online) Comparison between the Kelvin eigenmodes, also called inviscid modes IM (first row), and the Navier-Stokes
solution at the same F' value as indicated. The eigenmodes are labeled by (n,k).

with the same wave beam structure, as shown in the third row
in Fig. 16. The contour levels and color map (gray scale) in
the two last rows are the same in all figures, corresponding to
n € [—1000,1000], so a stronger color (gray scale) intensity
corresponds to a larger peak in the response diagram.

The small discrepancy in F between the retracing rays and
the Navier-Stokes solutions at the maximums of the response
diagram is in part due to the presence of the boundary layers.
The inertial wave beams do not originate exactly at the corner,
but close by where the sidewall and end wall boundary layers
meet. Moreover, the wave beams are not reflected at the walls,
but at the boundary layers that are very narrow but not of
zero thickness. Furthermore, Borcia and Harlander [53] have
shown that when curvature and viscosity are neglected, the ray
pattern gives the exact eigenmode frequency, and so another
source of discrepancy between the rays and the Navier-Stokes
solutions come from the effects of curvature and viscosity.
Another important feature of these solutions is the strong
interaction between the inertial wave beams and the boundary
layers. This is clearly observed at the end wall boundary layers
that become thicker when interacting with the wave beam.
Finally, we observe that the small differences in F' between
the solutions in the top and bottom rows of Fig. 16 result in
significant variations of the beam intensities.

It is apparent that the thickness of the shear layers and
how they dissipate depends on F. This is not too surprising
given that the Stokes layer that drives the shear layers has a
thickness which scales with F~!/2 for fixed €2, and also the
structure of the corner flow is affected by the angle at which
the shear layer emerges from the corner, and this angle is
completely determined by F. Moreover, Fig. 14 shows that
the attenuation of the shear layers is strongest for the smallest
angle of propagation B (i.e., F closest to one). This agrees
very well with the decay rate estimate (15) for the inertial
waves. Another important feature of these shear layers, which
was already evident for the F = 1/+/2 cases studied in detail
above, is how the shear layer thickens at smaller radii. This is
a purely geometric effect: the inertial waves are axisymmetric
and originate at the corners where the sidewall boundary layer
forms a corner jet due to the axial oscillations of the sidewall.
The energy injected in this way becomes concentrated in a
smaller volume as the wave beam approaches the cylinder axis.
Finally, the superposition of the different beams emerging from
the top and bottom corner and their reflections off the cylinder
walls may result in constructive or destructive interference.
The result depends critically on the geometry of the container
and on the precise value of F', explaining the large variations in
the intensity of the wave beams with small variations of F. This
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FIG. 16. (Color online) Top row shows the characteristic rays at F' corresponding to the indicated retracing rays. The middle row shows n
contours at = 10°,Re = 10>, " = 2, and F at the same values corresponding to the indicated retracing rays, at a phase where the displacement
of the sidewall is maximum in the negative-z direction. The bottom row shows 1 contours for the same parameters as in the middle row, but for
slightly different values of F as indicated. For all contour plots, there are 10 contour levels in the range n € [—1000,1000].

is clearly observed in the movie [42] accompanying Fig. 14
that shows all the cases we have computed as a function of F.

An interesting question is the following: what is the
relationship between the retracing rays solutions and the
inertial modes? To address this, the first thing to do is compare
the F values corresponding to the inertial modes (20) and
the retracing rays (21). When k is large, the k zero of the
Bessel function of order one, J;(§;) = 0, admits the asymptotic

expansion [55]

1 1
& = <k+ Z>7T + 0<%>,

1\ 1 1
tanB!, =T(k+-)-+0(—)>tang®, (@2
anan,k (+4)I’l+ (l’lk)N anﬂn,k ( )

FnI,k<Frfk‘

~
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TABLE . Frequency values F' and maximum azimuthal vorticity
max |n| for the Navier-Stokes solutions computed at the F values
corresponding to the inviscid modes (IM) and retracing rays (RR).
Also included are the relevant peaks in Fig. 14, indicated as max n.

F max | 7| Comment
0.09494 796.20 max 1, IM; 5
0.09951 444.84 RR 5
0.11708 836.82 max 2, IM; 4
0.12403 396.13 RR 4
0.15000 882.46 max 3
0.15259 853.33 M, 3
0.16440 345.79 RR, 3
0.20000 719.29 max 4
0.21849 653.81 M, »
0.22950 709.73 M, 4
0.23000 743.30 max 5
0.24254 306.15 RR;; and RRy 4
0.29505 394.04 M, 5
0.31623 765.71 RR; 3
0.32000 850.99 max 6
0.37931 533.64 M,
0.40870 379.97 M,
0.42030 536.14 M35
0.43000 917.68 max 7
0.44721 259.92 RR; ; and RRy «
0.55000 635.24 max 8
0.55759 581.85 M3,
0.60000 495.34 RR3,
0.63403 511.91 My,
0.66715 516.85 My »
0.70711 700.98 RR;; and RRy,
0.71000 771.18 max 9
0.77588 401.40 M,
0.83205 328.03 RR3
0.85377 267.90 My,
0.89443 384.47 max 10 and RR, ;
0.89875 241.86 IMs
0.92848 220.78 RRs

Therefore, for large k values, the retracing rays corresponding
to (n,k) have an F value very close to, but slightly larger than,
the F value of the inertial mode with the same (n,k) values.
Furthermore, we have also seen that the RR are close to a
maximum of the response curve for all (n,k) values. Table I
lists F and max |n| for all the relevant peaks in Fig. 14, and also
the values corresponding to inertial modes IM,, ; and retracing
rays RR,, i, forn 4+ k < 6. The table shows the aforementioned
relationship between the Navier-Stokes solutions at the peak
response and the inertial modes and retracing rays.

IV. CONCLUSION

A primary aim of this paper is to study inertial waves
in as simple a setting as possible within an enclosure with
no-slip (physical) boundary conditions. Traditionally, inertial
waves have been studied from a hyperbolic system resulting
from a singular perturbation and linearization of the Navier-
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Stokes equations. The singular perturbation corresponds to
neglecting the viscous terms, and hence the full set of boundary
conditions cannot be imposed and generally the solutions of
the singularly perturbed problem do not satisfy the boundary
conditions of the full problem. Nevertheless, the hyperbolic
problem provides significant insights into many aspects of the
problem. Several physical experiments as well as theoretical
asymptotic analysis and numerical simulations have tried to
solve the system for large €2 to verify whether the solutions
in the limit of large 2 and the eigenmodes and the ray
tracing of the characteristics problem agree. One difficulty
has been that the manner in which the inertial waves have
been produced leads to flow instabilities as €2 is increased. In
some cases it is clear that the instabilities are associated with
the driving mechanisms (e.g., boundary layer instabilities),
but it is not so clear in other examples. What we have
attempted to do in this paper, successfully, is to design
a physically realizable system in which inertial waves are
generated for large €2 with a driving mechanism that is robust to
perturbations.

We have shown via numerical linear stability analysis that
three-dimensional instabilities set in when Re/ 2 ~ O(1) and
this corresponds to periodic forcing with axial displacements
of the sidewall of the order of the cylinder radius. This is
a huge displacement which, on the one hand, is impractical
to implement in a physical experiment, and, on the other
hand, is of no interest from the perspective of studying inertial
waves which are driven in rapidly rotating flows (large €2)
by very small amplitude disturbances (small Re), so that
the regime of interest is Re/ Q2 « 1. Furthermore, since the
inertial wave beams are best visualized in terms of their
azimuthal vorticity, n, and 5 scales linearly with Re, for large
Q one can drive the inertial waves at a reasonable value of
Re so that 1 can be readily measured using, for example,
a strobed particle image velocimetry (PIV) technique while
still having Re/ 2 small and avoiding any flow instabilities. A
particular advantage of the axial oscillations of the sidewall
forcing is the prospect of studying nonlinear aspects of
inertial waves with large amplitude, both numerically and
experimentally.

An important consequence of the analysis presented in
this study is that inviscid modes and retracing rays, al-
though they are useful techniques that in some cases give
a good qualitative description of the flow, cannot account
for quantitative results like the precise frequency values
where the response to the forcing reaches the maximum
intensity, the value of these maxima intensities, and the
details of the inertial beams and the associated interference
pattern. Only carefully conducted experiments and direct
numerical simulations of the Navier-Stokes solutions can
provide an accurate picture of the structure of the inertial
waves.
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