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The experimental realization of a thin layer of spin-polarized hydrogen H↓ adsorbed on top of the
surface of superfluid 4He provides one of the best examples of a stable, nearly two-dimensional
(2D) quantum Bose gas. We report a theoretical study of this system using quantum Monte Carlo
methods in the limit of zero temperature. Using the full Hamiltonian of the system, composed of
a superfluid 4He slab and the adsorbed H↓ layer, we calculate the main properties of its ground
state using accurate models for the pair interatomic potentials. Comparing the results for the layer
with the ones obtained for a strictly 2D setup, we analyze the departure from the 2D character
when the density increases. Only when the coverage is rather small the use of a purely 2D model
is justified. The condensate fraction of the layer is significantly larger than in 2D at the same sur-
face density, being as large as 60% at the largest coverage studied. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4843375]

I. INTRODUCTION

Electron-spin-polarized hydrogen (H↓) was proposed a
long time ago as the system in which a Bose-Einstein con-
densate (BEC) state could be obtained.1, 2 Intensive theoretical
and experimental work was made in the 1980s and 1990s to
devise experimental setups able to reach the predicted density
and temperature regimes for BEC.3–5 The high recombination
rate on the walls of the containers hindered this achievement
for a long time, and only after working with a wall-free con-
finement, Fried et al.6 were able to realize its BEC in 1998.
However, this was not the first BEC because three years be-
fore the BEC state was impressively obtained working with
cold metastable alkali gases.7 The same year BEC of H↓ was
obtained, Safonov et al.8 observed for the first time a quasi-
condensate of nearly two-dimensional (2D) H↓ adsorbed on
the surface of superfluid 4He.

In spite of hydrogen losing the race against alkali gases to
be the first BEC system, it still deserves interest for both the-
ory and experiment. Hydrogen is the lightest and most abun-
dant element of the Universe and, when it is spin polarized
with the use of a proper magnetic field, it is the only system
that remains in the gas state down to the limit of zero temper-
ature. H↓ is therefore extremely quantum matter. A standard
measure of the quantum nature of a system is the de Boer
parameter2

η = ¯2

mεσ 2
, (1)

with ε and σ the well depth and core radius of the pair interac-
tion, respectively. According to this definition, η = 0.5 for H↓
which is the largest value for η among all the quantum fluids
(for instance, η = 0.2 for 4He). This large value for η results
from the shallow minimum (∼6 K) of the triplet potential b
3�+

u between spin-polarized hydrogen atoms and their small
mass.9

Adsorption of H↓ on the surface of liquid 4He has been
extensively studied because of its optimal properties.10–15 On
the one hand, the interaction of any adsorbant with the 4He
surface is the smallest known, and on the other hand, at tem-
peratures T < 300 mK the 4He vapor pressure is negligible
and thereby above the free surface one can reasonably as-
sume vacuum. In fact, liquid 4He was also extensively used in
search of the three-dimensional (3D) H↓ BEC state when the
cells were coated with helium films to avoid adsorption of H↓
on the walls and the subsequent recombination to form molec-
ular hydrogen H2.3–5 Helium is chemically inert and only a
small fraction of 3He (6.6%) is soluble in bulk 4He; spin-
polarized hydrogen and its isotopes deuterium and tritium are
expelled to the surface where they have a single bound state.
For instance, in the case of H↓, the chemical potential of a
single atom in bulk 4He is16 36 K to be compared with the
negative value on the surface, −1.14 K.17, 18, 20

The quantum degeneracy of H↓ adsorbed on 4He is
quantified by defining the quantum parameter σ�2, with σ the
surface density and � the thermal de Broglie wavelength.15

Experiments try to increase this parameter as much as possi-
ble by increasing the surface density and lowering the temper-
ature of the film. To this end, two methods for local compres-
sion have been used. The first one, that relies on the applica-
tion of a high magnetic field, is able to attain large quantum
parameter values, σ�2 � 9.8, 12 However, to measure the main
properties of the quasi-two-dimensional gas becomes difficult
due to the large magnetic field.21 An alternative to this method
is to work with thermal compression, in which a small spot
on the sample cell is cooled down to a temperature below the
one of the cell.22, 23 This second method achieves lower val-
ues for quantum degeneracy σ�2 � 1.5 but allows for direct
observation of the sample. Up to now, it has not been pos-
sible to arrive to the value σ�2 � 4 where the Berezinskii-
Kosterlitz-Thouless (BKT) superfluid transition is expected
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224708-2 Marín, Vranješ Markić, and Boronat J. Chem. Phys. 139, 224708 (2013)

to set in. Nevertheless, the quantum degeneracy of the gas
was observed as a decrease of the three-body recombination
rate at temperatures T = 120-200 mK and densities σ � 4
× 1012 cm−2.21

The zero-temperature equations of state of bulk gas24

H↓ and liquid25 T↓ were recently calculated using accurate
quantum Monte Carlo methods. Properties like the conden-
sate fraction, distribution functions, and localization of the
gas(liquid)-solid phase transitions were established with the
help of the ab initio H↓-H↓ interatomic potential.9, 26, 27 From
the theoretical side, much less is known about the ground-
state properties of two-dimensional H↓ or H↓ adsorbed on a
free 4He surface. In a pioneering work, Mantz and Edwards18

used the variational Feynman-Lekner approximation to cal-
culate the effective potential felt by a hydrogen atom on the
4He surface. Solving the Schrödinger equation for the atom
in this effective potential they concluded that H↓, D↓, and
T↓ have a single bound state and calculated the respective
binding energies. The main drawback of this treatment is that
the adsorbent is substituted by an effective field representing
a static and undisturbed surface. In fact, a quantitatively ac-
curate approach to this problem requires a good model for
the 4He surface.19 The use of accurate He-He potentials and
ground-state quantum Monte Carlo methods proved to be able
to reproduce experimental data directly related to the surface,
like the surface tension and the surface width.28 In the present
work, we rely on a similar methodology to the one previously
used in the study of the free 4He surface28 in order to mi-
croscopically characterize the ground-state of H↓ adsorbed
on its surface. Our study is complemented by a purely two-
dimensional simulation of H↓ in order to establish the degree
of two-dimensionality of the adsorbed film.

The rest of the paper is organized as follows. The
quantum Monte Carlo method used for this study is described
in Sec. II. The results obtained for H↓ adsorbed on the 4He
surface within a slab geometry are presented in Sec. III to-
gether with the comparison with the strictly two-dimensional
case. Finally, Sec. IV comprises a brief summary and the main
conclusions of the work.

II. QUANTUM MONTE CARLO METHOD

We have studied the ground-state (zero temperature)
properties of a thin layer of H↓ adsorbed on the free sur-
face of a 4He slab and also the limiting case of a strictly two-
dimensional H↓ gas. Focusing first on the slab geometry, the
Hamiltonian of the system composed by NHe

4He and NH H↓
atoms is

H = − ¯2

2mHe

NHe∑
I=1

∇2
I − ¯2

2mH

NH∑
i=1

∇2
i +

NHe∑
1=I<J

VHe−He(rIJ )

+
NH∑

1=i<j

VH−H(rij ) +
NHe,NH∑
1=I,i

VHe−H(rI i), (2)

with capital and normal indices standing for 4He and
H↓ atoms, respectively. It is worth noticing that Freed29

proved that spin-polarized hydrogen atoms behave as ef-
fective bosons within the Born-Oppenheimer approximation.

According to Freed’s argument, since all electron spins are
down, the orbital part of the many-electron wave function
in the field of the “clamped nuclei” is antisymmetric with
respect to electron permutations. But it is also antisymmet-
ric with respect to nuclear coordinates. Thus, it immediately
follows that the many-particle wave function of all the pro-
tons in the effective-potential of the electrons has to be sym-
metric with respect to permutations of the protons. We thus
treat H↓ atoms as point-like bosons interacting with a model
potential.

The pair potential between He atoms is the Aziz HFD-
B(HE) model,30 used extensively in microscopic studies of
liquid and solid helium. The H↓-H↓ interaction (b3�+

u triplet
potential) was calculated with high accuracy by Kolos and
Wolniewicz (KW).9 More recently, this potential was recal-
culated up to larger interatomic distances by Jamieson, Dal-
garno, and Wolniewicz (JDW).26 We have used the JDW
data smoothly connected with the long-range behavior of
the H↓-H↓ potential as calculated by Yan et al.27 The JDW
potential has a core diameter of 3.67 Å and a minimum
ε = −6.49 K (slightly deeper than KW) at a distance
rm = 4.14 Å. Finally, we take the H-He pair potential from
Das et al.;31 this model was used in the past in the study of
a single H↓ impurity16 in liquid 4He and in mixed T↓-4He
clusters.32 The Das potential31 has a minimum ε = −6.53 K
at a distance rm = 3.60 Å.

The quantum N-body problem is solved stochasti-
cally using the diffusion Monte Carlo (DMC) method.33

DMC is nowadays one of the most accurate tools for the
study of quantum fluids and gases, providing exact results
for boson systems within some statistical errors. In brief,
DMC solves the imaginary-time (τ ) N-body Schrödinger
equation for the function f (R, τ ) = ψ(R)	(R, τ ), with
	0(R) = limτ→∞ 	(R, τ ) the exact ground-state wave func-
tion. The auxiliary wave function ψ(R) acts as a guiding wave
function in the diffusion process towards the ground state
when τ → ∞. The direct statistical sampling with f (R, τ ),
called mixed estimator, is unbiased for the energy but not
completely for operators which do not commute with the
Hamiltonian. In these cases, we rely on the use of pure esti-
mators based on the forward walking strategy.34 The influence
of the finite time step used in the iterative process is reduced
by working with a second-order expansion for the imaginary-
time Green’s function.35 The last systematic error that one has
to deal with is the finite number of walkers Ri which repre-
sent the wave function 	(R, τ ). As usual, we analyze which
is the number of walkers required to reduce any bias coming
from it to the level of the statistical uncertainties.

The 4He surface is simulated using a slab which grows
symmetrically in the z direction and with periodic boundary
conditions in the x–y plane.28 The guiding wave function is
then the product of two terms:

ψ(R) = ψJ (R) φ(R), (3)

the first one accounting for the dynamical correlations in-
duced by the interatomic potentials and the second for the
finite size of the liquid in the z direction. Explicitly, ψJ (R)
is built as a product of two-body Jastrow factors between the
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different particles:

ψJ (R) =
NHe∏

1=I<J

fHe(rIJ )
NH∏

1=i<j

fH(rij )
NHe,NH∏
1=I,i

fHe−H(rI i) .

(4)
The one-body correlations that confine the system to a slab
geometry are introduced in φ(R):

φ(R) =
NHe∏
I=1

hHe(zI )
NH∏
i=1

hH(zi) . (5)

The 4He-4He (fHe(r)) and 4He-H↓ (fHe–H(r)) two-body corre-
lation factors (4) are chosen of Schiff-Verlet type,

f (r) = exp

[
−1

2

(c

r

)5
]
, (6)

whereas the H↓-H↓ one is taken as

fH(r) = exp[−b1 exp(−b2r)], (7)

because it was shown to be variationally better for describ-
ing the hydrogen correlations.24 The parameters entering
Eqs. (6) and (7) have been optimized using the variational
Monte Carlo method. We have used cHe = cHe-H = 3.07 Å,
b1 = 101, and b2 = 1.30 Å−1, neglecting their slight depen-
dence on density. The one-body functions in Eq. (5) are of
Fermi type,

h(z) = {1 + exp[ k( |z − zcm| − z0)]}−1 , (8)

with variational parameters k and z0 related to the width and
location of the interface, respectively. The main goal of these
one-body terms is to avoid eventual evaporation of parti-
cles by introducing a restoring drift force only when parti-
cles want to escape to unreasonable distances. Any spurious
kinetic energy contribution due to the movement of the cen-
ter of mass of the full system (4He+H↓) is removed by sub-
tracting zcm from each particle coordinate z, either of 4He
or H↓, in Eq. (8). The optimal values used in the DMC
simulations are z0(4He)=22.10 Å, z0(H↓)=37.06 Å, and
k(4He)=k(H↓)=1 Å−1.

Our study of the thin layer of H↓ adsorbed on 4He is
complemented with some calculations of a strictly 2D H↓ gas
with the Hamiltonian

H2D = − ¯
2

2mH

NH∑
i=1

∇2
i +

NH∑
1=i<j

VH−H(rij ) , (9)

using as a guiding wave function a Jastrow factor with the
same two-body correlation factors as in the slab (7).36

III. RESULTS

The 4He surface where H↓ is adsorbed is simulated with
the DMC method using a slab geometry. We use a square cell
in the x–y plane that is made continuous by considering peri-
odic boundary conditions in both directions. In the transverse
direction z the system is finite, with two symmetric free sur-
faces at the same distance from the center z = 0. The surface
of the basic simulation cell is A = 290.30 Å2 and NHe = 324.
With these conditions we guarantee an accurate model for the
free surface of 4He, as shown in Ref. 28.
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FIG. 1. Density profile of the 4He slab (dashed line) and of the H↓ adsorbed
gas (solid line) corresponding to a surface density σ = 9.57 × 10−3 Å−2.

On top of one of the slab surfaces we introduce a variable
number NH of H↓ atoms that form a thin layer of surface
densities σ = NH/A. In order to reach lower densities than
σ = 1/A we have replicated the basic slab cell the required
number of times. In Fig. 1, we show the density profiles
of the 4He slab and of the H↓ layer for a surface density
σ = 9.57 × 10−3 Å−2. This layer has an approximate width
of 8 Å and virtually floats on the helium surface: the center
of the H↓ layer is located out of the surface, where the 4He
density is extremely small. The picture is similar to the one
obtained previously by Mantz and Edwards18 in a variational
description of the adsorption of a single H↓ atom. However,
contrarily to the exponential tail of the density profile derived
by Krotscheck and Zillich19 in a thorough description of the
impurity problem, we observe a faster decay to zero and a
rather isotropic profile. We attribute this difference to the
residual bias of the one-body factor h(z) (8) used to avoid
spurious evaporation of particles. On the other hand, the more
well studied case of 3He adsorbed on the 4He surface shows
a similar density profile,37 located on the surface, but in this
case centered not so far from the bulk.

One of the most relevant magnitudes that characterize the
H↓ film is its energy per particle at different coverages. In
Fig. 2, we plot the DMC energy per particle of H↓ as a func-
tion of the surface density σ . In order to better visualize the
energy of the adsorbed gas, we have subtracted from the com-
puted energies the energy in the infinite dilution limit σ → 0.

0

 0.5

1

 1.5

2

0  0.01  0.02  0.03

E
/N

 [K
]

σ [Å−2]

FIG. 2. Energy per particle of H↓ on top of the 4He surface (points with
error bars). The energy at the zero-dilution limit is subtracted in such a way
that the energy is zero in the limit σ → 0. The line on top of the DMC data
corresponds to the polynomial fit of Eq. (10).
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FIG. 3. Comparison between the energy per particle of H↓ adsorbed on the
4He slab (full circles) and the energy of purely two-dimensional H↓ (open
squares). The solid line is the polynomial fit (10) and the dotted line is a fit
of the 2D energies (11).

The energy increases monotonously with the density and its
behavior is well accounted for by the simple polynomial law

E/N(σ ) = Bσ + Cσ 2 , (10)

with optimal parameters B = 48(2) KÅ2 and C = 5.6(9)
× 102 KÅ4, the figures in parenthesis being the statistical
uncertainties.

H↓ floating on top of the 4He free surface has been
currently considered as a nice representation of a quasi-two-
dimensional quantum gas. In order to be quantitatively accu-
rate in this comparison, we have carried out DMC simulations
of strictly 2D H↓ gas without any adsorbing surface.36 The
results obtained for the energy per particle of the 2D gas at
different densities are shown in Fig. 3. The energies are well
reproduced by a polynomial law

E/N(σ ) = B2Dσ + C2Dσ 2 , (11)

with B2D = 35(3) KÅ2 and C2D = 6.4(1) × 104 KÅ4. In
the same figure, we plot the energies for the adsorbed gas
at the same coverage. As one can see, the agreement be-
tween the strictly 2D gas and the film is good for densities
σ � 5 × 10−3 Å−2. At higher densities, the additional degree
of freedom in the z direction makes the growth of the energy
with the surface density in the layer nearly linear up to the
shown density, in contrast with the significant quadratic in-
crease observed in the 2D gas (C � C2D). The difference be-
tween energies of the layer and the 2D gas thus increases with
the surface density, which correlates with the increase of the
layer width from approximately 7 to 9 Å.

A possible scenario when the density increases and the
equation of state of the layer departs from the 2D law is the ex-
istence of a nearly three-dimensional gas. We have analyzed
this possibility by considering a width in z given by the den-
sity profile (Fig. 1) and by estimating the 3D density of the
adsorbed gas as the coverage divided by the layer width. In
Fig. 4, we show the energy per particle of adsorbed H↓ as a
function of the density considering our best estimation for the
layer width, z = 8 Å, and also z = 9 and 7 Å. The possible
3D behavior of the energy is analyzed by comparing the re-
sults of the layer with the ones of the bulk 3D gas. At low
densities, the energies of the adsorbed phase are higher than

0
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 0.4

 0.6

 0.8

1

 1.2

 1.4

 1.6

 0.001  0.002  0.003

E
/N

 [K
]

ρ [Å−3]

FIG. 4. Comparison between the energy per particle of H↓ adsorbed on the
4He slab and the energy of bulk H↓ (solid line) from Ref. 24. Full squares, full
circles, and full diamonds correspond to the layer where we have considered
a width in z of 9, 8, and 7 Å, respectively.

the 3D gas and, when the density increases, both results tend
to cross. As one can see, the energies of adsorbed H↓ are not
well described by a 3D equation of state at any density within
the regime studied.

The structure and the distribution functions of H↓ atoms
in the layer can be studied by doing slices of small width
(�z = 1 Å) and, within a given slice, as a function of the ra-
dial distance between particles in the plane r =

√
x2 + y2. In

Fig. 5, we report results of the two-body radial distribution
function g(z, r) where z is the distance to the center of the 4He
slab at a coverage σ = 0.0215 Å−2. Around the center of the
H↓ density profile, g(r) is nearly independent of z with a main
peak of a height smaller than 1.2. In the wings of ρH(z), where
the local density is smaller, g(r) shows less structure and the
noise of the DMC data also increases due to low statistics.

It is interesting to know if the spatial structure of H↓
atoms on the 4He surface is similar to the one in a strictly 2D
geometry. To this end, we show in Fig. 6 results of the radial
distribution function for both systems at the same surface
density (σ = 0.0095 Å−2). The result corresponding to the
layer is taken from a slice �z in the center of the density
profile. As one can see, both functions do not show any
significant peak because the density is rather small. However,
the behavior at small interparticle distances is appreciably
different. In the layer, atoms can be closer (in the in-plane
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4
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 0.6
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1
 1.2

FIG. 5. Two-body distribution function g(z, r) of H↓ adsorbed on 4He, with
r =

√
x2 + y2, at surface density σ = 0.0215 Å−2.
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g(
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FIG. 6. Comparison between the two-body distribution function in the center
of the slab, corresponding to the density σ = 0.0095 Å−2 (solid line) with the
one corresponding to a purely 2D H↓ gas at the same surface density (dotted
line).

distance r =
√

x2 + y2) than in 2D because of the small
but nonzero width of the slice used for its calculation. In
fact, we have shown previously in Fig. 2 that, at the density
σ = 0.0095 Å−2 used in Fig. 6, the energies per particle
of the layer and the strictly 2D gas start to be significantly
different, in agreement with the differences observed here in
the distribution function g(r).

A key magnitude in the study of any quantum Bose gas
is the one-body distribution function ρ1(r) since it furnishes
evidence of the presence of off-diagonal long-range order in
the system. As it is well known, its asymptotic behavior in
a homogeneous system limr→∞ρ1(r) = n0 gives the fraction
of particles occupying the zero-momentum state, that is the
condensate fraction n0. In Fig. 7, we show a surface plot con-
taining results of ρ1(z, r) at density σ = 0.0215 Å−2, obtained
following the same method as in the grid of g(z, r) shown in
Fig. 5. In the outer part of the density profile the condensate
fraction increases because the density is smaller. When z de-
creases the condensate fraction also decreases and reaches a
plateau in the central part of ρH(r). If z is reduced even more
and ρHe(r) starts to increase, the H↓ condensate fraction de-
creases again due to the small but nonzero 4He density; the
low statistics in this part makes the signal very noisy and
therefore we do not plot data for z < 27 Å in Fig. 7.
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FIG. 7. One-body distribution function ρ1(z, r) of H↓ adsorbed on 4He, with
r =

√
x2 + y2, at surface density σ = 0.0215 Å−2.
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FIG. 8. Comparison between the one-body distribution function in the center
of the slab, corresponding to a density σ = 0.0095 Å−2 (solid line) with the
one corresponding to a purely 2D H↓ gas at the same surface density (dotted
line).

A relevant issue in the study of the off-diagonal
long-range order in the adsorbed gas is the dimensionality of
the results achieved. As we have made before for the two-
body distribution functions, we compare ρ1(r) for a 2D gas
and for a slice in the center of the adsorbed layer at the same
density in Fig. 8. The results show that in this case the behav-
ior in the layer is significantly different from the one observed
in strictly 2D. The difference is larger than the one we have
observed at the same density for g(r) (Fig. 6), with values for
the condensate fraction that differ in ∼30%. The condensate
fraction of the 2D gas is clearly smaller than the one of the
layer due to the transverse degree of freedom z that translates
into an effective surface density smaller than the one of the
full layer.

The density dependence of the condensate fraction of
adsorbed H↓ is shown in Fig. 9. The values reported have
been obtained from the asymptotic value of the one-body
distribution function in the central part of the density profile.
As expected, the condensate fraction is nearly 1 at very low
densities and then decreases when σ increases. However, the
decrease is quite slow in such a way that even at densities
as large as σ = 0.02 Å−2 the condensate fraction is still
n0 � 0.6. At the same density, the condensate fraction of the
2D gas is half this value, n0 � 0.3. The dependence of n0

with the density for the 2D geometry, shown in Fig. 9 for
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n 0

σ [Å−2]

FIG. 9. Condensate fraction as a function of the surface density σ . Solid
circles correspond to H↓ on 4He and open squares to a 2D gas. The lines on
top of the DMC data are fits to guide the eye.
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comparison, is significantly stronger with a larger depletion
of the condensate fraction for all densities.

IV. SUMMARY AND CONCLUSIONS

The experimental realization of an extremely thin layer
of H↓ adsorbed on the surface of superfluid 4He provides a
unique opportunity for the study of nearly two-dimensional
quantum gases. The system is stable and the influence of the
liquid substrate is nearly negligible, without the corrugation
effects that a solid surface like graphite provides. Moreover,
spin-polarized hydrogen is a specially appealing system from
the theoretical side because it is the best example of quantum
matter (it remains gas even in the zero temperature limit) and
its interatomic interaction is known with high accuracy. In the
present work, we have addressed its study from a microscopic
approach relying on the use of quantum Monte Carlo methods
by means of a simulation that incorporates the full Hamilto-
nian of the system, composed of a realistic 4He surface and
the layer of H↓ adsorbed on it.

From very low coverages up to relatively high surface
densities, we have reported results of the main properties of
adsorbed H↓: energy, density profile, two- and one-body dis-
tribution functions, and the condensate fraction. Our results
point to an ∼8 Å thick layer that virtually floats on top of
4He. We have calculated the energy as a function of the sur-
face density σ and compared these energies with the results
obtained in a purely 2D H↓ gas in order to establish the de-
gree of two-dimensionality of the layer. The agreement be-
tween both simulations is only satisfactory for small densities
σ � 5 × 10−3 Å−2 and, from then on, the additional degree
of freedom in the z direction of the layer causes its energy
to grow slower than in strictly 2D. Significant departures of
strictly 2D behavior are also observed in the two-body radial
distribution function and mainly in the condensate fraction
values. Our DMC results show that the condensate fraction
for the layer is appreciably higher than in 2D, with values as
large as n0 = 0.6 at the largest coverages studied. If we con-
vert this coverage to volume density by using the layer width
of 8 Å, we see that the condensate fraction is quite close to
published 3D values in Ref. 24. From these results we can
be certain that a BKT phase transition would be a realistic
scenario at low surface densities. For higher densities, further
study using intensive path-integral Monte Carlo simulations
at finite temperatures would be needed.
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134, 054509 (2011).
33B. L. Hammond, W. A. Lester, Jr., and P. J. Reynolds, Monte Carlo Meth-

ods in ab initio Quantum Chemistry (World Scientific, Singapore, 1994).
34J. Casulleras and J. Boronat, Phys. Rev. B 52, 3654 (1995).
35J. Boronat and J. Casulleras, Phys. Rev. B 49, 8920 (1994).
36A study of the phase diagram of strictly two-dimensional H↓gas can be

found in L. Vranješ Markić and J. Boronat, J. Low. Temp. Phys. 171, 685
(2013).

37R. Guardiola and J. Navarro, Phys. Rev. Lett. 89, 193401 (2002).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

147.83.95.23 On: Fri, 14 Mar 2014 14:53:40

http://dx.doi.org/10.1103/PhysRevLett.36.910
http://dx.doi.org/10.1103/PhysRevB.15.4376
http://dx.doi.org/10.1103/PhysRevLett.81.3811
http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1103/PhysRevLett.75.1687
http://dx.doi.org/10.1103/PhysRevLett.81.4545
http://dx.doi.org/10.1063/1.1697142
http://dx.doi.org/10.1016/0009-2614(74)80155-7
http://dx.doi.org/10.1016/0009-2614(74)80155-7
http://dx.doi.org/10.1103/PhysRevB.47.8886
http://dx.doi.org/10.1103/PhysRevLett.81.4440
http://dx.doi.org/10.1103/PhysRevLett.81.4440
http://dx.doi.org/10.1007/s10909-007-9341-x
http://dx.doi.org/10.1103/PhysRevLett.98.043004
http://dx.doi.org/10.1088/1742-6596/19/1/030
http://dx.doi.org/10.1023/A:1022599725388
http://dx.doi.org/10.1103/PhysRevLett.86.3356
http://dx.doi.org/10.1103/PhysRevB.20.4518
http://dx.doi.org/10.1103/PhysRevB.77.094507
http://dx.doi.org/10.1103/PhysRevLett.45.915
http://dx.doi.org/10.1103/PhysRevA.72.052713
http://dx.doi.org/10.1016/0921-4526(94)90779-X
http://dx.doi.org/10.1103/PhysRevA.69.023610
http://dx.doi.org/10.1103/PhysRevB.75.064506
http://dx.doi.org/10.1103/PhysRevB.80.134506
http://dx.doi.org/10.1103/PhysRevA.61.042705
http://dx.doi.org/10.1103/PhysRevA.54.2824
http://dx.doi.org/10.1103/PhysRevB.71.144518
http://dx.doi.org/10.1063/1.439224
http://dx.doi.org/10.1080/00268978700101941
http://dx.doi.org/10.1063/1.435648
http://dx.doi.org/10.1063/1.3530837
http://dx.doi.org/10.1103/PhysRevB.52.3654
http://dx.doi.org/10.1103/PhysRevB.49.8920
http://dx.doi.org/10.1007/s10909-012-0756-7
http://dx.doi.org/10.1103/PhysRevLett.89.193401

