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Abstract. Similarity functions are a very flexible container under which
to express knowledge about a problem as well as to capture the meaning-
ful relations in input space. In this paper we describe ongoing research
using similarity functions to find more convenient representations for a
problem —a crucial factor for successful learning— such that subsequent
processing can be delivered to linear or non-linear modeling methods.
The idea is tested in a set of challenging problems, characterized by a
mixture of data types and different amounts of missing values. We re-
port a series of experiments testing the idea against two more traditional
approaches, one ignoring the knowledge about the dataset and another
using this knowledge to pre-process it. The preliminary results demon-
strate competitive or better generalization performance than that found
in the literature. In addition, there is a considerable enhancement in the
interpretability of the obtained models.
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1 Introduction

The intuitive notion of similarity is very useful to group objects under specific
criteria and has been used with great success in several fields like Case Based Rea-
soning [1] or Information Retrieval [2]. Interest around purely similarity-based
techniques has never faded way; on the contrary, it has grown considerably since
the appearance of kernel-based methods [3]. In learning systems, a non-written
principle states that similar inputs should have similar outputs for the model to
be successful. While this is no guarantee of good performance —specially near
class boundaries, where the principle is violated— it certainly is a sine qua non
condition. If the principle is not true, generalization becomes almost impossible.
For a learning system, the trick is then to capture (that is, to learn) meaningful
similarity relations in relation to the prescribed target variable.

Specific similarity functions from the point of view of data analysis have been
used with success since the early days of pattern recognition. Modern modelling
problems are difficult for a number of reasons, including dealing with mixtures
of data types and a significant amount of missing information [4]. For example,
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in the well-known UCI repository [5] over half of the problems contain explicitly
declared nominal variables, let alone other data types (e.g., ordinal), usually
unreported. In many cases this heterogeneous information has to be encoded
in the form of real-valued quantities, although there is often enough domain
knowledge to characterize the nature of the variables.

The aim of this paper is to demonstrate the learning abilities of simple layered
architectures, where the first layer computes a user-defined similarity function
between inputs and weights. The basic idea is that a combination of partial simi-
larity functions, comparing variables independently, is more capable at capturing
the specific properties of an heterogeneous dataset than other methods, which
require a priori data transformations. An appealing advantage is found in the
enhanced interpretability of the models, so often neglected in the neural network
community. In order to develop the idea, we propose to compute the similarities
among the elements in the learning dataset, and then use a reduction method
to select a small subset thereof. These selected observations are the centers of
the first hidden layer. In other words, the first hidden layer is a change of the
representation space from the original feature space to a similarity space [6].

2 Methodology

2.1 Preliminaries

We depart from a training data matrix Dyxg composed of N observations x
described by d variables, plus a target matrix Dy y; containing the known tar-
gets of the IV observations. For simplicity, in this paper we concentrate in clas-
sification problems only (two-class or multiclass) and set ¢ = 1.

Given a similarity function s, we first compute the associated symmetric
similarity matrix Sy, where S;; = s(x;,%;). An algorithm is then needed to
select a number d’ of prototypes, that best represent the learning data in the
following sense:

1. the prototypes must be known elements of the input space (observations);
2. all observations that are not prototypes must show a high similarity to (only)

one of the prototypes in relation to their similarity to the other prototypes;
3. d’ should be set much smaller than N.

This is an ideal task for a clustering algorithm, although not all clustering
methods are adequate, and certainly alternative techniques could be possible.
As an example, artificial immune systems have been used for prototype selection
tasks using nearest-neighbor classifiers [7].

The result of this process is a layer of d’ units, which we call S-neurons. Any
learning method can now operate in the representation space spanned by the
layer of d’ S-neurons. However, it pays to start using linear methods, both for
computational (they are fast) and analytical (they have a single optimum) rea-
sons. It also turns out that the resulting model can be much more interpretable.
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2.2 Detailed description

Let us represent the observations as belonging to a space X # () as a vector x
of d components, where each component xj, represents the value of a particular
feature k. A similarity measure is a unique number expressing how “like” two
observations are, given these features. It can be defined as an upper bounded,
exhaustive and total function s : X x X — I, C R such that I, has at least two
different elements (therefore I is upper bounded and $,,,, = sup I exists).

R

A basic but very useful S-neuron can be devised using a Gower-like similarity
index, well-known in the literature on multivariate data analysis [8]. For any
two vector objects x;,x; to be compared on the basis of feature %, a score sy
is defined, described below. First set d;;; = 0 when the comparison of x;,x;
cannot be performed on the basis of feature k£ for some reason; for example,
by the presence of missing values, by the feature semantics, etc; d;;5 = 1 when
such comparison is meaningful. If 6, = 0 for all the features, then s(x;,x;) is
undefined. The partial scores s;;;, are defined as follows:

Binary (dichotomous) variables indicate the presence/absence of a trait,
marked by the symbols + and —. Their similarities are computed according
to Table 1, leading to a partial coefficient introduced by Jaccard and well known
in numerical taxonomy as the Jaccard Coefficient [9].

Table 1: Similarities for dichotomous (binary) variables.

Values of feature k
Object x; |+ + — -
Object x|+ — + —

Sijk 100 0

Sk (111 0

Categorical variables can take a number of discrete values, which are com-
monly known as modalities. For these variables no order relation can be assumed.
Their overlap similarity is s;;; = 1 if @, = 2, and s, = 0 if 2 # k.

Real-valued variables are compared with the standard metric in R: s;5, =
1— |2 — k| /Ry, where Ry, is the range of feature k (the difference between the
maximum and minimum values). The overall coefficient of similarity is defined
as the average score over all partial comparisons:

D k=1 SijkOijk
Sii = $(x4,%xj) = =25————
Y v > k=1 Giji

Ignorance of the absent elements and normalization by the number of the
present ones has been found superior to other treatments in standard data anal-
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ysis experiments [10]'. This coefficient has been extended to deal with other data
types, like ordinal and circular variables [11]. Notice that we now have $;,4, = 1.
As for the clustering, we choose the PAM algorithm, which partitions data
into k clusters, very much like k-means. However, PAM offers two advantages:
first, the cluster centers (called medoids) are chosen among the data points;
second, the algorithm first looks for a good initial set of medoids and then finds
a suboptimal solution such that there is no single switch of an observation with
a medoid that will decrease the reconstruction error (the sum of distances of the
observations to their closest medoid). The algorithm is fully described in [12].

3 Experiments

In this section we report on experimental work in which the previous ideas are ap-
plied both to linear learners —logistic and multinomial regression (LOGREG and
MULTINOM)— and linear discriminant analysis (LDA) and also to a non-linear
learner (a standard SVM using the RBF kernel). All methods are deterministic
and use the same data partitions. The smoothing parameter in the RBF kernel
is estimated using the sigest method, based upon the 10% and 90% quantiles of
the sample distribution of ||x; — x;||? [13]; the cost parameter C is set to 1.

All datasets are split into learning and test parts (respecting original parti-
tions, if available). For missing value imputation, we use the Multivariate Im-
putation by Chained Equations (MICE) method [14], which generates multiple
imputations for incomplete multivariate data by Gibbs sampling. This method
is attractive because, if the data contains categorical variables, these are also
used in the regressions on the other variables.

We study three approaches:

raw There is no effort in identifying variable types (all information is considered
numerical, and scaled); missing values are either not identified or left as they
come (for example, treated as zeros).

std All variable types are properly identified; non-numerical information is bi-
narized with a standard dummy code [15]. Missing values are identified and
imputed with MICE.

sim Same as before with a first layer of S-neurons, as described in Section (2.2);
then PAM selects d’ = [0.05 - N| prototypes in the learning part. Notice
that, in this case, the model has the architecture of a neural network.

3.1 Datasets

Some challenging problems have been selected as characteristic of modern mod-
eling datasets because of the diversity in data heterogeneity and the presence of

! It is not difficult to realize that this is equivalent to the replacement of the missing
similarities by the average of the non-missing ones. Therefore, the conjecture is that
the missing values, if known, would not change the overall similarity significantly.
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missing values. The problem descriptions and the datasets are taken from the
UCI repository [5]. The available documentation has been analyzed for an assess-
ment on the more appropriate treatment. Missing information is also properly
identified — see Table 2. The Horse Colic dataset has been investigated with two
different targets (variables #23 and #24, resp.).

Table 2: Basic characteristics of the datasets: #0bs (learning, test). Def. (default
accuracy ), Missing (percentage of missing values). In—Out (no. of inputs and
outputs). The last column shows variable types: (R)eal, (N)ominal, or(D)inal.

Name #0Obs Def. Missing In—Out Data
Pima Diabetes 768 (500,268) 65.1% 10.6% 8 — 2 8R, ON, 0D
Horse Colic-23 363 (295,68) 61.4% 25.6% 22 —3 7R, 7N,8D
Horse Colic-24 364 (296,68) 63.5% 25.6% 22 —2 TR, 7N,8D
Audiology 226 (200,26) 66.3% 2.1% 31 — 4 0R, 24N, 7D

Pima Diabetes. This is a much studied dataset, in which a population
of Pima Indian women living near Phoenix, Arizona, was tested for diabetes
according to World Health Organization criteria. In this dataset, most of the
variables show impossible zero values (e.g, the diastolic blood pressure), which
are actually missing values [15]. Upon careful analysis, it turns out that only 392
out of the 768 observations are unaffected by missing values.

Horse Colic. This dataset makes an excellent case study, because of the
diversity in data heterogeneity and a significant amount of missing values; it has
been used as a paradigmatic example in some textbooks [16]. Each observation
is the clinical record of a horse and the variables are specially well documented?.

Audiology. This problem is interesting for many reasons: it is multiclass,
has a low number of observations and all variables are categorical (with different
numbers of modalities, and some of them ordered)®. We have reduced the original
24 classes to 4 by grouping and eliminated non-informative variables.

3.2 Results

The results are displayed in Tables 3, 4, and 5. At a first look, it is surprising how
the learning methods are able to grasp the task using the raw method. In this
sense, the std method is markedly better for LOGREG and the SVM, but not
for MurLTINOM or LDA. However, the difference for MULTINOM is very small; for
LDA, the std method increases input dimension quite a lot (specially if there
are many categorical variables or these have many modalities). The explosion in

? This dataset is made available thanks to M. McLeish and M. Cecile (Computer
Science Dept., Univ. of Guelph, Ontario, Canada).
3 Original owner: Professor Jergen at Baylor College of Medicine.
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the number of binary variables (due to the dummy coding) changes the data dis-
tribution to something extremely non-gaussian, and this causes trouble to LDA
(this is specially acute in Audiology). The sim method presents similar results
for LOGREG and the SVM, and much better for both LDA and MULTINOM.

We would like to point out the good results delivered by linear models, like
LocREG —when applicable— and LDA, specially for the sim method. On the
other hand, few efforts have been devoted to a fine tuning of the SVM models
beyond educated guesses, but this issue affects all approaches. Finally, no effort
has been put in selecting the optimal number of centers for the sim approach.

Table 3: Generalization errors for the raw method.
LogReg Multinom SVM LDA
Pima  0.201 0.187 0.194 0.187

HorseColic-23 — 0.309 0.279 0.279
HorseColic-24  0.176 0.162 0.162 0.162
Audiology — 0.231 0.154 0.269

AVERAGE 0.189 0.222 0.197 0.224

Table 4: Generalization errors for the std method.
LogReg Multinom SVM LDA
Pima  0.190 0.198 0.205 0.201

HorseColic-23 — 0.265 0.279 0.353
HorseColic-24  0.147 0.191 0.147 0.147
Audiology — 0.269 0.038 0.731

AVERAGE 0.169 0.231 0.168 0.358

Table 5: Generalization errors for the sim method.
LogReg Multinom SVM LDA
Pima 0.183 0.190 0.194 0.175

HorseColic-23 — 0.324 0.294 0.309
HorseColic-24  0.162 0.176 0.176 0.191
Audiology — 0.115 0.000 0.038

AVERAGE 0.172 0.201 0.166 0.178
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3.3 Discussion

When comparing to related previous work, the obtained results are very com-
petitive in relation to those typically reported for these problems, sometimes
achieved using very sophisticated techniques. For example, for the Pima dataset,
the best reported results are around 20%, topping at 19.8% [15], while typical
results are in the range 21%-25% [17]. Our best result is 17.5% using LDA and
the sim method. Among other causes, this is due to the bad identification or
treatment of missing values, something that has been advocated elsewhere [15].
What is more, many (if not most) of these reported results are cross-validation
ones, which means that there is no independent assessment of true generaliza-
tion ability. In our case, the Pima results are reported in a test set that is large,
compared to the learning set size (35%). For HorseColic-23, the best reported
result seems to be 13.6% [17], while typical results are in the range 14%-23%
[18]. Our best result is 14.7%, achieved using three different learners and the
std method. There seems to be no comparable previous work for HorseColic-24.
Finally, for Audiology it is difficult to compare because in this paper we have
cleaned the dataset prior to learning; in any event, both the SVM and LDA
achieve very good results with the sim method.

Another important issue is the distribution of the similarities across the ob-
servations and the classes. Fig. 1 shows this distribution for the different datasets.
It can be seen that in all cases similarities are rather high and well-behaved (fairly
symmetrical, unimodal). Given the assumed relation between similarity compu-
tations and learning ability, we computed the intra-class similarities. These were:
Cochlear (0.847), Mixed (0.822), Normal (0.914) and Other (0.794) for Audiol-
ogy, No (0.811) and Yes (0.788) for Pima, Died (0.646), Euthanized (0.634) and
Lived (0.673) for HorseColic-23 and No (0.688) and Yes (0.673) for HorseColic-
24. These numbers not only reflect how relatively compact the different classes
are, they also indicate the hardness for a learning method based on distances
or similarities (however they are computed). For example, HorseColic-23 and
HorseColic-24 show markedly less compact classes. The relation to overall per-
formance and to class-by-class performance is left for a further dedicated study.

Fig.1: Similarity distributions for the different datasets.

Histogram of Audiology Histogram of HorseColic23 Histogram of Pima

Density
0 1 2 3 4 5 6
Density
0 1 2 3 4 5
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4 Conclusions and Future Work

A shortcoming of many existent learning methods —and, in particular, neural
networks— is the difficulty of adding prior knowledge to the model in a principled
way. Current practice assumes that input vectors may be faithfully represented as
a point in R%, and the geometry of this space is meant to capture the meaningful
relations in input space. There is no particular reason why this should be the
case, at least not with small numbers of hidden neurons. This paper has described
ongoing research on more flexible learning frameworks, offering means for the
injection of prior knowledge, and permitting a natural extension to operate in
problems with non-numerical data types and showing missing values.

When talking about real problems, however, accuracy may not tell the whole
picture about a model. Other performance criteria include development cost,
interpretability and usability.

— The cost here refers to how much pre-processing effort we need in order to
build the model. Undoubtedly, all but the raw method require more analysis
time compared to doing (almost) nothing. Prior to learning the variable types
must be identified and coded properly; for the S-neurons, suitable similarity
measures must be chosen, using available background knowledge;

— The interpretability refers to the complexity of the obtained model in hu-
man terms. It is generally believed that accuracy and interpretability are
in conflict [19]. In the present case, the methods based on similarity have a
clear advantage in this case when combined with a linear learner: the pre-
diction is a weigthed combination of the similarity of the input to a selected
(and small) subset of prototypes. This framework resembles that of an SVM;
however, in SVMs the kernel is providing an implicit transformation of the
input space rather than a purely similarity-based representation. Moreover,
the chosen similarity should be a valid kernel function;

— Finally, models must be useful in practice: in a real deployment of the model,
new and unseen observations emerge which we need to classify, which display
the same variable types and may contain missing values (that certainly could
not be imputed at learning time). The similarity approaches are able to face
this situation without further effort.

Current lines of research include the extension to new data types (a suitable
similarity measure is needed in each case) and the design of formal measures
to compute the relation between overall and, particularly, intra-class similarities
with class distribution itself. A measure of similarity that is maximized for ob-
servations of the same class and minimized for observations of different classes
is envisaged via the introduction of weights into the comparisons. This approach
would permit the optimization of the similarity measure to some extent. Another
important issue is the selection of the best centers, which could be performed
in a supervised way. For example, performing a separate clustering per class
and merging the results, or by using GLVQ methods [20]. This latter family of
algorithms makes good use about the classes to which the input vector and the
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winning codevector belong at prototype selection time. It is conjectured that a
supervised reduction method will deliver better modelling results when coupled
with subsequent stages of the method.
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