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We propose a transparent electrode consisting of an aluminum doped zinc oxide (AZO) layer

capped with an ultrathin oxidized Ti film for indium-free bulk-heterojunction polymer solar cells

(PSCs). The oxidized Ti increases the chemical, environmental, stability and the surface

smoothness of AZO while still maintaining its electrical and optical properties. The application

potential of the proposed transparent electrode is demonstrated in an inverted PSC, which shows

an efficiency of 6.3%, very close to the value (7%) obtained in a similar structure using indium

tin oxide. This efficiency is the highest reported to date for PSCs incorporating AZO electrodes.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827877]

Organic photovoltaics technology is a quickly expanding

research field due to its distinct advantages over its inorganic

counterpart. These include the large variety of colors, good

transparency, versatile materials synthesis, light weight, free-

dom of product design, and low-cost mass production by

using roll-to-roll technique on flexile substrates.1–4 Bulk

hetero-junction (BHJ) polymer solar cells (PSCs) have

become one of the most successful device structure devel-

oped to date, with power-conversion efficiencies (PCE) now

exceeding 7%.5–7 BHJ devices with a direct architecture or a

more stable inverted structure usually employ indium tin ox-

ide (ITO) as bottom transparent electrode since it provides

the best performance in terms of electro-optical efficiency

and stability. However, its use represents an industrial bottle-

neck since the cost of its main element, indium, is steadily

increasing due to limited supply and heavy demand.

Therefore, the development of ITO-free transparent electro-

des and PSCs is crucial.

Possible replacements of ITO include other transparent

conducting oxides (TCOs), conducting polymers, carbon

nanotube films, graphene, and silver nanowires.8–12 Impurity

doped polycrystalline ZnO materials such as Al- or Ga-

doped ZnO (AZO or GZO) have attracted much

attention.13–15 Although AZO thin films can achieve optical

and electrical performances similar to those of ITO, their

main drawback is the chemical and environmental stability,

especially in the presence of high T and moisture.14,16–19

The degradation due to the adsorption of water vapour at the

grain boundaries, which leads to a capture of free electrons,

strengthens the contribution of the grain boundary scattering

to the carrier transport and reduces the carrier concentration

and mobility, preventing AZO films to be used in real appli-

cations that require long-term stability of the devices.

Inverted PSCs using AZO films have always shown poor

performances when compared to standard cell structures

incorporating ITO.20–22

In the present work, we demonstrate that an ultrathin

(5 nm) oxidized Ti capping layer on AZO (AZO/TiOx) can

improve the thermal, environmental stability and surface

morphology of the underlying AZO, and that it can be

employed to produce high-performance inverted polymer

solar cells. AZO films were deposited on UV fused silica

substrates by RF magnetron sputtering from a 98 wt. % ZnO

and 2 wt. % Al target in a pure Ar atmosphere at 1.5 mTorr,

150 W RF power while maintaining the substrate at 200 �C.

The 5 nm Ti layer was deposited at room temperature using

RF magnetron sputtering (50 W RF power and 1.5 mTorr

base pressure) from a target with a purity level of 99.99%.

Without breaking the vacuum, the subsequent oxidation of

Ti was obtained by Oxygen plasma treatment in the same

sputtering chamber at 8 mTorr and 40 W DC power for

15 min.

We fabricated inverted PSCs by blending Poly[[4,8-

bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl]

[3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-

diyl]] (PTB7) (1-material, Canada) with PC71BM (ADS,

USA) at a 1:1.5 ratio (10 mg ml�1 of polymer) and dissolved

in a mixed solvent system composed of chlorobenzene (CB)

and 1,8-diiodooctane (DIO) (97:3 v/v%). The used structure

for the inverted solar cell was as follows: cathode/ZnO

(40 nm)/active layer (75 nm)/MoO3 (5 nm)/Ag (100 nm)

being the cathode ITO, AZO, or AZO/TiOx. The ZnO layer

and the PTB7:PC71BM blend were spin coated over the dif-

ferent cathodes using the same experimental conditions

under controlled atmosphere in a globe box. The anode com-

posed of MoO3/Ag was thermally evaporated through a

mask (0.096 cm2) in an evaporator connected to the same

globe box. The current–voltage (I–V) characteristics were

obtained under a 1 sun AM 1.5G spectrum illumination from

a solar simulator (Abet Technologies model Sun 3000).

We first optimized the deposition conditions of the AZO

film to achieve the lowest electrical sheet resistance for a
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given optical transmittance. Fig. 1 shows the optical trans-

mittance spectra in the 300–800 nm wavelength range of

AZO and AZO/TiOx films compared with a commercial

ITO-coated glass substrate, which has an average visible op-

tical transmittance (Tvis) of about 86% and an electrical sheet

resistance (Rs) of 21X/sq. AZO and AZO/TiOx films have a

Tvis of 85% and 82%, respectively, and both Rs of about

20 X/sq. Note that capping AZO with an oxidized Ti layer

does not change significantly the Rs of the electrode. The

transmittance in the near-infrared region is reduced due to

the absorption of free carriers, and the Fabry–Perot oscilla-

tions fringes result from random thickness variations. The

Scanning Electron Microscopy (SEM) cross section micro-

graph included as inset in Fig. 1 shows a 362 nm thick AZO

film deposited on the silica substrate.

There are already some reports on the combination of

ultrathin metals and TCOs as Transparent Electrodes (TEs).

Recently, Bernede et al. deposited a very thin metal layer

(0.5–1.5 nm), preferably 0.5 nm, on the top of TCOs to

improve their functionality.21 It was found that the insertion

of an ultra thin metal films between the TCO anode and the

organic layer improves the solar cell performance because of

a greater carrier injection and better energy levels matching.

On one hand, capping the TCO with such thin metal layers,

which tend to have a discrete island-like morphology, results

in an incomplete protection of the underlying AZO against

the environment or detrimental interaction with other layers

forming the device. On the other hand a thick metal layer

reduces significantly the optical transmission. Therefore,

there exists an optimum thickness of the metal capping layer

corresponding to which the layer morphology changes from

an island distribution to a continuous layer (percolation

threshold). Previous work23 has demonstrated that the perco-

lation thickness of titanium is in the range 2.7 nm–3.1 nm

(60.1 nm). We opted to use 5 nm thick sputtered Ti layer

FIG. 1. Optical transmittance spectra of AZO, AZO/TiOx, and ITO films in

the visible range. The average transmission (Tvis) values are 85%, 82%, and

86%, respectively. The inset is the cross section SEM image of the AZO

film showing a thickness of 362 nm. The sheet resistance of ITO is 21 X/sq

while those of AZO and AZO/TiOx are both 20 X/sq.

FIG. 2. Three dimensional AFM image of (a) of 5 nm Ti film deposited UV fused silica substrate and (b) AZO and (c) AZO/TiOx films. The scanned size area

is 10 lm � 10 lm. (d) Histogram showing the RMS and average roughness of all the deposited films.
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which is continuous, covering completely the AZO surface,

thus ensuring chemical and environmental stability. Since

this thickness reduces the transmittance of AZO by about

20%, an in situ oxygen plasma treatment was carried out to

produce an antireflective oxide (TiOx) on the top of the Ti

layer. In such a way the optical transmission is almost fully

recovered and brought back to the AZO values.

The surface topography of the 5 nm Ti sputtered directly

on the glass substrate (Fig. 2(a)) reveals a uniform and con-

tinuous smooth film with a Root Mean Square (RMS)

roughness of 0.67 nm (Fig. 2(d)). When deposited on the

AZO layer the Ti had the very important effect to smoothen

its surface (Figs. 2(b) and 2(c)), reducing the roughness of a

factor of 3, from 2.33 nm (AZO only) to 0.78 nm (AZO with

oxidized Ti) RMS values (Fig. 2(d)). Such smoothening

effect increases the quality of subsequent layers grown on

the TE and reduces fringe fields, preventing leakage current

and formation of morphological defects.24

It is well known that Ti oxide (titania) has a substantial

oxygen/water protection and scavenging effect originating

from the combination of photocatalysis and inherent oxygen

deficiency.25 To explore these effects, AZO films with and

without a TiOx layer were made and underwent subsequent

thermal treatments, each 45 min long, in ambient atmosphere

in the 30 �C–400 �C temperature range. By capping the AZO

film with the oxidized Ti layer, the resulting structure

becomes more stable. It can be seen in Fig. 3(a) that the elec-

trical properties of both samples remain practically unchanged

as temperature varies from 30 �C to 300 �C. However, when

temperature increases from 300 �C to 400 �C, the Rs of the

AZO sample increases whereas the change is negligible for

the AZO capped with oxidised Ti sample. This indicates that

the TiOx capping prevents effectively the oxidation of the

AZO film at high temperature and improves its properties. In

addition, Tvis of AZO decreases while that of capped AZO

increases during the thermal annealing process, most likely

due to further oxidation and associated increase of antireflec-

tion effect (inset Fig. 3(a)). Damp Heat (DH) tests were car-

ried out for more than one month at 85 �C and 85% relative

humidity to demonstrate the better stability of the AZO/TiOx

based electrode compared to AZO. It was found that the oxi-

dized ultrathin Ti greatly stabilizes the electrical as well as op-

tical properties of AZO, also under these dramatic conditions.

As it is shown in Fig. 3(b), a large increase in Rs after 500 h

was observed for AZO while for AZO/TiOx the degradation

remains negligible up to 1000 h. The DH treatment had no

strong effect even on the optical properties of these films. The

morphological degradation of AZO is likely to be intimately

correlated with hydrolysis-induced corrosion processes that

may have occurred at the grain boundaries. However, the use

of the TiOx interlayer reduces the sensitivity to oxygen and

water vapor and hinders their intrusion into the active

polymers.

Finally, as a proof of concept, inverted PSCs were fabri-

cated over the more commonly used ITO electrode and both

AZO electrodes developed in this study. PTB7 photovoltaic

FIG. 3. (a) Electrical sheet reistance as a function of temperature for AZO

films without and with 5 nm oxidized Ti capping layer. The inset is the aver-

age visible transmittance as a function of temperature. (b) Electrical sheet

resistance as a function of time for damp heat test performed at 85 �C and

85% relative humidity. The inset shows the optical transmittion of the sam-

ples before and after DH test.

FIG. 4. (left) Device configuration and

(right) the energy band diagram of the

inverted polymer solar cell.
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polymer was chosen as it is one of the best performance

polymers reported to date. The architecture of the fabricated

AZO/TiOx device is shown in Fig. 4(left) together with the

corresponding energy level diagram26,27 (right). The approx-

imate work functions of AZO and AZO/TiOx films, meas-

ured experimentally by a Kelvin Probe Force Microscopy,

were 4.68 eV and 4.87 eV, respectively. The current

density–voltage (J–V) curves of the fabricated devices are

showed in Fig. 5(a). Table I summarizes the short circuit cur-

rent (Jsc), open circuit voltage (Voc), fill factor (FF), and

power conversion efficiency (PCE) of the best devices using

ITO, AZO, and AZO/TiOx as cathodes. When the solar cell

device was fabricated on glass/AZO substrates we achieved

a PCE of 6.6% with a Jsc of 12.0 mA cm�2, a Voc of 0.737 V,

and a FF of 0.75. When the solar cell device was fabricated

on glass/AZO/TiOx substrates we achieved a PCE of 6.3%

with a Jsc of 12.1 mA cm�2, a Voc of 0.732 V, and a FF of

0.72. Meanwhile, for the solar cell device fabricated on

glass/ITO commercial substrates the Jsc, Voc, and FF

obtained were 12.7 mA cm�2, 0.737 V, and 0.74, respec-

tively, which resulted in a PCE of 7%.

The cells on bare ITO and AZO-based substrates show

very similar photovoltaic behaviour. When a thin Ti oxidized

layer is deposited on AZO surface the Voc of the inverted so-

lar cell is reduced by less than a 1%. The energy level differ-

ence between the HOMO level of ZnO and the work

function of TiOx can explain this slightly reduction of Voc

according to the metal-insulator-metal model.28 Also a

slightly difference in the value of the FF of the AZO/TiOx

electrode is observed regarded to the AZO or ITO electrodes.

However, noticeably, the FF values obtained for the different

transparent-electrode devices are over 70% which is indica-

tive of low series resistances in the devices.

The efficiency losses of the AZO-based devices in com-

parison with the ITO reference device is mainly due to a

5.5% decrease in the short circuit current for the AZO device

and a 4.7% decrease in the short circuit current for the

AZO/TiOx device. The difference in Jsc between the refer-

ence device and AZO-based cells can be clearly seen in the

External Quantum Efficiency (EQE) curves, shown in Fig.

5(b) where a different distribution of energy absorption can

be observed. With respect to the ITO reference, the slightly

lower transmittance together with the Fabry-Perot oscilla-

tions presented by the AZO-based devices (Fig. 1) resulted

in less energy absorption at 500 nm and between 600 nm and

700 nm where the active material absorbs light. Noticeably,

the situation is favourable for the AZO-based devices at

around 400 nm and 450 nm where the energy absorption is

larger than that of the ITO reference device, which partially

compensates the current loss at larger wavelengths. The

obtained values of Rs, Tvis, and PCE reported in Table II

compare favourably to the state-of-the-art where AZO films

are used as TEs for PSCs. In fact, our work has achieved the

highest PCE using AZO based TE reported so far.

In conclusion, we demonstrated that an ultrathin

(�5 nm) oxidized Ti film can considerably improve the sta-

bility in ambient atmosphere and harsh environmental

FIG. 5. (a) J-V curves of the inverted PTB7:PC71BM solar cells with AZO

and AZO/TiOx layers under a 1 sun AM 1.5G spectrum illumination (b) cor-

responding EQE spectra. The ITO-based device curves are shown for

comparison.

TABLE I. Device performance of the inverted organic solar cell with differ-

ent transparent cathodes.

Electrode Jsc (mA/cm2) Voc (V) FF PCE (%)

AZO 12.0 0.737 0.75 6.6

AZO/TiOx 12.1 0.732 0.72 6.3

ITO 12.7 0.737 0.74 7.0

TABLE II. Comparison between our work and previous ones where AZO based electrodes are used for organic solar cells.

Reference Rs (X/sq) Tvis (%) Solar cell architecture PCE (%)

21 10 85 AZO/Au/CuPc:C60/Alq3/Al 1.40

13 26 86 AZO/CuPc:C60/TPBI/Al 1.3

29 4.59 85 AZO/PEDOT:PSS/P3HT:PCBM/Ca/Al 2.01

22 20 85 AZO/P3HT:PCBM/MoO3/Ag 3.06

Our work 20 82 AZO/TiOx/ZnO/PC71BM:PTB7/MoO3/Ag 6.3
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conditions of the underlying AZO as well as its surface mor-

phology. The proposed AZO/TiOx electrode worked effec-

tively as a transparent cathode for polymer solar cells,

showing record conversion efficiencies close to those of

ITO. The work demonstrates that the proposed TE is a seri-

ous competitor to overcome the high cost of ITO.
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