

Towards DaaS 2.0: Enriching Data Models

Jonathan Martí, Daniel Gasull, Anna Queralt

Barcelona Supercomputing Center

Spain

{jonathan.marti, daniel.gasull, anna.queralt}@bsc.es

Toni Cortes

Barcelona Supercomputing Center

Universitat Politècnica de Catalunya - BarcelonaTech

Spain

toni.cortes@bsc.es

Abstract—Current Data as a Service solutions present a lack of

flexibility in terms of allowing users to customize the underlying

data models by including new concepts or functionalities. Data

providers either publish global APIs to make data available, or

“sell” and transfer data to clients so they can do whatever they

want with it. Thereby, collaboration and B2B becomes limited

and sometimes is not even feasible. Our technology implements

the necessary mechanisms for data providers to enable their

clients to enrich data models both with additional concepts and

with new methods that can be executed and, in turn, published as

new services.

Keywords—DaaS, Cloud, Cloud Storage, Data enrichment

I. INTRODUCTION

The acronym DaaS (Data as a Service) was coined to describe

a model for the on-demand data management services in the

context of the "as a Service" (aaS) stack [1]. DaaS is based on

the concept that the product, data in this case, can be provided

on demand to the user regardless of geographic or

organizational separation of provider (Data Provider in this

case) and consumer.

With current DaaS solutions one can store any contents

according to a data model defined by the data provider. Data

providers also offer a set of global APIs to enable their

customers to access, download, or upload the data based on

CRUD (Create, Read, Update, Delete) commands.

Google Maps is one of the most relevant examples of DaaS

and we will use it to show the limitations of current

approaches and what could be gained with the proposed

extensions. Besides the basic downloading of maps, Google

Maps enables users to create personalized maps by adding

icons, or shapes for defining areas, among others, which can

then be shared with other users. Although this is one example

of the most flexible DaaSs in the Web today, it is still a

service based on CRUD commands.

These DaaSs could be further improved by offering not only

CRUD commands on data but also the possibility to let third

parties to enrich the data models themselves with their own

concepts and computations.

If Google Maps could share its data model and offer a

mechanism for granting third-parties to enrich it with new

concepts, a third party could create a new data model to

represent routes with nice point of sightseeing interests and

places to eat and sleep. This new data model could be added to

the one offered by Google Maps and then build a service on

top of it where you can search for routes following several

conditions, such as routes where we can find vegan

restaurants.

If we focus on adding new code, we could have a real estate

company that would like to create a dynamic overlay with a

gradient presenting the prices per square meter of the houses

being on sale. This would need to be computed for every

query depending on the current houses on sale.

Both options can be done today if you download Google Maps

information to your own infrastructure, and then enrich it at

your side. What would be desirable is to enable such

enrichments without having to copy any data, thus enabling

the new model and new objects (routes) to be resident in

Google maps infrastructure (as happens today with icons and

points of interest). In a similar way, it would also be desirable

that the computation of the gradient could be done in Google’s

infrastructure. In both cases, unnecessary data movements

would be avoided, and the enrichments and computations

would always be made using up-to-date data.

Considering the current scenario, we can add value to current

DaaS solutions by introducing capabilities that enable to

enrich and share not only the data but also the data models

themselves and the computation to manipulate the data. This

solution increases B2B and collaboration opportunity in a win-

win manner. On the one hand, new players can create new

services with very little investments. And on the other hand,

data providers will see a higher utilization of their data, and

thus get greater benefits according to their business model.

In this paper we present the design and implementation of a

new platform that enables data providers to offer their data so

that third parties can enrich it in the same infrastructure. In

particular, by enrichment we mean:

 Extending the original data model by adding new

concepts designed by third parties.

 Extending the functionality by adding new code

developed by third parties.

In section II we will comment some of the current DaaS

solutions by means of some well-known examples. In section

III we justify the chosen programming paradigm. In section IV

we will introduce the key aspects and specific concepts of our

technology. In section V we will explain some implementation

details and some tricky aspects. Finally we will give our

conclusions.

II. RELATED WORK

Today, the mechanisms to enable third parties to enrich both

data and functionalities in the data provider’s infrastructure

are very basic. Third parties can add data into the original

infrastructure through a data service [2], or, in some cases, add

very limited functionality such as custom overlays in Google

maps.

Moreover, current DaaS Servers approaches that aim to

enhance data providers’ experience when offering DaaS, still

do not seem concerned about easing that data providers enable

third parties to enrich their data model and functionalities in

the same way as we propose.

A. DaaS until today

One of the most representative data sharing services is Google

Maps, already mentioned in the introduction. Although the

Google Maps API allows to add custom overlays that require

to perform some kind of computation, they are not completely

arbitrary and remain in the scope of the application computing

them. On the contrary, Google Map Maker allows enriching

maps with geographical data that ends up becoming part of the

maps and available to the general public once it has been

revised, but the data to be added must conform to a limited set

of geographical items (i.e. a specific data model).

At the end, the common limitations of DaaS (until today) can

be extrapolated from those present in Google Maps. With

current data services, third parties are not able to:

 Extend the data set in a way not envisioned by the

data provider, both by adding new concepts to the

data model and new functionalities.

 Store these extensions in the data provider

infrastructure so that they can be accessed by other

client applications.

B. DaaS Servers

Not only current DaaS services present the limitations

commented previously, but also DaaS servers do not provide

the necessary mechanisms to enable data providers to offer

DaaS with the dimension that we propose in this paper.

DaaS Servers facilitate data providers to offer DaaS by giving

them lots of mechanisms like an all-in-one Cloud solution that

joins: Cloud Databases, Cloud Storage, integration tools or

security, (among others). For instance, Infopar Qualitta DaaS

Server [3] provides an infrastructure based on Amazon S3 (to

store data) and Amazon EC2 (to manage the computation of

the services) that enables customers of Infopar to offer DaaS.

Customers can also share their catalogue of data models and

the databases (the actual data, information) so different

Infopar accounts can enrich each other. However, Infopar does

not offer the proper capabilities to enable data providers to be

enriched from external third parties.

Another example is WSO2 Data Services Server [4], which

provides a platform for integrating data stores, creating

composite data views, and hosting data services. WSO2

enables Data Providers to combine data from multiple data

sources in a single resource, allows server customization via

feature provisioning of any middleware capability, or even

offers a tool for automatic generation of CRUD

operations/resources against existing database schemas. But

again, data providers are not provisioned with mechanisms to

enable third parties to enrich their models.

III. RATIONALE

Object–oriented programming (OOP), and in particular Java

and Python which have been ranked as the most used

programming languages in 2012 (TIOBE index [5]), is the

most used programming paradigm. Thus we propose to

implement a DaaS where data and code can be enriched based

on the object paradigm.

In the OOP paradigm data is modeled by coding concepts as

Classes that have data Fields (Attributes that describe the

class) and associated procedures known as Methods. Then,

Objects are instances of such classes that contain specific

values for each data field and act as an entry point to execute

their corresponding class methods.

The idea is to extend the concept of DaaS in a way that data is

handled in the format of objects (as in OOP) offering the

abstraction of Objects as a Service that include, in addition to

the data itself, the methods needed to manipulate it. In this

way, access to alien data can be naturally embedded in client

applications, which also benefit from the functions that enable

the manipulation of this external data.

Objects offer a very natural way to implement enrichment. On

the one hand, we propose to enrich an existing data model by

creating new classes and adding them to the original model.

On the other hand, we propose to extend functionality by

adding new methods to existing classes or new

implementations for existing methods.

We have implemented a platform that supports these features,

thus allowing several data providers at the same time,

creating, enriching and offering classes using the same

platform. This model enables chains of providers and third

parties, having the latter acting as data providers too.

IV. OBJECTS AS A SERVICE

In order to offer Objects as a Service (OaaS), we have

implemented the following mechanisms: i) a mechanism to

enable a data provider to register his OO data models on the

system, ii) a mechanism to define how to share such OO data

models, i.e. which classes, attributes and methods, and iii) a

mechanism to enable enrichment of the OO data model by

means of extending its classes, adding new methods to them,

or enabling third parties to provide their own code

implementing the original methods of the classes (thus

offering more than one implementation per method,

potentially).

A. Registering data models

We assume that data providers have implemented their data

models as a set of Classes. In order to offer objects of these

classes as OaaS, the provider registers his set of classes into

the system. In particular, registering a Java class implies

sending the .class file (which contains the fields and the

methods of the class) to the platform.

In such an environment with several data providers registering

classes, name conflicts may easily appear, since multiple data

models (owned by a single provider or not) may have classes

with the same name despite representing completely different

things. In order to avoid name conflicts, we introduced the

concept of Domains as a higher level of abstraction from

classes. Every Domain can be seen as a namespace or

container for classes owned by a domain responsible (i.e. one

data provider). Every pair domain-class is unique in the

system, so that a single domain cannot contain two classes

with the same name.

B. Sharing data models

Once the data model is registered, the data provider can share

and make it enrichable by creating Contracts. We define a

Contract as the agreement between a data provider publishing

one of his Domains and a third party. The contract comprises:

 A set of what we call Interfaces, one for each class to

be published. Each interface includes those attributes

and method signatures that will be accessible within

the contract

 A set of Permissions for each interface, which define

whether the third party can create, read, update or

delete objects of the class corresponding to the

interface.

In addition to the specific permissions associated to each

interface, the fact of having a contract allows the client to

enrich the data model received as explained in subsection C.

In Figure 1, we show a diagram with a data model on the data

provider side (the circle representing the Domain of the

provider) and a Contract for a third party that a developer can

use. The contract is defined with an Interface with read

permission for class Team enabling access to attribute teamID

and the operation getAvgAge(). The rest of attributes and

operations, or even the entire class Person, are hidden for the

third party developer.

C. Enriching existing data models

Once a third party has some contracts with his data provider

(or data providers), we offer several mechanisms to enrich the

providers' data models, both with new concepts and

functionalities. In particular, we offer three main possible

enrichments (widely explained afterwards):

1. Adding new classes to the data model of the provider

2. Adding new methods to the data provider’s classes

3. Adding new implementations for a method, thus

having several implementations per method.

Importantly, previous existing contracts are not affected by

enrichments, in the sense that the new classes or methods

added will not be visible by the rest of clients of the data

provider. In order to publish these enrichments, their creator

must define a contract acting as a provider, and offer the new

data model to his own clients.

Regarding the first feature, third parties can use and enrich

original data models with their own classes. The clients of a

contract are able to inherit from any class provided in a

contract, and they can also define a new class using providers’

classes to declare attribute types or return types for its

methods. As a result, a third party can create his own data

Third-party
developer

Data model

Data
Provider

developer

-Age : Integer

Person

+getAvgAge() : float(idl)

-teamID : Integer
-staff : Person[]

Team

1

*

Contract
Interface of class Team
{teamID, getAvgAge()}

Permission: Read

Figure 1: Contract for third parties

models based on the provider’s ones, and at the same time

the data provider can enhance his services by enabling a

third party to enrich the original data models with its own

classes or extensions.

The second feature is more intuitive. The enrichment of

existing classes by means of adding methods is an

improvement on existing data models. Figure 2, shows an

example of the original data model (introduced in Figure 1)

that contains both classes Team and Person. The class Team is

enhanced by adding a new method that uses the existing

information (Person[]). Although nowadays DaaS can add

new features, these features have to be implemented by the

data provider. Our novel approach is enabling third parties

to perform this method modifications and/or additions

themselves without interacting with the data provider.

Furthermore, we also allow having multiple implementations

for a single method, thus making an extra layer of enrichment

that even extends the traditional OO paradigm. With this

feature, we allow having a resource manager, which for

instance can decide the implementation to be executed

depending on the available resources, and we also enable data

providers to explicitly define a specific set of accessible

implementations for each method in a contract. Therefore, a

third party can enhance the execution of existing methods

by means of adding an improved implementation. This

implementation could better exploit the provider's

infrastructure, for instance if the existing implementation does

not exploit parallelism and a third-party adds an OpenMP

implementation. Furthermore, it is possible to enhance

business models by defining a different price for each

implementation, or selecting a certain implementation

depending on the customer's account type.

V. IMPLEMENTATION DETAILS

In this section we provide several details on the

implementation of our platform to provide OaaS.

Finally we also present the main modules of the middleware

deployed on the data provider side, and the client library for

the third parties.

A. User authentication

When talking about enriching data models we are assuming

specific roles. On the one hand, we have the so-called data

providers that publish their data models (or portions of them),

and on the other hand there are third parties that, by means of

contracts, can access providers' data models and enrich them

too. Nowadays we use a typical User-Credential mechanism

to manage the authentication of the users, who must register

into the system before being able to use it.

B. Contract materialization

Given that a contract interface represents a part of an existing

class of a provider’s data model, we implemented an OO

proxy pattern based on Stubs. That is, a Stub class is created

automatically for each accessible class corresponding to a

contract interface. This Stub class only contains the part of the

class that is visible according to the definition of such an

interface. Then, the third party only needs to retrieve the Stubs

related with the contracts he owns and use them to compile its

applications or the enrichments of existing classes.

In Figure 3, we revisit the Team-Person example of figure 2

and show how the third party would use the Stub for the class

Team. Let us assume that the data provider has agreed a

contract with a third party that enables the third party to access

to class Team, but for privacy reasons the data provider hides

the class Person. However, the data provider can specifically

enable the third party to execute the method getAvgAge() of

class Team (i.e. avoiding access to a single person, but

allowing to retrieve aggregates or stats about teams). Now, the

third party can create the class Department that has an array of

Team objects, so it can compute the average age of all the staff

in the whole department by using Team Stub to request the

average age of the staff of every team (transparently as it is

declared like the original Team class), and compute the global

average from all the retrieved teams' average ages.

As you can see, this is also an example of enabling third

parties to use providers’ classes (and objects) in order to

define their own applications, since the attribute teams of

the class Department is of type Team from data-provider's

data model.

Original data model New data model

//Data model

Class Team {

 Integer teamID;

 Person[] staff;

 Float getAvgAge() {

 sumAges = 0;

 foreach p in staff

 {

 sumAges+=p.age;

 }

 return sumAges /

 staff.length;

 }

}

Class Person {

 Integer age;

}

//Data model

Class Team {

 Integer teamID;

 Person[]staff;

 Float getAvgAge() {

 Float sumAges = 0;

 foreach p in staff

 {

 sumAges+=p.age;

 }

 return sumAges /

 staff.length;

 }

 Float getMaxAge() {

 Float maxAge = 0;

 foreach p in staff

 {

 if (maxAge < p.age)

 maxAge = p.age;

 }

 return maxAge;

 }

}

Class Person {

 Integer age;

}

Figure 2: Enriching a data model by adding a method

C. Stub generation

The generation of Stubs is provided on demand. That is, the

third party has a contract with a data provider during a certain

period of time and, until the contract expires, the third party

can retrieve the corresponding Stubs when needed (e.g. a new

developer needs them, or in case they were deleted so third

party wants to get them again).

Given that Stubs are generated from the original classes by

filtering its attributes and methods (following the specification

of a contract) and modifying the methods for remote

execution, we needed a mechanism to interact with the code of

the corresponding classes. But we cannot assume that we will

always have access to the source code.

However, Java (the first programming language we support) is

firstly compiled generating and intermediate code (byte code)

which is afterwards interpreted by the Java Virtual Machine

(JVM). The byte code generated by current Java compilers is a

bit complex and tricky, but it is possible to manipulate it in a

more comfortable way by means of existing tools like Byte

Code Engineering Library [6] (BCEL) or Javassist [7].

We chose BCEL because of our previous know-how. BCEL

has already built-in support for dynamically creating classes,

so we use it for generating Stubs on-demand whenever a

contract needs to be materialized.

D. Transparent execution

In our first version of the system, all the methods are executed

in the data provider infrastructure. That is, if a third party uses

a Stub to interact with provider's data model, the intrinsic

computation (method invocation) is actually performed on the

data provider side. This obviously simplifies the execution

scheduling and resource management, and on the other hand

lets us focus on the use cases where the data provider still

wants to keep services execution under control (which at the

end is a common use case).

With the constraint of having everything executed on the data

provider's side, we still have the goal of making such an

execution to be transparent leading us to resolve the following

issues:

1. How to enable a third party to authenticate himself

(with his credential) when using his contracts (with

the Stubs) without having to change his applications.

That is, avoiding applications to run any kind of

explicit authentication against data providers.

2. How to make the Stubs act as proxies that eventually

execute their methods on the data provider side.

3. How to create data objects from Stubs since

providing CRUD commands on existing classes is

necessary and a third party could also create new data

from his enrichments.

Regarding the first issue, in order to accomplish transparent

authentication, the third party must retrieve the Stubs from the

data provider (of course, considering the contracts they have).

That is, our system in the data provider's side accesses the

registered data models and, taking the contracts into account,

automatically generates the Stubs for the third party.

Consequently, we needed to develop a mechanism to inject the

authentication information in the Stubs in such a way that

whenever a method is invoked (to be executed in the data

provider) this information is passed from the third party to the

data provider (where our system validates the third party,

checks the contract is still in force, etc.). At the end, once

having the Stubs, the developer in the third party must not be

aware of the authentication mechanism since it is implicit in

the Stubs.

Regarding the second issue, we already commented that Stubs

are built from the original classes and this is performed by

firstly getting the corresponding contract interface in order to

know the accessible attributes and methods and, afterwards,

generating the actual Stub containing only such visible parts

of the original class. Therefore, the remaining issue is how to

eventually execute original methods in the data provider's

side. To that end, when generating the Stub the system

substitutes the original method calls of the class

implementation by Remote Procedure Calls (RPCs) containing

all the needed information, i.e. not only the method signature

and the parameters but also the authentication information and

the contract in use (the contract which the Stub comes from).

Then, the RPC is eventually executed in the data-provider's

Data Provider Third party

//Data model

//Main class team

Class Team {

 Integer teamID;

 Person[] staff;

 Float getAvgAge() {

 sumAges = 0;

 foreach p in staff

 {

 sumAges+=p.age;

 }

 return sumAges /

 staff.length;

 }

}

//Main class person

Class Person {

 Integer age;

}

// Basic info of the

// stub for Team

Class Team {

 Object oid;

 Float getAvgAge() {

 return

 clientLib.execute(

 oid,

 “getAvgAge()”

);

 }

}

// New class department

// uses Team stub

// transparently

Class Department {

 Team[] teams;

 Float getAvgAge() {

 sumAvgAges = 0;

 foreach t in teams

 {

 sumAvgAges+=

 t.getAvgAge();

 }

 return sumAvgAges /

 teams.length;

}

Figure 3: Data model and application example

infrastructure by means of loading the original class and

executing the corresponding method.

Finally, the third issue mentioned is resolved by means of

intercepting the Stub constructors in such a way that when

instantiating such a Stub (e.g. "Team x = new Team();") this

actually creates an object on the data-provider's side as an

instance of the original corresponding class (e.g. an object of

the original Team class). This enables the third party to give

feedback to data provider since it can create new

information directly within its applications by means of

the Stubs and with the appropriate permissions.

E. Execution plan through multiple Domains

Although Domains are designed to offer a complete data

model by themselves, they might be related. For instance, let

us refer to Figure 3 again, where a third party has added the

Department class that refers to the Team class of the

provider's data model. Now, this third party wants to offer the

class Department with all its contents to one of his customers.

In order to accomplish it, the third party creates its own

Domain and offers a contract with its customer that contains

an Interface for the class Department (as the provider did

when he shared his class Team). Now the third party's

customer develops an application that executes getAvgAge() of

class Department. This method is resolved by internally

calling the method Team.getAvgAge(), so the execution plan is

starting from the third party Domain to the original provider's

Domain.

In this scenario the security could be jeopardized if, for

instance, the contract from the third party to his customer was

defined to be longer (in terms of expiration dates) than the

original one between the data provider and the third party. In

this case, the customer could end up being able to execute

Team.getAvgAge() while the original contract between the

provider and the third party has already expired.

For the first version of our approach, we implemented an

execution plan that checks the current contracts involved on

the execution of an implementation. That is, when the third

party's customer attempts to execute Department.getAvgAge(),

the system will check not only the contract that enables the

customer to do it, but also validates the contracts involved in

the execution of the selected implementation. As a result, in

Figure 3 where there is only one implementation for the

method Department.getAvgAge(), the system will validate the

contract between the responsible of such an implementation

(the third party) and its provider for the required internal

method Team.getAvgAge() (i.e. the Domain of the original

data provider).

F. Client library and middleware for Data Provider

We implemented a client library in order to encapsulate the

management of remote execution from Stubs to data

providers. This library is configured to know where to find the

data-provider's service and consequently how to resolve the

RPC invocations to be executed in such a data provider.

In Figure 4, we show a diagram with the client library and the

main components of the middleware system deployed in the

data provider infrastructure. The Contract Manager deals

with the creation and validation of contracts between data

providers and third parties. It is related with the Interface

Manager which handles the Interfaces registered in the system

(an Interface can be reused in several contracts). The Domain

Manager and the Class Manager are in charge of managing

the domains and the classes of the data models respectively.

Finally, the System Module publishes the service that enables

the client library to request any of the offered features and

handles the requests with the support of the managers.

IDomainManager

Domain

Manager

IContractManager

Contract

Manager

IInterfaceManager

Interface

Manager

IClassManager

Class

Manager

Data provider

Client library

System Module

Figure 4: Middleware and client library

ExecuteMethod(ThirdPartyInfo info, ObjectID oid,

 String method, Parameter[] params)

D
o

m
a

in
 &

 C
la

ss

M
a

n
a

g
er

s
S

y
st

em
 M

o
d

u
le

C
o

n
tr

a
ct

 &
 I

n
te

rf
a

ce

M
a

n
a

g
er

s

ThirdPartyInfo = {userID, credential, contractID, interfaceID}

Authenticate

third party

Validate

contract

& check access

permissions

Load

corresponding

class and execute

method

contractID

interfaceID

method

Return

result

Execute

method

ok

interfaceID

method

params

result

Figure 5: Method execution

Besides, the system module is also in charge of authentication.

The flowchart in Figure 5 shows the common activity between

the System Module and the other Managers for the execution

of a method. The System Module firstly authenticates the third

party, then validates the contract (expiration date, method is

accessible, etc.) and finally loads the corresponding class to

execute the byte-code of the selected method.

VI. CONCLUSIONS

In this paper we have presented a new opportunity to add

value on DaaS solutions. We have introduced the first version

of our approach both conceptually and giving details of our

current implementation.

In particular, we have proposed a new abstraction of DaaS:

Object as a Service. With our OaaS approach we enable third

parties to enrich providers’ data models and functionalities in

the context of the Object Oriented paradigm which nowadays

is the most used programming paradigm.

For this reason, we strongly believe that these mechanisms can

improve B2B models and collaboration among different

organizations.

VII. ACKNOWLEDGEMENTS

This article has been realized with the support of the Spanish

government under grants SEV-2011-0067 of Severo Ochoa

Program, and TIN2012-34557. In addition, it has also been

supported by the Catalan Government under the 2009-SGR-

980 grant.

REFERENCES

[1] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, A. Vakali, “Cloud

computing: distributed Internet computing for IT and scientific research”,

IEEE Internet Computing, vol. 13, no. 5, 2009, pp 10-13.
[2] M.J. Carey, N. Onose, M. Petropoulos. “Data services”. Communications

of the ACM 55(6), 2012, pp. 86-97.

[3] Infopar, Qualitta DaaS Server.
http://www.infopar.com/en/database-as-a-service-daas-dbaas.html (accessed

02-21-2013)

[4] WSO2 Data Services Server, http://wso2.com/products/data-services-
server/ (accessed 02-21-2013)

[5] TIOBE Programming Community Index,
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html (accessed

02-21-2013)

[6] Apache Commons BCEL, http://commons.apache.org/bcel/ (accessed 02-
21-2013)

[7] JBoss Community, Javassist, http://www.jboss.org/javassist (accessed 02-

21-2013)

http://www.informatik.uni-trier.de/~ley/pers/hd/d/Dikaiakos:Marios_D=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/d/Dikaiakos:Marios_D=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/d/Dikaiakos:Marios_D=.html
http://www.infopar.com/en/database-as-a-service-daas-dbaas.html
http://wso2.com/products/data-services-server/
http://wso2.com/products/data-services-server/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://commons.apache.org/bcel/
http://www.jboss.org/javassist

