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We demonstrate experimentally a scheme to measure small temporal delays, much smaller than
the pulse width, between optical pulses. Specifically, we observe an interference effect, based on the
concepts of quantum weak measurements and weak value amplification, through which a sub-pulse-
width temporal delay between two femtosecond pulses induces a measurable shift of the central
frequency of the pulse. The amount of frequency shift, and the accompanying losses of the measure-
ment, can be tailored by post-selecting different states of polarization. Our scheme requires only
spectrum measurements and linear optics elements, hence greatly facilitating its implementation.
Thus it appears as a promising technique for measuring small and rapidly varying temporal delays.
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The measurement of temporal delays between optical
pulses is essential in metrology, for instance for accu-
rate distance measurements and for timing synchroniza-
tion @, E], where the capability of discriminating be-
tween small temporal delays with a reference pulse is
needed. Diverse optical schemes for measuring subpi-
cosecond temporal delays have been demonstrated. This
is the case, for instance, of schemes based on the use
of ultrafast nonlinear processes such as second harmonic
generation B, @] or two-photon absorption ﬂﬂ]

In another context, the well-known Hong-Ou-Mandel
effect makes use of quantum interference to measure sub-
picosecond temporal delays between photons ﬂa], which
was used by Steinberg et al. ﬂ] for measuring very small
single-photon tunneling times. Since this technique is
based on measuring two-photon coincidences, it generally
restrict the number of photons of the signal. However,
quantum-inspired interferometers ﬂE] might broaden the
applicability of quantum concepts to other scenarios.

When two similar optical pulses with temporal width
7, and time delay T° > 7 between them, recombine, a
modulation of the spectral density appears ﬂﬂ], which
allows measuring the time difference 7". This is true even
if the optical path difference is larger than the coherence
length of the pulses ﬂﬂ] However, for small values of
T (T < 7), inspection of the spectral density reveals
no interference effects, even though interference manifest
now in the temporal domain as a periodic change of the
output intensity as function of the delay.

Here we demonstrate experimentally a scheme to mea-
sure small temporal delays T between optical pulses,
much smaller than the pulse width 7, based on an in-
terference effect in the frequency domain which produces
a measurable shift of the central frequency of the pulse

]. The scheme makes use of linear optics elements only
and works in both the high and low signal regimes. It
allows the measurement of temporal delays between opti-
cal pulses up to the attosecond timescale ﬂﬂ] This phe-
nomenon, which is inspired by the concepts of quantum
weak measurements and weak value amplification ﬂﬁ,
@], produces interference effects in the regime T" < T,
which allows to deduce the value of T

Although the concept of weak measurements originates
from research on quantum theory, the phenomenon of
weak value amplification can be readily understood in
terms of constructive and destructive interference be-
tween waves ﬂE, , ] In a weak measurement sce-
nario, a system is weakly coupled to a pointer (the mea-
suring device). While the weakness of the coupling can
be seen as a disadvantage at first sight, Aharonov and
colleagues HE] showed that when appropriate initial and
final states of the system are selected (i.e. pre- and post-
selection), the pointer is shifted by an unexpectedly large
amount. It was soon suggested that these ideas may
find application in metrology ﬂﬂ, @] This phenomenon,
termed weak value amplification, have been demonstrated
experimentally m—lﬁ], and have been used for measure-
ments of very small transverse displacements of optical
beams [24, |ﬁ], as well as for frequency [26] and veloc-
ity measurements m] Techniques for measuring small
phase shifts have also been proposed ﬂﬂ, @, @]

Here, the weak coupling is realized by means of a
polarization-dependent temporal delay implemented in
a Michelson interferometer configuration (see Fig. 1).
Brunner and Simon HE] showed that the introduction
of a small temporal delay between the two components
(horizontal and vertical) of a circularly-polarized pulse,
can yield a large central frequency shift after recombin-
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FIG. 1. Schematic of the experimental setup. State pre-

selection: The polarization of the input optical pulse is se-
lected by using A\/2 and \/4 wave-plates (not shown). Weak
coupling: A Michelson-Morley interferometer, composed of
a Polarizing Beam Splitter (PBS), two A/4 wave-plates and
two mirrors, divides the input pulse into two pulses, with
equal power and with orthogonal polarizations, that travel
through different paths of the interferometer. A movable mir-
ror mounted on a translation stage in one of the paths allows
changing the temporal delay. State post-selection: The two
pulses recombine in the PBS, and they are projected into a
particular state of polarization with a electrically-controlled
liquid crystal variable retarder (LCVR) and a polarizer. The
output beam is finally focused in a single mode fiber (SM) and
its spectrum is measured with an Optical Spectrum Analyzer

(OSA).

ing the pulses and projecting them into a polarization
state nearly orthogonal to the input state. However, the
near orthogonality of the input and output polarization
states introduces heavy losses. Nevertheless, the weak
value amplification can also be used when the input and
output polarization states have a relatively large over-
lap, hence away from the usual weak value amplification
regime @], allowing for the observation of significant
frequency shifts without heavy losses, as we will demon-
strate here.

Recently, it has been demonstrated that high preci-
sion phase estimation based on weak measurements can
be achieved even using commercial light-emitting diodes
[29]. Indeed, Li et al. [2§] showed that the scheme
proposed by Brunner and Simon also works with large-
bandwidth incoherent light. On the one hand, the use of
white light allows to obtain in a straightforward manner a
light source with an enormous bandwidth, which allows
to measure very small phase differences. On the other

hand, many applications make use of high-repetition fem-
tosecond sources that allows to perform multiple mea-
surements in millisecond or microsecond time intervals
E], allowing the measurement of time-varying phase dif-
ferences in this time scale. This is the scenario that we
consider here.

We make use of a femtosecond fiber laser (Cal-
mar Laser - Mendocino) centered at 1549 nm (tempo-
ral width: 320fs; average power: 3 mW; repetition rate:
20 MHz). The spectral density measured shows charac-
teristic high-frequency small wrinkles due to cavity ef-
fects in the laser system. The spectral density is S;,, (v) =
1/2 eoc|Ein (v)|?, where Ej, (v) is the electric field, v des-
ignates the frequency, € is the vacuum permittivity and
c is the velocity of light. The input optical pulse is pre-
selected to be left-handed circularly polarized, with po-
larization vector e;, = (x —iy)/v/2. A polarizing beam
splitter (PBS) divides the input pulse into two orthogo-
nally linearly polarized components with horizontal (x)
and vertical (y) polarizations, which propagate along the
two arms of a Michelson interferometer. By changing the
length of each arm, d; and ds, we introduce different time
delays Th = 2dy/c and Ty = 2ds/c for each polarization
component. The two delayed pulses recombine at the
same PBS. Finally, in the post-selection stage, the outgo-
ing pulse is projected into a state of polarization given by
the polarization vector e,,; = [x + exp(il')y]/v/2, where
I" determines the final state of polarization of the output
pulse. For I' = —=x/2, the input and output polariza-
tion states coincide, while for ' = 7/2, they are orthogo-
nal. The polarization of the output beam is post-selected
with a Liquid Crystal Variable Retarder (LCVR) (Thor-
labs - LCC1113-C) followed by a polarizer. The relation
between post-selection angle and the LCVR voltage is
non-linear and highly temperature dependent. For this
reason, an additional temperature controller is used. Af-
ter the polarization post-selection, the electric field of the
output signal writes

Em (w)

Eout ((U) = D)

[exp (iwTy) — i exp (iwTy — )], (1)
where w = 27v. Eq. () shows that the post-selection po-
larization state (I') determines for which frequencies the
interference between signals coming from the horizontally
and vertically polarized pulses, delayed by T' = T — T5,
is constructive or destructive.

We measure the output spectral density which is given
by

Sin(l/)
2

Sout (V) = [L4+cos(2mvT —T —x/2)] . (2)
where S, (v) is the laser spectrum. In order to char-
acterize the output spectrum, we measure as a func-

tion of the post-selection angle I', the central frequency
shift Af = [dvv[Seu(v) — Sin(v)] and the insertion
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FIG. 2. Measurement of the central frequency shift induced by weak value amplification. Measured frequency shift (a) and
insertion loss (b) as a function of the post-selection angle I". Dots (with error bars) are experimental results, and the dotted
lines are best theoretical fits using the measured input spectrum in Eq. 2] The best fits are obtained for T' = 53 fs in (a) and (b),
and T'=22fs in (i) and (j). For T'= 53fs: (c), (e) and (g) (measured) and (d), (f) and (h) (theory) shows the spectral density
for some selected cases, as indicated by the corresponding labels in (a) and (b). For T' = 22fs: (k), (m) and (o) (measured)
and (1), (n) and (p) (theory) shows the spectral density for some selected cases, as indicated by the corresponding labels in (i)
and (j). To help the eye, the central frequency of the input pulse (vo = 193.44 THz) is represented by a dashed line in all plots.
The experiment is performed at a temperature of 34.1°C. FError bars in all plots assume that temperature variations during
the experiment are in the range of £1°C, which translates in random changes of the angle of post-selection T'.

loss L = —10log Four/Fin, with Fjy, oue being the in-
put (output) energy Fiy our = ffooo Sin,out(V)dv of the
pulse. The Optical Spectrum Analyzer (Yokogawa -
AQ6370) has a resolution of 0.02nm. FEach spectrum
is obtained after averaging five data sets in the interval
[191.5 THz, 195.5 THz|.

Fig. 2 shows measurements of the spectral changes in
the regime T' < 7, when one makes use of the idea of
weak value amplification. It shows the shift of the cen-
tral frequency of the spectrum for two different temporal
delays: T = 53fs and T = 22 fs. Fig. [2a) shows the
measured frequency shift and Fig. 2Ib) plots the mea-
sured insertion loss for 7' = 53fs (similarly Figs. [Bli)
and [2(j) for T = 221fs). The dotted lines are best theo-
retical fits using the measured input spectrum in Eq.
All other plots in Fig. 2l show measured spectral densi-
ties of the output signal for some selected cases, and the
corresponding theoretical predictions when the measured
input spectral density is used in Eq. (2.

Inspection of Fig. [l allows to highlight two working
regimes, corresponding to the presence of high or low

losses. For I' = —37/2 4 27T, there is no central
frequency shift and losses are maximum. The output
spectral density features a double-peak spectral density.
For small angle deviations around this value, central fre-
quency shifts of the spectral density up to hundreds of gi-
gahertz are clearly observable. However, insertion losses
are also the highest in this regime, measuring values over
60 dB. This regime corresponds to the case usually stud-
ied in weak value amplification where the input and out-
put polarization states are nearly orthogonal ] The
applicability of the weak value amplification in this high-
amplification regime is limited to cases where the energy
of the input signal can be increased, since the intensity
of the detected signal is severely decreased ﬂﬂ]

Nevertheless, we demonstrate here that even in the
regime where the input and output polarization states
have a significant overlap—hence featuring smaller in-
sertion losses—weak value amplification remains useful.
Even though the frequency shifts measured in this regime
are generally smaller—reaching only few tens of GHz in-
stead of hundreds of GHz— losses do not exceed a few



@ (b)

100~ 10 70
;
80 e
60f 18 |
10, B 60
40 7 A
20 6

Frequency shift [GHz]
Insertion loss [dB]
Frequency shift [THz]
Insertion loss [dB]

-80.

S = N W &

~ L - -
l9%40 -180 -120 -60 0 6 90 92

. 91.
Post-selection angle [deg] Post-selection angle [deg]

FIG. 3. Feasibility of the measurement of attosecond tempo-
ral delays with femtosecond pulses. Polarization dependent
frequency shift induced by a 7' = 10 time delay of pulses of
duration 7 = 10 fs. (a) Low-loss and (b) High-loss regime.
The solid line (blue) corresponds to the frequency shift and
the dashed (green) line to the insertion losses. Notice the
difference scales in the = and y axis in (a) and (b).

dB. For I' = —7/2 + 27T, there is no shift of the cen-
tral frequency again. The pre- and post-selected polar-
izations are almost equal, hence introducing almost no
losses. The spectral density of the output pulse is almost
equal to the input spectral density. For small angle de-
viations around this value, the temporal delay produce
small shifts of the central frequency, which vary almost
linearly with respect to the post-selection angle. Impor-
tantly, these frequency shifts are accompanied by small
insertion losses.

In general, there is a trade-off between the frequency
shift observable for a specific value of the time delay and
the amount of losses that can be tolerated to keep a good
signal-to-noise ratio. The existence of the low-loss work-
ing regime, somehow not so extensively considered as the
high-loss regime, can thus enhance the applicability of the
weak value amplification idea, as demonstrated here.

The results presented here naturally raise the question
of what are the ultimate limits of the scheme, in terms
of central frequency shifts and losses. Brunner et al. HE]
and Strubi et al. M] have estimated theoretically that
weak value amplification of temporally delayed optical
pulses could allow the measurement of attosecond tempo-
ral delays. Indeed, Xu. et al. @] have demonstrated the
measurement of phase differences as small as Ay ~ 1073,
which corresponds to an optical path delay difference of
d = \/(2m) Ay ~ 130 pm, by using a large bandwidth
LED source. In principle, one can always make use of
white light sources with bandwidths in excess of 100 nm,
as the ones use in Optical Coherence Tomography for
submicron resolution @], to enhance the frequency shift
detected.

Let us consider as example an input optical pulse
with a Gaussian spectrum, i.e., S;,(v) oc exp[—727%(v —
19)?/In 2], where 7 is the pulse temporal width (FWHM).
The central frequency shift Af of the output pulse can

be easily calculated and yields
In2 /T vsin (2mv9T — T — /2
apo (1) s )
m \72) 1+ ~cos (2nT —T —7/2)

where v = exp[—In2 T?/7%]. The frequency shift given
by Eq. (8] is accompanied by insertion losses which write

L= —10log B (1+~cos @moT —T —7/2))| . (4)

Fig. Bl shows the frequency shift expected, as a function
of the post-selection state of polarization, when a 10 as
temporal delay is introduced between two optical pulse
with duration 7 = 10 fs.

Fig. Bla) depicts the low-loss regime, where smaller
frequency shifts can be observed in exchange for much
lower losses. In the case shown, frequency shifts up to
100 GHz, corresponding to 0.8 nm, are generated with
losses below 12 dB. Most spectrometers, as the one used
in our experiments, can reach resolutions of up to 0.02
nm, rendering measurable these frequency shifts. In the
high-loss regime, shown in Fig. Bla), one can observe
greater frequency shifts, as high as ~ 20 THz (~ 160 nm).
Unfortunately, its measurement is also accompanied by
higher losses, over 60 dB.

In conclusion, we have demonstrated a spectral inter-
ference effect between two optical pulses with a tempo-
ral delay much smaller than the pulse duration, inspired
from the concepts of weak measurements and weak value
amplification. In particular, we have demonstrated a
shift of the central frequency of two slightly delayed fem-
tosecond pulses which can be used to reveal the value of
the temporal delay itself. Importantly, the central fre-
quency shifts can be observed even in a regime, not so-
often considered, where insertion losses are small, which
broadens the applicability of the method demonstrated.

Our scheme is implemented by using only linear op-
tics elements and requires spectral measurements, hence
making its implementation practical. The ultimate sen-
sitivity of our scheme can provide observable frequency
shifts for temporal delays of the order of attoseconds us-
ing femtosecond laser sources. Our scheme thus appears
as a promising method for measuring small and rapidly
varying temporal delays.
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