66

13211 — Automated Reasoning on Conceptual Schemas

4 Working Groups

4.1 On the Practical Applicability of Current Techniques for Reasoning
on the Structural Schema

FErnest Teniente

License @ Creative Commons BY 3.0 Unported license
© Ernest Teniente

There has been plenty of promising results for providing automated reasoning on the structural
part of the conceptual schema and several prototype tools have been developed with this
purpose. However, most of these results have remained at the academical level and the
industry is not aware of them or it does not consider them relevant enough since it is not
using them in software development. With the aim of reducing the gap between academy
and industry, the discussion of the participants in this group was aimed at providing an
answer to the following questions:

1. What do we need to convince the industry that this technology is useful?
Can we come up with a common vocabulary for the various research disciplines that work
on this topic?

3. Can we come up with a research agenda of the problems we have to solve?

The first part of the discussion was devoted to identify the most relevant topics that
should be addressed to be able to provide an answer to those questions. In particular, there
was an agreement on five different topics: identifying the relevant properties, coming up with
a common agreement on the formalization (i.e. definition) of the properties, the need for
explanations, the need for benchmarks, and showing the scalability of the tools developed so
far. The second part of the discussion went into digging down for each topic and trying to
identify the most relevant issues that should require a proper answer to make the results in
this area applicable in practice.

The outcome of the discussions for each topic is summarized in the following:

Properties

Two different kinds of properties were identified: those related to reasoning only at the
schema level and properties involving both the schema and the data. The first kind of
properties are aimed at detecting whether the schema being defined is correct. So, whenever
one such property is not satisfied by the schema, or its results do not correspond to the
ones expected by the designer, it means that the schema is not properly defined and it must
be necessarily changed. The second kind of properties, i.e. those involving data, should
be understood more as services provided by the system at run-time rather than properties
denoting that the schema is ill-specified at design-time. In general, all the properties arising
from the discussions are well-known problems in the area. The most relevant properties for
each group are the following:

1. Properties related only to the schema
Schema satisfiability. There was an agreement that the empty state should not be
accepted as a solution. It was also clear the need to distinguish between finite and
infinite satisfiability.
Class and association satisfiability



Diego Calvanese, Sven Hartmann, and Ernest Teniente

Constraints and class redundancy, in the sense that they are entailed by the rest of
the schema.

User-defined property verification, aimed at allowing the designer to determine whether
the state satisfies the requirements of the domain. One possible way to achieve it is by
showing the satisfiability of a partially specified state envisaged by the designer.

2. Services involving data
Model checking, i.e. whether a set of instances satisfies a set of constraints (aka integrity
checking). This should be combined with techniques to “restore” consistency when the
constraints are violated (or to handle with the “inconsistent” data). It is also worth
noting that the database view of data should be taken for this purpose, i.e. closed
world assumption: the data is a model of the constraints
Satisfiability checking over the data. A special effort should be devoted to deal with
incomplete databases (e.g. nulls or disjunctive values). Model generation (aka integrity
maintenance) is a must. In this case, the open world assumption is needed in the sense
that you can invent new things.
Query processing
View updating
Materialized view maintenance
Impact analysis of an update
Test-data generation

Definition of the properties

There was an agreement that one of the difficulties with convincing the industry about the
usefulness of these properties relies on the lack of agreement in the literature about the
precise definition of most of such properties. Therefore, one of the first things the community
should do is to agree with their formal definition. There was not enough time for doing this
during the break out sessions but the working group identified some issues to be taken into
account:

There is a need to clarify whether finite or infinite interpretations are considered

There is a need to clarify whether the definition uses the database view or the “open-world”

view

There is also a need to clarify which is the semantics used

Explanations

Having tools to show that all of this works was considered to be the most important general
concern for showing that the previous properties can be useful in practice. In addition to
being able to check these properties, these tools should also explain the results of performing
automated reasoning on the conceptual schema. Specifically, it would be interesting to know
what kind of explanations would the industry like to have, what is an explanation and in
which language should they be shown to the designer. Moreover, explanations should abstract
away from whatever logic is used underneath and they should be given regarding to the
model the user is referred to. Facilities for what-if scenarios could also be interesting for the
industry. The working group identified also some possible kinds of explanations, making a
distinction when the property under validation is satisfied or it is not.
The property is satisfied
Instance or snapshot or witness (generated example)

67

13211



68

13211 — Automated Reasoning on Conceptual Schemas

An abstraction of the proof (wrt the terminology of the model)
The property is not satisfied
Providing the (minimal) set(s) of constraints that give raise to the violation
An abstraction of the proof (wrt the terminology of the model)
Causal reasoning, i.e. suggestions about how to repair the violation

Benchmarks

Benchmarks are very important for industry. However, little attention has been paid to them
in the area. In fact, there is not yet an agreement on what a benchmark for automated
reasoning on conceptual schemas should be. The working group considered that such
benchmarks should at least include a motivation underlying the benchmark (i.e., why is this
benchmark for); the schema (and the data, if necessary) under consideration; the properties
to be checked by the benchmark and their expected output. The definition language of
the benchmark (EER, UML/OCL, ORM, etc.) and the semantics used in the benchmark
should also be clearly stated. Additionaly, some questions and ideas arised as a result of the
discussions:
How many benchmarks do we need?
It depends on the purpose of the benchmark. Scalability vs language expressivity, for
instance.
Could we come up with a repository of benchmarks?
Benchmarks for education seem interesting
Establishing fair benchmarks
Separation of concerns and avoiding conflict of interests are important issues
Having a contest for this community could be interesting
Evaluation criteria are also needed

Scalability

There was a clear agreement that scalability has to be necessarily addressed to convince the
industry. Moreover, there seemed to be a common understanding that it would probably be
already covered if properties and benchmarks were correctly defined. Other aspects arising
from the short discussion we had on this topic were:

Large data sets vs large complex schemata

Scalability is not only performance

Visualizing large-schemas properly

Conclusions

The working group agreed that there is still a lot of things to do for convincing the industry
about the practical applicability of current techniques for reasoning on the structural schema.
Most of these things have been summarized along this section. However, the promising
results achieved so far and the existence of several prototype tools that can be applied in
practice allow us to be optimistic about the achievement of this ambitious goal. Having
practical tools to show that all of this works was agreed to be a necessary condition for this
purpose.



Diego Calvanese, Sven Hartmann, and Ernest Teniente

Participants:
Achim D. Brucker (SAP Re-
search — Karlsruhe, DE)

Alessandro Artale (Free Uni-
versity of Bozen-Bolzano, IT)

Alessandro Mosca (Free Uni-
versity of Bozen-Bolzano, IT)

Bernhard Thalheim (Uni-
versitit Kiel, DE)

Carolina Dania (IMDEA Soft-
ware Institute, ES)

David W. Embley (Brigham
Young University, US)

Ernest Teniente (UPC — Bar-
celona, ES)

Ingo Feinerer (TU Wien, AT)

Mirco Kuhlmann (Universitét
Bremen, DE)

Parke Godfrey (York Univer-
sity — Toronto, CA)

Sophie Dupuy-Chessa (LIG —
Grenoble, FR)

Xavier Blanc (University of
Bordeaux, FR)

4.2 Reasoning about the Conceptual Schema Components Capturing
Dynamic Aspects

Diego Calvanese

License @@ Creative Commons BY 3.0 Unported license
© Diego Clavanese

The discussion in the working group started from the observation that the topic to be
addressed is quite challenging for a variety of reasons. Indeed, there is a consensus about the
key aspects that are of importance and need to be considered when modeling the structural
aspects of a system and when reasoning over such a conceptualization. Instead, there was a
consensus that when it comes to modeling and reasoning over the dynamic aspects of an
information system, and hence its evolution over time, the situation is much less clear and
not at all consolidated, both with respect to the properties to be modeled, and with respect
to the formalisms to be adopted.

After a round in which each participant briefly introduced what it considered important
aspects to be tackled in the discussion, the working group set up an ambitious agenda
comprising the following list of points and questions that it intended to address, ordered by
importance:

1. Which dynamic and/or temporal properties should be modeled? How should the structural
and dynamic components be combined?

2. Which modeling formalisms, possibly based on logic, should be adopted for capturing
the dynamic together with the static aspects of a system? In addition to the expressive
power of the formalism, also the aspects related to the computational complexity and
hence efficiency of reasoning should be taken into account, and hence discussed. Possibly,
tractable fragments should be identified.

3. Identify specific problems, use cases, and scenarios related to dynamic aspects that come
from industrial requirements (e.g., security).

4. Identify important design-time tasks where reasoning about dynamic aspects is of im-
portance (e.g., exploratory design, analysis, planning, synthesis, verification).

5. Identify important run-time tasks where reasoning about dynamic aspects is of importance
(e.g., analysis, validation, monitoring, mining).

6. Discuss the different levels of abstraction of models and their implementation.

When the group set out to discuss Item 1 of the above list, it became immediately clear
that there was a very tight connection between the dynamic/temporal properties and the
formalism to adopt for modeling them, so that Items 1 and 2 were actually discussed together.
In fact, getting a clarification on these two points was considered almost a prerequisite for

69

13211



