
Developments in kernel design

Llúıs A. Belanche ∗

Computer Science School - Dept. of Software
Technical University of Catalonia

Jordi Girona, 1-3 08034, Barcelona, SPAIN

Abstract. The aim of this paper is to give a concise overview of kernels,
with a special attention to non-standard or heterogeneous data sources
(e.g. non-numerical or structured data). A second goal is to discuss the
world of possibilities that kernel design opens for the principled analysis
of special or new application domains. The reader is referred to some of
the excellent survey publications –as [1, 2, 3]– for an in-depth coverage.

1 Introduction

The kernel function allows learning methods to represent and make use of sim-
ilarities (rather than explicit vector representations) of objects. Kernel-based
methods are a two-blade sword in the sense that the choice of a proper kernel
for a given problem is both an open issue and an opportunity to develop better
performing solutions by adapting the kernel to the problem. Kernel methods
involve the use of positive definite matrices as suitable object descriptors, pro-
viding a solid framework in which to represent many types of data, as vectors in
R

d, strings, trees, graphs, and functional data, among others [4, 2]. The kernel
function is a very flexible container under which to express knowledge about the
problem as well as to capture the meaningful relations in input space. Let k be a
kernel defined on the space of objects and consider a dataset D = {x1, . . . ,xN}.
All the information contained in D is represented as a symmetric positive semi-
definite kernel matrix KN×N = (kij), where kij = k(xi,xj).

2 Preliminaries

A kernel function implicitly defines a map φ : X → H from an input space of
objects X into some Hilbert space H (called the feature space). The “kernel
trick” consists in performing the mapping and the inner product simultaneously
by defining its associated kernel function:

k(x,x′) = 〈φ(x), φ(x′)〉H , x,x′ ∈ X , (1)

where 〈·, ·〉H denotes inner product in H. This way it is possible to perform
computations (like distances or inner products) in H without using (or even
knowing) the mapping function explicitly. Probably the simplest characteriza-
tion for a symmetric function k : X ×X → R being a kernel is via the matrix it
generates on finite subsets:

∗Financial support from the Spanish CICYT project TIN2012-31377 is greatly appreciated.

369

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Definition 1 (Positive semi-definite function) A symmetric function k is
positive semi-definite in X if for every N ∈ N, and every choice x1, · · · , xN ∈ X ,
the matrix KN×N = (kij), where kij = k(xi,xj), is positive semi-definite (PSD).

Theorem 2 (Characterization of kernels) A symmetric function k : X ×
X → R admits the existence of a map φ : X → H such that H is a Hilbert space
and k(x,x′) = 〈φ(x), φ(x′)〉H if and only if k is a PSD symmetric function.

There are many equivalent characterizations of the PSD property for real
symmetric matrices. Here are some:

Theorem 3 (Positive semi-definite matrix) A real symmetric matrix AN×N

is PSD if and only if all of its eigenvalues are non-negative; equivalently, if
and only if all of its leading principal minors are non-negative; equivalently, if
and only if there is a PSD matrix B such that BBT = A (this matrix B is
unique and called the square root of A); equivalently, if and only if for every
c ∈ R

N , cTA c ≥ 0.

The following is a basic example to understand the connection between PSD
matrices, inner products and kernels.

Theorem 4 (General linear kernel) If Ad×d is a PSD matrix, then the func-
tion k : Rd × R

d → R given by k(x,x′) = xTAx′ is a kernel.

Proof. Since A is PSD we can write it in the form A = BBT . For every
N ∈ N, and every choice x1, · · · ,xN ∈ R

d, we form the matrix K = (kij), where
kij = k(xi,xj) = xT

i Axj . Then for every c ∈ R
d:

d∑
i=1

d∑
j=1

cicjkij =
d∑

i=1

d∑
j=1

cicjx
T
i Axj =

d∑
i=1

d∑
j=1

cicj(B
Txi)

T (BTxj)

=

∥∥∥∥∥
d∑

i=1

ci(B
Txi)

∥∥∥∥∥
2

≥ 0. Note that φ(z) = BTz.

2.1 Support Vector Machines and other kernel methods

Consider a data set D = {x1, . . . ,xN} with labels yi ∈ {−1,+1}. The function
fSVM computed by a classification Support Vector Machine (SVM) is:

fSVM(x) = sgn

(
N∑
i=1

αiyik(x,xi) + b

)
, x ∈ X (2)

with αi ≥ 0. Those xi ∈ D for which αi > 0 are called the support vectors
of fSVM. The role of the kernel k is to make D “sufficiently” linearly separable
in the feature space, regardless of the separability in the original input space X .

370

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

SVMs for classification and regression are not the only possible methods mak-
ing use of the kernel trick. Over the years, many other kernel-based methods
have gained prominence, both for supervised tasks (such as classification and
regression) and unsupervised tasks (such as novelty detection, clustering, and
feature extraction). These include the Relevance Vector Machine [5], Gaussian
processes [6], Spectral clustering [7], Kernel Linear Discriminant Analysis [8],
Kernel Principal Components Analysis [9], Kernel Canonical Correlation Anal-
ysis [10], Kernel Independent Component Analysis [11], and many others.

3 Specific kernels

3.1 Kernels on real vectors

Definition 5 (Polynomial kernel) For a pair of vectors x,x′ ∈ R
d:

kpoly(x,x′) = (a 〈x,x′〉+ 1)m, m ∈ N, a > 0 (3)

Definition 6 (RBF kernel) For a pair of vectors x,x′ ∈ R
d:

kRBF(x,x′) = exp

(
−

d∑
i=1

γi(xi − x′
i)

β

)
, γi > 0, β ∈ (0, 2] (4)

Definition 7 (Hyperbolic tangent kernel) For a pair of vectors x,x′ ∈ R
d:

ktanh(x,x′) = tanh(a 〈x,x′〉+ b) , a > 0, b < 0 (5)

Definition 8 (Triangular kernel) For a pair of vectors x,x′ ∈ R
d:

ktrian(x,x′) =

{
1− ||x−x′||

a if ||x− x′|| ≤ a

0 otherwise
, a > 0 (6)

Definition 9 (ANOVA radial basis kernel) For a pair of vectors x,x′ ∈
R

d:

kANOVA(x,x′) =

(
d∑

i=1

exp
{−γi(xi − x′

i)
2
})m

, γi > 0,m ∈ N (7)

Definition 10 (Rational quadratic kernel) For a pair of vectors x,x′ ∈
R

d:

kquad(x,x′) = 1− ||x− x′||2
||x− x′||2 + a

, a > 0 (8)

Definition 11 (Canberra kernel) For a pair of positive vectors x,x′ ∈ R
d:

kCan(x,x′) = 1− 1

d

d∑
i=1

γi
|xi − x′

i|
xi + x′

i

, γi ∈ (0, 1] (9)

371

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Definition 12 (Truncated Euclidean kernel) For a pair of vectors x,x′ ∈
R

d:

ktrun(x,x′) =
1

d

d∑
i=1

max

{
0, 1− |xi − x′

i|
γi

}
, γi > 0 (10)

The kernels (6), (9) and (10) are useful in that they could fit some appli-
cations better than the normal Euclidean distance and derived kernels (like the
RBF kernel). Computational considerations should not be overlooked: the use of
the exponential function considerably increases the cost of evaluating the kernel.
Hence, kernels not involving this function are specially welcome. In particular,
(6) and (10) can be useful when differences greater than a specified thresh-
old have to be ignored. In similarity terms, they model situations where data
examples can become more and more similar until they are suddenly indistin-
guishable. Being compactly supported, they lead to more sparse matrices than
those obtainable with other metrics. The kernel in (9) is self-normalised and
is multiplicative rather than additive, being specially sensitive to small changes
near zero [12]. In the last decade, new promising families of new kernels have
been proposed –e.g. those based on Wavelets [13] or Chebyshev polynomials [14].

We say that a kernel k : Rd × R
d → R is translation invariant (also called

stationary) if it has the form k(x,x′) = T (x − x′), where T : Rd → R is a
differentiable function. A kernel is radial (also called isotropic) if it has the
form k(x,x′) = t(‖x − x′‖), where t : [0,∞) → [0,∞) is a differentiable
function. Radial kernels fulfill k(x,x) = t(0). As an example, the choices
t(z) = exp(−γzβ), γ > 0 result in the radial kernels (4), known as the Gaus-
sian RBF kernel (β = 2) and the Exponential RBF kernel (β = 1)1. Many of
these classes of kernels are discussed at length in [15]. An important difference
between the Gaussian RBF and triangular kernels is that latter has a compact
support, which has the effect of introducing sparsity in the kernel matrix, allow-
ing the kernel computation to benefit from sparse matrix algorithms. Note that
all these are actually kernel families that depend on one or more parameters.
These parameters should be optimized as part of the training of the learner.

3.2 Set kernels

Consider a feature space with one feature for every subset A ⊆ {1, · · · , n} of
the input features. For x ∈ R

d, the feature A is given by φA(x) =
∏
i∈A

xi. The

all-subsets kernel is defined by the mapping φ : x → (φA(x))A⊆{1,··· ,n} and then

k(x,x′) = 〈φ(x), φ(x′)〉 =
∑

A⊆{1,··· ,n}
φA(x)φA(x

′) =
∑

A⊆{1,··· ,n}

∏
i∈A

xix
′
i =

n∏
i=1

(1+xix
′
i)

1The Gaussian is so popular that people simply call it the RBF kernel par excellence!

372

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

We have the freedom to downplay some features (and thus emphasize others)
by introducing weighting factors wi ≥ 0 for each feature i:

φA(x) =
∏
i∈A

√
wixi and kw(x,x′) =

∏
i∈A

√
wixi

√
wix

′
i =

n∏
i=1

(1+wixix
′
i).

3.3 Graph kernels

These are kernels based on the representation of objects as labeled graphs G =
(V, E), given by a set of vertices V and a set of edges E ⊂ V ×V connecting pairs
of vertices. The graph has a “start” vertex s and a “finish” vertex f . The idea
is to see every edge e ∈ E as indexing a kernel ke(x,x

′).
Let Psf be the set of (directed) paths from s to f and denote by p =

(e1, · · · , elp) one of such paths, of length lp. Then,

kG(x,x
′) =

∑
p∈Psf

lp−1∏
i=1

k(ei,ei+1)(x,x
′)

It is important to assume that no vertex has an edge to itself. If the graph
has no cycles, all sums are finite. If it has, some sums are infinite: we may
need an additional term to ensure convergence of the series. The kernels can
be extended according to labeling functions Λ1 : V → Σ and Λ2 : E → Σ, that
assign labels to edges and/or vertices from a prescribed alphabet Σ [4].

3.4 Generative Kernels

These kernels are adequate when a statistical model for the data is available. A
simple example is the kernel based on the Jensen-Shannon divergence:

kH(P, P ′) = exp

(
−γ

{
H

(P + P ′

2

)
+

1

2
(H(P) +H(P ′))

})
, γ > 0

where P,P ′ are two probability distributions with support in X and H is
Shannon’s entropy [16]. A wide family is formed by kernels generated from la-
tent variable models, like mixtures of Gaussians or more generally mixtures of
distributions of the exponential family. The generalization to graphical mod-
els, such as Hidden Markov Models (HMMs) has also been developed [17]. In
these models there is a distinction between the variables, such that some are
observed while others are hidden. A joint kernel is first created for the complete
data (X ,Z), comprising both observed (X) and hidden (Z) variables; then a
marginalized kernel for the visible variables is obtained by taking the expecta-
tion with respect to the hidden ones (i.e., by marginalizing them away) [18]:

k(x,x′) =
∑
h∈Z

∑
h′∈Z

p(h|x)k̃(x,x′)p(h′|x′) (11)

373

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

where k̃ is a kernel on the product space X ×Z. When the prior distributions
p(x) are represented by HMMs, the posteriors p(h|x) can be computed by the
forward-backward algorithm [19]. Fisher kernels derived from latent variable
models [20] can be cast as special cases of marginalized kernels of the form (11).

3.5 Convolution Kernels

Convolution kernels [21] define a kernel between composite objects by building
on kernels defined on their respective parts. Given two such objects x,x′ and a
way R(x) to obtain all possible decompositions into P parts x̂1, . . . , x̂P (this set
has to be finite), their R-convolution is a kernel:

kR(x,x
′) =

∑
x̂∈R(x)

∑
x̂′∈R(x′)

P∏
p=1

kp(x̂p, x̂
′
p)

3.6 Kernels as similarity measures

In addition to the formal perspective, a kernel can be conceptually regarded as
a similarity measure [3] between two data objects, although many kernels do
not fulfill the classical properties for a similarity (e.g. boundedness)2. However,
it seems natural to base kernel design on similarity functions, for example on
distance-based similarities. Moreover, in many important domains, objects are
described by a mixture of variable types. The work of Gower in general similarity
measures [22] shows some partial coefficients of similarity for variables of the
binary, categorical or real types, that are shown to produce PSD (similarity)
matrices; these functions can therefore be seen as valid kernels.

For any two vector objects xi,xj to be compared on the basis of feature k, a
score sijk is defined, described below. First set δijk = 0 when the comparison of
xi,xj cannot be performed on the basis of feature k for some reason; for example,
by the presence of missing values, by the feature semantics, etc; δijk = 1 when
such comparison is meaningful. If δijk = 0 for all the features, then s(xi,xj) is
undefined. The partial scores sijk are defined as follows:

Binary (dichotomous) variables indicate the presence/absence of a trait,
marked by the symbols + and −. Their similarities are given in Table 1 (left).

Values of feature k
Object xi + + − −
Object xj + − + −

sijk 1 0 0 0
δijk 1 1 1 0

Feature no. #1 #2 #3 #4
Object xi 1.0 2.0 3.0 1.0
Object xj 1.0 3.0 3.0 ?
Object xl 1.0 3.0 3.0 5.0

Table 1: Left: Similarities for dichotomous variables. Right: Example data. The
symbol ? denotes a missing value.

2In a very general sense, a similarity function s is some function that at least satisfies the
Similarity Principle: s(x, x) > s(x, y) ≥ 0 for all x �= y.

374

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Categorical variables can take a number of discrete values, which are com-
monly known asmodalities. For these variables no order relation can be assumed.
Their overlap is sijk = 1 if xik = xjk and sijk = 0 if xik
= xjk.

Real-valued variables are compared with the standard metric in R: sijk =
1−|xik−xjk|/Rk, where Rk is the range of feature k (the difference between the
maximum and minimum values). The overall coefficient of similarity is defined
as the average score over all partial comparisons:

sij = s(xi,xj) =

∑n
k=1 sijkδijk∑n

k=1 δijk

Gower proves that, if there are no missing values, the similarity matrix S =
(sij) is PSD. This property may be lost when there are missing values: consider
three objects in [1, 5] ⊂ R

4, that is, Rk = 4 as in Table 1 (right). Then we have

S =

⎛
⎝ 1 11

12
11
16

11
12 1 1
11
16 1 1

⎞
⎠ , det(S) = − 121

2304
< 0

and therefore S is not PSD. However, if we replace ? by any value in [1, 5],
then the matrix S is certainly PSD.

3.7 Kernels as dissimilarity measures

Application of eq. (1) allows to (implicitly) compute distances in feature space:

||φ(x)− φ(x′)||H =
√

〈φ(x), φ(x)〉H + 〈φ(x′), φ(x′)〉H − 2 〈φ(x), φ(x′)〉H
and then dH(x,x′) =

√
k(x,x) + k(x′,x′)− 2k(x,x′) is Euclidean. How-

ever, given the importance of metric distances (and more generally dissimilarity
measures) in data analysis, the definition of distance-based kernels has been an
active area of research. Among them, Euclidean metrics have an added appeal
linked to our perception of the Euclidean space R

d.

Definition 13 (Euclidean metric) Call D = (dij) a dissimilarity matrix if
dij = 0 and dij = dji. Let d : X × X → R be a metric (distance function); then
d is Euclidean if for any positive N ∈ N and every choice of objects {x1, . . . ,xN}
forming its associated dissimilarity matrix DN×N = (d(xi,xj)), there exists a
configuration of points {z1, . . . ,zN} in R

M , M ≤ N , such that dij = ||zi−zj ||2.
Definition 14 (Conditionally PSD matrix) In the real case, the symmetric
matrix AN×N is called conditionally positive semi-definite (CPSD) if, for all

vectors c ∈ R
N such that

∑N
i=1 ci = 0, the inequality cTAc ≥ 0 holds.

There is a close connection between Euclidean metrics and CPSD kernels.

Theorem 15 A dissimilarity is Euclidean if and only if the matrix K = (kij)
with kij = −d2ij is CPSD [23].

375

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

Many common distance measures are non-Euclidean (e.g. almost all prob-
abilistic distance measures [24]). When a dissimilarity measure of interest is
metric (Euclidean or not), the kernel trick for distances [25] can be applied:

If an algorithm is distance-based (rather than inner-product based), the idea
is to substitute ||xi − xj || by the feature space counterpart ||φ(xi) − φ(xj)||,
and then replace it by

√−k(xi,xj), where k(x,x′) = 〈φ(x), φ(x′)〉H is any
CPSD kernel. Note that necessarily k(x,x) = 0 and k(x,x′)
= 0 for x
= x′.
This process therefore amounts to move from a given metric in input space to
a Euclidean metric in feature space and is conformant to Theorem (15). In
contrast, the kernel trick for inner products involves substituting 〈xi,xj〉 by
the feature space counterpart 〈φ(xi), φ(xj)〉H, and then replace it by k(xi,xj),
where k is any PSD kernel. Since the class of CPSD kernels is larger than that
of PSD kernels, a larger set of learning algorithms are prone to kernelization.

4 Construction of kernels

Let κ, κ′ be kernels defined on X . Given x,x′ ∈ X and a1, a2 ≥ 0, the func-
tion given by κ+(x,x

′) = a1κ(x,x
′) + a2κ

′(x,x′) is a kernel. More gener-
ally, when κ, κ′ are kernels defined on X ,Z, respectively, the function given by
κ⊕((x, z), (x′, z′)) = κ(x,x′) + κ′(z, z′) is called a direct sum kernel on X ×Z.
In both cases, the operation corresponds to the sum of the corresponding kernel
matrices. In addition, the kernel given by κ×(x,x′) = κ(x,x′)κ′(x,x′), is called
a pointwise product (or product) kernel. Analogously, when κ, κ′ are kernels
defined on X ,Z, the function given by κ⊗((x, z), (x′, z′)) = κ(x,x′)κ′(z, z′) is
a tensor product kernel on X × Z. In these cases, the operation corresponds to
the element-wise product of the corresponding kernel matrices.

The fact that the closure properties of kernels include both sums and products
allows to design more powerful kernels, for example through polynomial combi-
nations with positive coefficients. Indeed, if k is a kernel and p is a polynomial
of degree m with positive coefficients, then the function kp(x,x

′) = p(k(x,x′))
is also a kernel. The special case where k is linear and p(z) = (az + 1)m leads
to the kernel in (3). As a more developed example, consider the kernel family:

ki(x,x
′) = {αi(〈x,x′〉+ ai)

βi , βi ∈ N, αi > 0, ai ≥ 0}
For any positive q ∈ N,

∑q
i=0 ki(x,x

′) is a kernel. Consider the particular

case ai = 0, βi = i and αi =
αi

i! , for some real α > 0, and take the limit q → ∞.
The obtained series is convergent for all α and the resulting kernel is:

∞∑
i=0

αi

i!
(〈x,x′〉)i = eα〈x,x′〉

What is the feature map here? For simplicity, assume that x, x′ ∈ R; then

exp(αxx′) = 〈φ(x), φ(x′)〉 with φ(z) =

(√
αi

i! z
i

)∞

i=0

, and therefore we have

designed a feature space of infinite dimension.

376

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

We might wonder how general is this result: if k is a kernel, under what
condition is f(k(x,x′)) a kernel? The following result gives a sufficient condition:

Theorem 16 Let A = (aij) be a PSD matrix. If f is an analytic function with
positive radius of convergence R > |aij | and all the coefficients in its power series
expansion are non-negative, then the matrix f(A) := (f(aij)) is PSD [26].

A last important operation is normalization. If k is a kernel, then so is:

kn(x,x
′) =

k(x,x′)√
k(x,x)

√
k(x′,x′)

. Moreover, |kn(x,x′)| ≤ 1 and kn(x,x) = 1.

5 Discussion and conclusions

Using kernel-based methods requires users to make two choices. First, choos-
ing how to represent the objects (this is inherent to most statistical pattern
recognition methods) and second, selecting adequate kernels acting on these
representations. These kernels should capture meaningful similarities between
objects, in that similar objects should tend to belong to the same class (or have
a similar target value, in the regression case). Note that the opposite is not
true: sharing the same class or having a similar numerical target value should
not necessarily imply a high similarity.

We would like to close this brief excursion into kernels with two general
considerations and two suggestions for future research. The first consideration
deals with the importance of designing kernels that do not constitute explicit
inner products between objects, and therefore fully exploit the kernel trick. The
second is the possibility of learning the kernel function (or the kernel matrix)
from the training data. The first suggestion is the need for more research in the
design of kernels for special situations –like missing values [27], imprecise values
(“lower than”, “approximately”) or not-applicable (NA) values. The second
suggestion deals with theoretical analyses on the implications of the kernel choice
for the success of kernel-based methods.

References

[1] T. Hofmann, B. Schölkopf and A. J. Smola. Kernel methods in machine learning. The
Annals of Statistics, 36(3):1171-1220, 2008.

[2] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[3] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.

[4] T. Gärtner. A survey of kernels for structured data. ACM SIGKDD Explorations Newslet-
ter, 5(1): 49-58, 2003.

[5] M.E. Tipping. Bayesian Learning and the Relevance Vector Machine. Journal of Machine
Learning Research, 1:211-244, 2001.

[6] C. Williams and C. Rasmussen. Gaussian Processes for Regression. Advances in Neural
Information Processing, 8, 1995.

377

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

[7] A. Ng, M. Jordan and Y. Weiss. On Spectral Clustering: Analysis and an Algorithm.
Neural Information Processing Symposium, 2001.

[8] G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach.
Neural computation, 12(10): 2385-2404, 2000.

[9] B. Schölkopf, A. Smola and K. Müller. Nonlinear Component Analysis as a Kernel Eigen-
value Problem. Neural Computation, 10:1299-1319, 1998.

[10] P. Lai and C. Fyfe. Kernel and nonlinear canonical correlation analysis. Intl. Journal of
Neural Systems, 10(5): 365-377, 2000.

[11] F. Bach and M. Jordan. Kernel independent component analysis. Journal of Machine
Learning Research, 3: 1-48, 2002.

[12] Ll. Belanche, J.L. Vázquez and M. Vázquez. Distance-Based Kernels for Real-Valued
Data. Studies in Classification, Data Analysis & Knowledge Organization, Springer, 2007.

[13] L. Zhang, W. Zhou and L. Jiao. Wavelet support vector machine. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 34(1): 34-39, 2004.

[14] S. Ozer, C. Chen and H. Cirpan. A Set of New Chebyshev Kernel Functions for Support
Vector Machine Pattern Classification. Pattern Recognition, 44 (7), 1435-1447, 2011.

[15] M. G. Genton. Classes of kernels for machine learning: a statistics perspective. Journal
of Machine Learning Research, 2: 299-312, 2002.

[16] M. Cuturi, K. Fukumizu, and J.P. Vert. Semigroup kernels on measures. Journal of Ma-
chine Learning Research, 6: 1169-1198, 2005.

[17] T. Jebara, R. Kondor, and A. Howard. Probability Product Kernels. Journal of Machine
Learning Research, 5: 819-844, 2004.

[18] K. Tsuda, T. Kin and K. Asai. Marginalized kernels for biological sequences. Bioinfor-
matics, 18 (Suppl. 1): S268-275, 2002.

[19] R. Durbin, S. Eddy, A. Krogh and G. Mitchison. Biological sequence analysis: Probabilis-
tic models of proteins and nucleic acids. Cambridge University Press, 1998.

[20] T.S. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers.
Advances in Neural Information Processing Systems, 487-493, 1999.

[21] D. Haussler. Convolution kernels on discrete structures. TechRep UCSC-CRL-99-10, 1999.

[22] J.C. Gower. A general coefficient of similarity and some of its properties. Biometrics 27:
857-874, 1971.

[23] J.C. Gower and P. Legendre. Metric and Euclidean Properties of Dissimilarity Coefficients.
Journal of Classification, 3:5-48, 1986.

[24] R. Duin and E. Pȩkalska. Non-Euclidean Dissimilarities: Causes and Informativeness.
E.R. Hancock et al. (Eds.): SSPR & SPR 2010, LNCS 6218, pp. 324-333, 2010.

[25] B. Schölkopf. The kernel trick for distances. Neural Information Processing Systems
(NIPS), pp. 301-07, 2000.

[26] R. Horn and C. Johnson. Topics in Matrix Analysis, Cambridge University Press, 1991.

[27] G. Nebot and Ll. Belanche. A kernel extension to handle missing data. In Bramer, Ellis,
Petridis (Eds.) Research and Development in Intelligent Systems XXVI, 2010.

378

ESANN 2013 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2013, i6doc.com publ., ISBN 978-2-87419-081-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100131010.

