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Abstract

In this work we investigate end-of-life trajectories for
spacecraft in orbit about the Sun-Earth L; and L,
libration points. A plan for decommission is often re-
quired during the mission design process. We study
the spacecraft’s natural dynamics in both a high-
fidelity model and the circular restricted three-body
problem. In particular, we consider the role of the
unstable manifold and forbidden regions in determin-
ing disposal outcomes. A simple maneuver scheme
to prevent returns to the Earth vicinity is also an-
alyzed. We include discussion on potential collision
orbit schemes.

1 Introduction

An end-of-life plan is a fundamental aspect of current
and future space missions. This is a well-recognized
requirement for Earth-orbiting satellites given the
need to prevent the accumulation of space debris in
these important orbital zones [1]. Libration point or-
bits are also important regions of interest for current
and future missions. The most commonly used libra-
tion points, the Sun-Earth L; and L, points, have an
unstable dynamical component, causing spacecraft to
naturally depart this regime. These departure tra-
jectories, however, can have many possible outcomes
including returns to the Earth vicinity. Thus, consid-
eration should be given to the selection of the desired
outcome subject to mission constraints.

The design of libration point trajectories has
evolved over the last several decades. The first space-
craft to orbit a libration point was the International
Sun-Earth Explorer (ISEE-3) launched in 1978. Af-
ter its original mission at an L; halo orbit and ex-
tended mission as a cometary explorer were complete,
it was decommissioned into a heliocentric orbit and is
due for a passage by the Earth in August 2014 [2]. In
1995 the Solar and Heliospheric Observatory (SOHO)
spacecraft, developed by ESA and NASA | became the
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first to use a trajectory designed using dynamical sys-
tems techniques [3]. These techniques, particularly
the use of stable and unstable manifolds, will be lever-
aged in the current study. Example of more recent
missions include ESA’s HERSCHEL and PLANCK
spacecraft launched together in 2009. They were
placed into a halo and Lissajous orbit, respectively,
about the Sun-Earth L, libration point. Their de-
commissioning was done earlier this year, and it was
selected to do the following (update) [4]. Several fu-
ture libration point missions are planned as well [5].
Constraints present during the decommissioning
process are distinguishable from other mission phase
requirements. These constraints play a fundamental
role in the end-of-life analysis and the determination
of feasible trajectories. In the current study, the pri-
mary requirements we consider are the following:

e Protection of the Earth and its satellite orbit
zones. This is where the Earth-orbiting space de-
bris problem connects with libration point mis-
sion design. A spacecraft passing through pro-
tected regimes such as the low-Earth or geosyn-
chronous orbits have strict requirements to miti-
gate the possibility of collisions [1]. Furthermore,
if a spacecraft reenters the Earth’s atmosphere, a
detailed analysis is required to ensure it does so
in a safe manner. For a spacecraft using nuclear
power generation, strict avoidance of the Earth
is necessary.

e Limited fuel remaining aboard the spacecraft.
After a spacecraft completes its primary mission,
a majority of its fuel will be spent. It is expected,
however, that future missions will have some fuel
budgeted specifically for the end-of-life phase. In
our analysis, we assume that about 100 m/s of
Av to be about the maximum available maneuver
capability with potentially less being possible.

e Restricted time window for final maneuvers. Due
to mission operating costs, it is desirable for
decommissioning to be completed in the least
amount of time possible. Ideally, all maneu-
vers would be completed within 3 to 6 months,
though this may not always be feasible. We con-
sider a decommission period of about 1 year to



be about the maximum practical time available.

e Minimal end-of-life complexity. If very careful
planning and maneuvering is necessary for a dis-
posal scheme, the associated costs and risks may
malke it less desirable than a simpler, though per-
haps nominally less appealing, option. A robust
scheme is preferred to minimize the chance of
complications and to maximize the chance of suc-
cessful disposal.

Individual mission needs will introduce additional
constraints to the design process. The aim of this
paper, however, is to give an initial analysis of the
dynamics and some general disposal options available
including associated costs. This work could be viewed
as a starting point for a particular mission’s end-of-
life study.

1.1 Modeling

Since the libration points are features associated with
the circular restricted three-body problem (CR3BP),
this will be the principal model for the current study.
The CR3BP considers the motion of two massive pri-
mary bodies (i.e., the Sun and the Earth) that are
assumed to move in a circular orbit about their cen-
ter of mass. Let a third body (i.e., the spacecraft)
be positioned at r = (x,y,z) in a barycentric rotating
frame defined such that the primary bodies are fixed
along the x-axis. The third body’s six-dimensional
state (r,v) is governed by the non-dimensionalized
equation of motion
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which includes a force potential-like function
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The parameter u € [0,0.5] relates the primaries’
masses, r| and rp are the distances of the third body
to each primary (the larger and smaller primaries are
located at x = —p and x =1 — u, respectively), and 2
is a unit vector along the z-axis, the direction of the
system’s angular momentum. For the Sun—Earth sys-
tem, we use mass parameter { = 3.0404234 x 1076.1
The CR3BP’s five equilibrium points are the L;—Ls
libration points. The L; libration point lies between
the Sun and the Earth on the x-axis. The L, libration
point lies beyond the Earth on the x-axis. Additional

I This parameter was determined using the combined masses
of the Earth and the Moon as the smaller primary’s mass.

discussion of the CR3BP can be found in many ref-
erences including [6].

An important consequence of this model (1) is that
it admits an integral of motion. We will use one ver-
sion of this integral known as the Jacobi constant,?

C(x) =20 (r) — ||v|]*, (2)

which is a function of the spacecraft’s state. When
the equations of motion are derived from a Hamil-
tonian perspective, an equivalent integral H = —C/2
is obtained. This integral serves an energy-like con-
stant, so an increase in the Jacobi constant corre-
sponds to a decrease in the spacecraft’s “energy.”

We will leverage the existence of an integral of
motion to analyze end-of-life trajectories. Fixing
a Jacobi constant level Cp and examining equation
(2), we must have 2U(r) > Cy. Regions in posi-
tion space where this inequality is violated are re-
ferred to as forbidden regions. The boundary sat-
isfies the relation 2U(r) = Cp, which requires that
v =0. This so-called zero-velocity surface (ZVS) is
a two-dimensional manifold in the three-dimensional
position space. If we consider motion restricted to
the plane of the primaries, the boundary is a one-
dimensional zero-velocity curve (ZVC) that forms a
barrier in the two-dimensional position space. We il-
lustrate the ZVC and forbidden region in Figure 1
for three different Jacobi constant levels. In the first
illustration, there is a “bottleneck” region around the
Earth that allows a spacecraft to access the interior
region about the Sun and the exterior region away
from the primaries. As the Jacobi constant is in-
creased (i.e., the energy is decreased), the opening at
the L, libration point closes as shown in the second
illustration. As it is further increased, the opening at
L, closes. These boundaries set access routes to the
Earth vicinity and will play a role in the end-of-life
design presented.

While the CR3BP captures much of the relevant
dynamics, for higher-fidelity end-of-life analysis we
use the precise positions of solar system bodies avail-
able in NASA Jet Propulsion Laboratory’s DE422
ephemeris [7]. In particular, we include the posi-
tions of the Sun, Earth, and Moon. We only in-
clude their point mass gravitational influence neglect-
ing any non-uniformities in their gravitational field.
Additional perturbations such as solar radiation pres-
sure are not incorporated. We arbitrarily select an
epoch of 18:00 UTC on January 1, 2015 for this pre-
liminary study. Numerical integration is performed
using a Bulirsch—Stoer algorithm [8] with error toler-
ances of 10712 (or tighter).

2Some authors include a constant term p(1— ) in this def-
inition.



Figure 1: zero-velocity curve (gray region is forbidden) - not to scale for Sun-Earth (*remake with smaller

mass parameter)
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Figure 2: reference Ly periodic orbits (Lyapunovs and
halos)

1.2 Reference solutions

The analysis will consider a set of nominal libration
point orbits in the Sun—-Earth CR3BP that serve as
the starting point for the analysis. The L; and L,
libration points have stability of type center x cen-
ter x saddle. In the plane of the primary bodies, we
consider the Lyapunov family of periodic orbits about
L, shown in Figure 2 with y-amplitude increments of
100,000 km. Note that the plot axes use astronomi-
cal units (1 AU = 149,600,000 km). When the fam-
ily crosses a y-amplitude of approximately 650,000(7—
verify) km, it bifurcates into the out-of-plane L, halo
periodic orbit family. Some members of the “north-
ern” family are shown in Figure 2 with z-amplitude
increments of 100,000 km. The “southern” family has
an identical structure mirrored across the primaries’
plane.

Note that these families of periodic solutions rep-
resent just a small part of the libration points cen-
ter manifold. Nevertheless, they capture much of
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Figure 3: reference L, “square” Lissajous orbits

the relevant motion of nearby quasi-periodic solu-
tions. Thus, for this initial analysis, we will primar-
ily focus on spacecraft originating in a periodic or-
bit. Given the interest in Lissajous-type trajectories,
however, we will also consider the quasi-periodic so-
lutions shown in Figure 3. These “square” Lissajous
orbits have approximately equal y- and z-amplitudes,
one with amplitudes of 100,000 km and the other with
amplitude 600,000 km.

For simplicity and to limit the scope of the cur-
rent end-of-life analysis, we are focusing on the L,
families of orbits. The L; families appear to exhibit
similar trends due to the small mass parameter of
the Sun—Earth system. We will note the differences
where applicable. For example, an exterior trajectory
originating at an L, orbit and an interior trajectory
originating at an L; orbit may revolve around the ro-
tating frame barycenter in opposite directions, but
qualitatively they exhibit similar behavior.



1.3 Analysis approach

The paper is organized as follows. We will first con-
sider natural dynamics of a spacecraft originating in
a libration point orbit. We will verify that the rele-
vant dynamics are captured by the CR3BP and that
the flow away from the initial orbit is dominated by
the unstable manifold. In addition, we will discuss
the role the ZVS plays in bounding the spacecraft’s
motion and investigate the associated probabilities of
a return to the Earth vicinity. In order to reduce this
outcome’s probability, we will then consider perform-
ing a simple maneuver to modify the ZVS geometry.
The cost associated with various maneuver locations
will be presented. Discussion will also be made on ter-
minal trajectories that impact a body. Note that dur-
ing the course of this analysis, we will consider simple
impulsive maneuvers. This helps to simplify the anal-
ysis, while also reflecting the desire to avoid complex
maneuver schemes during the mission decommission-
ing phase. While other means of thrust, particularly
low-thrust schemes, will not be considered, one of the
primary drivers of this analysis is the limited fuel re-
maining during the end-of-life phase. Thus, natural
dynamics play a fundamental role and the particular
thrust method will be of somewhat lesser importance.

2 Natural dynamics

In this section, we will investigate the natural mo-
tions of a spacecraft originating in a libration point
orbit. Given the limited fuel available for the end-
of-life phase, the spacecraft’s behavior will be driven
by the gravitational influence of solar system bod-
ies. First, we will study whether the CR3BP cap-
tures the relevant dynamical behavior observed in an
ephemeris model. Then within the framework of the
CR3BP, we will consider the role of the unstable man-
ifold for trajectories departing a libration point orbit.
These ideas can be used as tools for computing end-
of-life probabilities.

In order to study the end-of-life dynamics in an
ephemeris model, we must first generate libration
point orbits in this model. For the moment, let us
consider the L, family of Lyapunov orbits. These are
periodic orbits in the CR3BP as shown in Figure 2.
The ephemeris model, however, is time dependent,
and periodic solutions no longer exist. Nevertheless,
similar orbits can be generated, which are shown in
Figure 4 for one “period” of approximately 6 months,
though the orbits do not exactly repeat. We can view
these ephemeris solutions as the initial orbits from
which end-of-life trajectories will originate.

As a first comparison between the CR3BP and
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Figure 4: ephemeris Lyapunov orbits

ephemeris dynamics, we perform a Monte Carlo anal-
ysis about the reference Lyapunov orbit in each
model. For this study, we apply random position
perturbations of magnitude 200 km to states along
the orbit. As long as the perturbation is sufficiently
small, the precise choice of perturbation has little in-
fluence on the results. A total of 100,000 trajectories
are generated from the set of initial conditions. Due
to the influence of the unstable manifold, which will
be investigated in this section, half of the trajectories
depart towards the Earth, and half depart away from
the primaries. Due to the end-of-life restrictions in
the Earth vicinity, we will focus on this latter set of
exterior trajectories.

In order to classify the outcome, we can check
whether the exterior trajectory eventually returns to
the Earth vicinity. For the time being, let us define
this as being within twice the Moon’s radius of the
Earth. When the set of exterior Monte Carlo tra-
jectories first depart the libration point orbit, none
of the spacecraft trajectories have entered the Earth
vicinity. As we consider longer intervals of time,
an increasing percentage of the trajectories will have
crossed this region at some point along their path.
This is illustrated in Figure 5 over a 100-year time
period. The first spacecraft returns appear after ap-
proximately 15 years. A second set of returns ap-
pear between about 25 and 30 years from their libra-
tion point orbit departure. This trend is seen in both
the CR3BP and ephemeris results. An additional ob-
servation is that natural trajectories departing from
larger Lyapunov orbits tend to have a higher prob-
ability of returning to the Earth. It should also be
noted that the ephemeris trajectories considered tend
to have a one to two percent higher chance of return
within 100 years. This is likely due to the influence
of the Moon, which is not included in the Sun-Earth
CR3BP, and can be investigated further in the future.
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Figure 6: time for revolution about ZVS (halo orbit)

Nevertheless, the overall return behavior seen in the
CR3BP and ephemeris results is quite similar.

The results can be understood by considering the
forbidden regions and zero-velocity surface presented
in the previous section. At the Jacobi constant level
of the libration point orbits, the forbidden region
makes a thin circular shape centered about the Sun
with a small opening at the Earth. For an exte-
rior trajectory, the semi-major axis is larger than
the Earth’s and, thus, has a longer two-body period
about the Sun. Therefore, in the rotating frame, the
trajectory rotates clockwise while “bouncing” off the
the ZVS. Depending on the particular initial condi-
tions, after one revolution the trajectory can either
enter through the L, gateway or make a subsequent
revolution around the ZVS. This is the basis for the
jumps seen in Figure 5. If we define a surface at
y =0 and include condition y > 0, we can investigate
the time between intersections. This is shown for a
representative orbit in Figure 6. This shows the time
required for a revolution of the ZVS by non-return
trajectories is between 10 and 20 years. Note that
similar behavior is observed for interior trajectories
departing from an L; libration point orbit except that
their two-body period is less than the Earth’s, and,
thus, they rotate counter-clockwise.

The ZVS influences the Earth return results in an
additional manner. Larger libration point orbits cor-
respond to Jacobi constant levels with larger gateway
openings to the Earth regime. Therefore, a trajectory
departing a larger orbit will have a greater probabil-
ity of returning to the Earth after a revolution about
the ZVS. This behavior is observed in Figure 5.
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Figure 7: earth vicinity trajectories passing within
GEO radius (this is for CR3BP)
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The focus so far has been on trajectories that de-
part a libration point orbit in a direction away from
the Earth. For trajectories directed towards the
Earth, as a simple study we consider the same set of
L, Lyapunov orbits in the CR3BP. We look at their
probabilities of passing within the geosynchronous ra-
dius over a 10-year interval. In Figure 7 we see that
for the larger orbits considered well over 20 percent
pass inside this radius within 4 years. While this anal-
ysis does not consider the Moon, it emphasizes the
potential risk posed by end-of-life trajectories near
the Earth.

We have thus far considered the correspondence
between the natural motions in the CR3BP and
the ephemeris models using a Monte Carlo analysis.
However, there is an underlying dynamical structure,
namely the unstable manifold, that dominates the
motion away from the initial libration point orbit.
The benefit of taking advantage of this special struc-
ture is that it allows us to easily parameterize states
departing the initial orbit using two (for periodic or-
bits) or three (for quasi-periodic orbits) variables.

In order to numerically generate the manifold, the
typical approach (see, for example, [9]) is to deter-
mine a linear approximation of the unstable direction
relative to the libration point orbit. A small pertur-
bation in this direction is made, and these initial con-
ditions are propagated forwards in time to globalize
the manifold. For the Sun—Earth system, scaling the
perturbation’s position component to about 200 km
is a reasonable choice. One important observation is
that the sign of this perturbation is free. This allows
us to generate two “halves” of the unstable manifold:
one departing towards the Earth and one departing
away from the Earth. In Figure 8, we show the half of
an Ly orbit’s unstable manifold departing away from
the Earth. We also show trajectories starting from
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Figure 5:

random perturbations on the orbit state. We can see
see the underlying influence of the unstable manifold
in these results.

An important consequence of the manifold struc-
ture is that following solely the natural dynamics,
there is a fifty percent chance of heading towards the
Earth (which, unless done intentionally, should be
avoided), and a fifty percent chance of departing away
from the Earth. However, a small maneuver should
be possible to switch between the outcomes. The
fundamental idea is that the projection of the post-
maneuver state onto the unstable subspace should be
directed away from the Earth.

An additional benefit of considering the unstable
manifold, along with the complementary stable man-
ifold, is that it provides an additional option for lo-
cating trajectories that return to the Earth vicinity.
Specifically, for planar motion in the CR3BP, the sta-
ble manifold serves as a boundary between return and
non-return trajectories [10]. Using a suitable surface
of section, in this case y =10, y > 0, we plot in Figure
9 the the closed curves representing the first intersec-
tions of an L, Lyapunov orbit’s stable and unstable
manifolds. The segments of the unstable manifold ly-
ing in the interior of the stable manifold will return
to the Earth after one revolution of the ZVS. The
second intersections of the remaining unstable man-
ifold segments can be used to find returns after two
revolutions, and so forth. The primary challenge of
this approach is that the geometry can become quite
complicated. Even for the first intersections shown
in Figure 9, the closed curves are distorted into nar-
row spiral-like shapes. The situation becomes even
more complex in the spatial CR3BP where the stable
manifold of the center manifold should be considered.

While the direct application of the stable manifold
to the computation of returns can be challenging, it
still provides an important geometric understanding
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Figure 9: stable (green) and unstable (blue) intersec-
tions

of the return behavior. For example, assume that a
large number of trajectories on the unstable manifold
are generated and return trajectories are located by
monitoring the distance from the Earth. The bound-
aries of the return interval can be be determined us-
ing a bisection approach based on the return or non-
return outcome. Refinements to this basic scheme
can make it more robust, but it suffices to give a first
look at intervals on manifold that naturally return
to Earth without recourse to a Monte Carlo-style ap-
proach. This is used to generate the first return seg-
ments shown in Figure 9. Similar ideas could be ap-
plied to the study of out-of-plane orbits, but they are
not investigated now. However, the behavior should
follow a similar trend to the planar orbits since the
out-of-plane dynamics are uncoupled to first-order(?).

It is apparent overall that there a close correspon-
dence between the dynamics in an ephemeris model
and the CR3BP. In particular, the dynamics are
strongly influenced by the unstable manifold, which
provides a set of natural end-of-life trajectories. Some
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of these trajectories have more desirable outcomes
than others. If the probability of a successful disposal
is not deemed sufficient, maneuvers can be incorpo-
rated to achieve a desired result.

3 Closing zero-velocity surface

In this section, we will consider performing a simple
maneuver to forbid a future return to the Earth vicin-
ity. If such a maneuver is possible, the protection re-
quirements for the Earth and its satellite zones would
be satisfied. We will analyze the associated maneu-
ver costs and times to determine whether this is a
feasible end-of-life scenario. The primary idea will be
to take advantage of the dynamical structure, specifi-
cally the unstable manifold and the zero-velocity sur-
face (ZVS), present in the CR3BP. It could then be
shown that a shadow of this structure persists when
a more accurate ephemeris model is considered.

For a spacecraft orbit about the L; or L, libra-
tion points, the corresponding ZVS must be open at
that libration point. Otherwise, the orbit would pass
through the forbidden region and not be a valid solu-
tion. As discussed in the previous section, this mean
that trajectories departing the orbit have the possi-
bility of eventually returning to Earth. A maneuver,
however, allows us to change the Jacobi constant (or,
equivalently, the energy) effectively modifying the ge-
ometry of the zero-velocity surface. If the level is
changed such that the Earth region and the interior
or exterior region are disconnected by a forbidden re-
gion, a return to the Earth vicinity for a spacecraft
outside it is impossible at least under the CR3BP
dynamics. (could discuss earlier ZVC figures)

Prior to performing this maneuver, the unstable

manifold will drive the dynamics. In order to separate
the spacecraft from the Earth region, we consider the
half of the manifold departing away from the Earth
towards the interior region for an L; spacecraft and
towards the exterior region for an L, spacecraft. A
small correction burn could be used to accomplish
this, but this is not currently studied.

For this preliminary analysis as well as in the in-
terest of mission simplicity, once the spacecraft has
departed the initial libration point orbit, we consider
the most basic option: a single, impulsive maneuver
to change the Jacobi constant. Recalling the geom-
etry of the ZVS shown in Figure 1, the surface will
first become closed when the Jacobi constant C is in-
creased (energy is decreased) to that of the libration
point Cr, (i =1,2). Returning to equation (2), for a
spacecraft with position and velocity (r,v), the ma-
neuver Av must satisfy

CL, =2U(r) - [v+Av|?. (3)
Let us first consider when a solution to this equation
exists. If Cp, > 2U(r), there is no possible maneuver
to close the gateway to the Earth at this position.
Physically, this means that the current position r lies
in the forbidden region associated with Jacobi con-
stant Cr;, and, thus, this is not a appropriate place
for a maneuver. Even if a solution exists, certain
positions r correspond to a state in the Earth’s re-
gion after the maneuver and not in the interior or
exterior region. This is an undesirable outcome for
an end-of-life disposal trajectory, and these solutions
are discarded.

A simple illustration of the geometry is shown in
Figure 10. A trajectory departing away from the pri-
maries on the unstable manifold of an L, Lyapunov
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orbit is shown in blue. The zero-velocity surface at
this Jacobi constant level is shown in black, and in
gray is the ZVS at the Jacobi constant level Cy, of
the libration point. Initially, the position r is in the
exterior region relative to this new ZVS, then passes
through the forbidden region, the Earth region, the
forbidden region again, and finally out to the exterior
region. The end-of-life scheme described can be ap-
plied at any point on this trajectory in the exterior
region. It is not applicable for the other segments.

Once appropriate positions on the unstable mani-
fold have been identified, the maneuver cost can be
calculated. From an inspection of equation (3), it can
be observed that most efficient maneuver increasing
the Jacobi constant will be in the direction —v. This
allows us to compute the cost to be

1Av[| = [Iv] = /2U (r) = Cu,

which is well defined for positions outside of the for-
bidden region.

(4)

Let us now consider the results for various fami-
lies of initial libration point orbits. In Figure 11, we
include maneuver costs for various size L, Lyapunov
orbits with amplitudes A, ranging from 100,000 to
600,000 kilometers. Note that the unstable manifolds
associated with the periodic orbits we study are two
dimensional. For presenting the results we parame-
terize the manifold as follows. On the vertical axis,
an angle uniformly parameterizing the initial periodic
orbit in time is used. On the horizontal axis, the time
traveling on the unstable manifold is shown. Each
trajectory on the unstable manifold, thus, traces out
a horizontal line. The coloring corresponds to the
cost computed using equation (4) to close the ZVS at
that point along the manifold. Uncolored regions cor-
respond to states on the manifold that are either in
the Earth or the forbidden region at the new Jacobi
constant level.

Examining Figure 11, we see that for each orbit ini-
tially there is only a narrow segment that allows the
ZVS to be closed and the spacecraft to be trapped in
the exterior region. Furthermore, the maneuver Av
along this band are on the order of hundreds of me-
ters per second for the larger Lyapunov orbits con-
sidered. Once we pass approximately 6 months on
the unstable manifold, however, a maneuver closing
the ZVS is possible for all the trajectories. The cost
reduces to the order of meters per second.

The cost profile for Ly halo periodic orbits close
to their bifurcation with the Lyapunov orbits follows
a similar trend as shown in the upper left of Figure
12. For halo orbits with larger out-of-plane compo-
nents, however, the initial orbit is completely con-
tained within the forbidden region at the Jacobi con-
stant level Cz,. We need to get a sufficient distance
along the unstable manifold away from the initial halo
orbit to close the ZVS. Nevertheless, after about 8
months, the scheme can be applied at a cost on the
order of X m/s.

Next we consider a Lissajous orbit of amplitude
600,000 km about the L, libration point. As before,
we can depart this orbit along the unstable mani-
fold and then perform a maneuver to close the zero-
velocity surface at the L, libration point. However,
the manifold is three-dimensional, so we must use
three variables to parameterize it. The sequence of
images shown in Figure 13 all correspond to a single
initial orbit. Each plot uses two angles to parame-
terize the initial state on the torus from which the
manifold trajectory departs (subject to a small per-
turbation). The sequence is for different amounts of
time along the manifold. This allows us to explore
the full space of maneuvers for this particular initial
Lissajous orbit. Initially, there are just small regions
that correspond to potential maneuvers (analogous to
the situation with the Lyapunov orbits). These ma-
neuvers have prohibitively high cost. However, the
space of potential maneuvers increases as the space-
craft departs along the manifold. Furthermore, the
associated cost decreases. At eight months, any tra-
jectory on the manifold has a valid maneuver on the
order of tens of meters per second. The cost decreases
from there to the order of meters per second. (can
also include 100,000 km Liss images)

For illustrative purposes, as a modification of the
current scheme, we consider the half of the unstable
manifold heading towards the Earth. In this case, we
can consider trajectories that pass through the bot-
tleneck and into the interior region. A maneuver can
then be performed to trap the spacecraft in this re-
gion away from the Earth. The results for a 400,000-
km Lyapunov orbit are shown in Figure 14. The sit-
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Figure 11: Lyapunov costs
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Figure 14: passing by Earth, 400,000-km Lyapunov
(note: Moon will influence true behavior)

uation is much more complex in this region. Only
certain segments on the manifold satisfy the neces-
sary conditions and the maneuver time is at least one
year after departing the initial orbit. In red highlight,
trajectories passing within the geosynchronous radius
are shown, which could lead to additional end-of-life
constraints. Furthermore, the Moon’s influence is not
included, which could significantly affect these transit
trajectories. This example emphasizes the simplic-
ity gained by considering exterior trajectories rather
than interior trajectories subject to chaotic dynamics.
(put in discussion for ephemeris computation)

4 Terminal solutions

In order to permanently dispose of a libration point
spacecraft, it must be brought to a solar system body.
In the context of this analysis, the most direct options
are the Sun, Earth, and Moon. The control required
to impact any other body such as an asteroid would fit
more as a follow-on mission and is beyond the scope
of the current study. In this section, we discuss the
general aspects of the terminal outcomes. More de-
tailed study would be possible in later work.

Since a spacecraft in an L or L libration point or-
bit is approximately in a circular orbit relative to the
Sun, a disposal into the Sun would require the semi-
major axis to be roughly halved. This would require
a significant change in energy, and this will likely ex-
ceed the amount of fuel available to the spacecraft.
Using a sequence of flybys, etc. could reduce this cost,
but again is beyond the current scope and would re-
quire end-of-life planning effort well beyond a typical
mission.

As a second possibility, there is the option of an
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Figure 15: geometry of Moon collision

Earth collision orbit. However, there are logistical is-
sues associated with this. First, precise control would
be necessary to target the Earth. Second, it would
necessarily pass through protected orbital regions,
which would require careful planning dealing with un-
certainties. Third, a spacecraft reentering the atmo-
sphere will break-up and needs to have safe disposal
site such as into ocean. This option is not consid-
ered in general for the constraints listed in the first
section, but specific analysis for a particular mission
could be performed to assess feasibility.

The final disposal option to consider is a collision
into the Moon. As opposed to an Earth collision
orbit, a Moon collision orbit would be subject to
fewer restrictions. Furthermore, the unstable man-
ifold from libration point orbits often cross the orbit
of the Moon. In Figure 15, a trajectory departing
towards the Earth on the unstable manifold of an
L, Lyapunov orbit is shown. It has many crossings
with the Moon’s orbit shown in green. A collision
with the Moon, however, would require the Moon to
have an appropriate phase in its orbit. This would
require precise planning and targeting, which may
introduce additional complexity into the end-of-life
planning scheme, but the potential for a completely
final outcome warrants future consideration. Prelim-
inary analysis shows a single maneuver of cost less
than 100 m/s is possible for several possible phasings.

5 Concluding remarks

This study provides a first look at the dynamics ap-
plicable to the end-of-life disposal for libration point
spacecraft. The primary constraints relevant to these



spacecraft are the avoidance of space debris (plane-
tary protection) and limiting the fuel, time, and com-
plexity of this mission phase. This leads to the con-
sideration of natural motions in both an ephemeris
and CR3BP model and associated outcome probabil-
ities. It is apparent that the unstable manifold is the
primary driver of motion away from the orbit. Us-
ing a small maneuver, it should be possible to place
a spacecraft on an unstable manifold external trajec-
tory away from the L, libration point (or an internal
trajectory away from the L; libration point) avoiding
the Earth bottleneck regime. By including an addi-
tional maneuver on the unstable manifold, the bottle-
neck can be closed. This was seen to have a relatively
low cost though the maneuver must be performed af-
ter about 6 months. Assuming that this time period
is acceptable, this seems like a simple option to dis-
pose of a libration point spacecraft. Comments were
also made about the possibility of a terminal disposal
option primarily into the Moon.

There are many directions for future investigation.
More complicated maneuver schemes could reduce
the time required to close the zero-velocity curve,
which may be a worthwhile tradeoff for additional
fuel use and complexity. In a context of a particular
mission, more detailed analysis could be conducted
and aspects such as the ephemeris epoch could be set
accordingly. In addition, each mission has its own
unique set of constraints that must be balanced. In
certain cases, the terminal options may warrant fur-
ther consideration. Further analysis of internal tra-
jectories inside the Earth’s orbit from the L; libration
point would be insightful. Analysis of the influence
of inaccuracies in the thrust magnitude and direction
could also be studied statistically.
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