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Abstract. We consider bimodal linear control systems consisting of two subsystems acting on each side of a given hyperplane,
assuming continuity along the separating hyperplane. For a differentiable family of controllable planar ones, we construct a
differentiable family of feedbacks which pointwise stabilizes both subsystems.
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INTRODUCTION

Piecewise linear control systems (in particular, the bimodal ones: see, for example, [1], [2], [3]) have attracted the
interest of the researchers in recent years by their wide range of applications, as well as by the possible theoretical
approaches, even in the planar case (see, for example, [4]).

Bimodal linear control systems (BLCS) consist of two subsystems acting on each side of a given hyperplane,
assuming continuity along the separating hyperplane. In the space of triples of matrices defining those systems, we
consider the natural equivalence relation defined by changes of bases in the state space which preserves the hyperplanes
parallel to the separating one.

Here we consider parameterized families of controllable planar BLCS, and we tackle the construction of parameter-
ized families of stabilizers. In both cases, we say differentiable family when the involved matrices depend differentially
on a parameter. Given a differentiable family of controllable BLCS, for each value of the parameter there is a feedback
which stabilizes the corresponding system (see [3]). However, this parameterized family of pointwise stabilizers may
not be differentiable (not even continuous). Our results allow to construct a differentiable family of feedbacks which
stabilizes the corresponding system for each value of the parameter.

We point out that when dealing with parameterized families of BLCS, the non-generic case of unobservable ones
appears in a natural way (see Example 1).

Throughout the paper, R will denote the set of real numbers, Mn×m(R) the set of matrices having n rows and m
columns and entries in R (in the case where n = m, we will simply write Mn(R)).

PRELIMINARIES

A bimodal linear control system (BLCS) is given by two subsystems{
ẋ(t) = A1x(t)+B1u(t),

y(t) =Cx(t),
if y(t)≤ 0,

{
ẋ(t) = A2x(t)+B2u(t),

y(t) =Cx(t),
if y(t)≥ 0

where A1,A2 ∈ Mn(R); B1,B2 ∈ Mn×1(R); C ∈ M1×n(R). One assumes that the dynamics is continuous along the
separating hyperplane H = {x ∈ R

n : Cx = 0} and one can consider C = (1 0 . . .0) ∈M1×n(R). Hence H = {x ∈ R
n :

x1 = 0} and continuity along H is equivalent to:

B2 = B1, A2ei = A1ei, 2≤ i≤ n.

We will write from now on B = B1 = B2.
We recall some definitions related to BLCS.
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Definition 1. The above BLCS is called observable if

rank

⎛
⎜⎜⎝

C
CAi

· · ·
CAn−1

i

⎞
⎟⎟⎠= n, i = 1,2.

The above ranks are equal for both subsytems due to the continuity property of the system ([5]).

Definition 2. A BLCS is (completely) controllable if for any pair of states (x0,x f ) there exists a locally integrable
input u such that the solution xx0,u passes through x f , i.e. xx0,u(T ) = x f for some T > 0.

A well-known remarkable fact is that a single linear system ẋ = Ax+Bu is controllable if and only if its ’control-
lability matrix’

(
B AB . . . An−1B

)
has maximal rank. For planar BLCS we recall the characterization of their

controllability obtained in [1] for observable systems and generalized in [6] to unobservable ones:

Proposition 3. Let us consider a planar BLCS defined by (A1,A2,B).We write C1, C2 the controllability matrices of
both subsystems

C1 = (B A1B), C2 = (B A2B).

Then, it is controllable if and only if
detC1 detC2 > 0

Remark 4. (1) Notice that, in particular, both subsystems must be controllable, but it is not a sufficient condition.

(2) Whereas for single systems the subset of controllable ones is open and dense, the above proposition shows that it
is not for bimodal planar systems: controllability is an open, but not generic, property.

FAMILIES OF STABILIZERS

If the control function is a so-called ’feedback’ of the type u(t) = f (x(t)), one obtains a dynamical system (’in closed
loop’). In the linear case ẋ = Ax+Bu , a feedback u = Fx gives ẋ = (A+BF)x. A remarkable fact is that it is stable
for some suitable F , provided that the initial control system be controllable.

As a natural generalization, in [3] any controllable planar BLCS is proved to be feedback stabilizable. Hence, if
a differentiable parameterized family (A1(s),A2(s),B(s)) is pointwise controllable (observable or not) then it is also
pointwise stabilizable, that is to say, for any s ∈ R there is a common feedback F(s) such that both closed-loop
systems A1(s)+B(s)F(s), A2(s)+B(s)F(s) are stable. However, the family F(s) may not be differentiable (not even
continuous). Here we prove that differentiable families of stabilizer feedbacks exist for n = 2.

As we have pointed out in the Introduction, the unobservable case appears generically in parameterized families
of BLCS. A typical case is considered in the following example. As an application of the above Proposition, we
characterize when this family is pointwise controllable.

Example 1. Let us consider the parameterized family of planar BLCS

A1(s) =

(
a1 s
a2 a4

)
,A2(s) =

(
γ1 s
γ2 a4

)
,B =

(
b1
b2

)

where s ∈ R. Obviously, the systems defined by these matrices are observable except for s = 0. Let us see that the
family is pointwise controllable (i.e., for any s ∈ R the corresponding system is controllable) if and only if b1 �= 0 and

(i) a2γ2 > 0, if b2 = 0

(ii) det
(

a1 b1
a2 b2

)
= det

(
γ1 b1
γ2 b2

)
, otherwise.

From Proposition 3 and the analogous result in [1], for any s∈R (including the case where s = 0) the corresponding
system is controllable if and only if

(b2
1a2 +b1b2a4−b1b2a1−b2

2s)(b2
1γ2 +b1b2a4−b1b2γ1−b2

2s)> 0
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In particular b1 �= 0 (it suffices to take s = 0).
If b2 = 0, the above inequality is

(b2
1a2)(b

2
1γ2)> 0

that is to say
a2γ2 > 0

Assume now b2 �= 0. In general, two polynomials of degree 1 have the same sign at any point if and only if they have
the same root and the slopes have the same sign. In our case both slopes are −b2

2, so that the above inequality holds if
and only if

b2
1a2 +b1b2a4−b1b2a1

b2
2

=
b2

1γ2 +b1b2a4−b1b2γ1

b2
2

which is equivalent (recall b1 �= 0) to
b1a2−b2a1 = b1γ2−b2γ1

Finally, we prove the existence of differentiable families of stabilizers for differentiable families of planar control-
lable bimodal systems.

Proposition 5. Let
(A1(s),A2(s),B(s)), s ∈ R

be a differentiable family of planar BLCS. If it is pointwise controllable, then there is a differentiable family of
feedbacks F(s), s ∈ R, such that

A1(s)+B(s)F(s), A2(s)+B(s)F(s)

are stable for any s ∈ R.

Proof 1. Let us write

A1(s) =

(
a1 a3
a2 a4

)
,A2(s) =

(
γ1 a3
γ2 a4

)
,B(s) =

(
b1
b2

)
C1 = (B(s) A1(s)B(s)),C2 = (B(s) A2(s)B(s))

where all the coefficients are assumed differentiably depending on s ∈ R. By hypothesis, we assume

detC1 detC2 > 0

for any s ∈ R.
We look for F(s) = ( f1 f2) where again we assume the coefficients depending on s ∈ R, such that the eigenvalues

of (
a1 +b1 f1 a3 +b1 f2
a2 +b2 f1 a4 +b2 f2

)
,

(
γ1 +b1 f1 a3 +b1 f2
γ2 +b2 f1 a4 +b2 f2

)
have negative real part for any s ∈ R or, equivalently, the matrices have negative trace and positive determinant, that
is to say:

b1 f1 +b2 f2 <−a1−a4,

b1 f1 +b2 f2 <−γ1−a4,

f1(a3b2−a4b1)+ f2(a2b1−a1b2)< a1a4−a2a3,

f1(a3b2−a4b1)+ f2(γ2b1− γ1b2)< γ1a4− γ2a3.

We change the variables ( f1, f2) by (x,y) defined by

x = b1 f1 +b2 f2,

y = (b2a3−b1a4) f1 +(b1a2−b2a1) f2,

which is a change of variables, because (by hypothesis):

det
(

b1 b2a3−b1a4
b2 b1a2−b2a1

)
= detC1 �= 0.
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Then:

f1 =
(b1a2−b2a1)x−b2y

detC1
, f2 =− (b2a3−b1a4)x−b1y

detC1
.

With this change of variables, the desired inequalities become:

x <−a1−a4,

x <−γ1−a4,

y < a1a4−a2a3,

(a3b2−a4b1)
(b1a2−b2a1)x−b2y

detC1
− (γ2b1− γ1b2)

(b2a3−b1a4)x−b1y

detC1
< γ1a4− γ2a3.

In order to see that there exist solutions (x,y), it is sufficient that some of the coefficients of the variables x, y are
positive. For the last one we have:

−b2(a3b2−a4b1)

detC1
+

b1(γ2b1− γ1b2)

detC1
=
−a3b2

2 +a4b1b2 + γ2b2
1− γ1b1b2

detC1
=

detC2

detC1
> 0

again by the hypothesis.
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