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Abstract

We study biplane graphs drawn on a finite point set S in the plane in general position. This is
the family of geometric graphs whose vertex set is S and can be decomposed into two plane graphs.
It is shown that every sufficiently large set S admits a 5-connected biplane graph; and there are
arbitrarily large point sets that do not admit any 6-connected biplane graph. Every plane graph
other than the wheel can be augmented into a 4-connected biplane graph; and there are arbitrarily
large plane graphs that cannot be augmented to a 5-connected biplane graph. In a companion paper
we study extremal properties of biplane graphs such as the maximal number of edges and the largest
minimum degree of biplane graphs over n-element point sets.

1 Introduction

In a geometric graph G = (V, E), the vertices are distinct points in the plane in general position, and
the edges are straight line segments between pairs of vertices. A plane graph is a geometric graph in
which no two edges cross. Every (abstract) graph has a realization as a geometric graph (by simply
mapping the vertices into distinct points in the plane, no three of which are collinear), and every planar
graph can be realized as a plane graph by Féary’s theorem.

We consider a generalization of plane graphs. A geometric graph G = (V, E) is k-plane for some
k € N if it admits a partition of its edges £ = F1U...UEy such that Gy = (V, Ey),...,Gr = (V, Ey)
are each plane graphs. Let S be a point set in the plane in general position, that is, no three points in S
are collinear. Denote by Gy (S) the family of k-plane graphs with vertex set S. With this terminology,
G1(S) is the family of plane graphs with vertex set S, and G»(.S) is the family of 2-plane graphs (also
known as biplane graphs) with vertex set S.

In this and a companion paper [13], we study G2(.S) and contrast combinatorial properties of plane
graphs G1(.S) and biplane graphs Go(.S) for point sets S in general position in the plane. If only plane
graphs on S are considered, there are limitations on achieving some desirable properties, such as high
connectivity, as it is known that every plane graph H has a vertex with degree at most 5, hence
k(H) < MH) < 6(H) <5 (we use standard graph theory notation as in [7]). It is natural to expect
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that significantly better values can be obtained if the larger family Go(S) is used. This is precisely the
topic we explore in this paper, mostly focusing on graph connectivity.

Related concepts. Note that the above generalization of plane graphs is reminiscent to, although more
restrictive, than the notion of thickness, geometric thickness, and book thickness, which are defined for
abstract graphs. We recall their definitions for easy comparison. The thickness of an (abstract) graph
G = (V,E) is the smallest k¥ € N such that G admits an edge partition £ = E1U...UE) with the
property that G = (V, Ey),...,Gr = (V, E}) are each planar graphs. The geometric thickness of an
(abstract) graph G = (V, E) is the smallest k € N such that G admits an edge partition £ = E1U...UE}
satisfying that G; = (V, E1),...,Gr = (V, Ex) can be simultaneously embedded as plane graphs where
the vertex set is mapped to a common labeled point set. The book thickness is a restricted version of the
geometric thickness where G1,. .., Gy are simultaneously embedded on a point set in convex position.

Notice that every k-plane graph, if interpreted as an abstract graph, has geometric thickness at most
k, but in addition we are given a specific embedding in the plane in which the decomposition into k
plane layers is possible. In other words, the term k-plane graph refers to a geometric object, a drawing,
while having geometric thickness k is a property of the underlying abstract graph.

Prior work and organization of the paper. The problem of embedding planar graphs on a given
point set S, using non-crossing straight line segments with endpoints in S as edges, has been receiving
substantial attention in many respects [4, 5, 14]. One of the variants consists of trying to achieve
connectivity as high as possible (either for vertices or for edges), on one side finding conditions on the
point set that allow or constrain such embeddings, and on the other side developing the algorithmic
counterparts of the problem [8, 11]. This is the topic we study in Section 2, considering biplane graphs
instead of plane graphs. A closely related family of problems is graph augmentation, in which one would
like to add new edges, ideally as few as possible, to a given graph in such a way that some desired
property is achieved. There has been extensive work on augmenting a disconnected plane graphs to
connected one (see [17] for a recent survey) or achieving good connectivity properties [1, 2, 19]. For
abstract graphs, this corresponds to the classical connectivity augmentation problem in optimization
and it has a rich history. In Section 3, we consider several problems on augmenting plane graphs to
biplane supergraphs with higher connectivity.

We conclude in Section 4 with some final remarks and open problems. Due to space limitations,
several proofs have been omitted.

Finally, we mention a companion paper [13] in which we study combinatorial properties of edge-
maximal biplane graphs, and study biplane graphs in Go(S) that admit the maximum number of edges
and the maximum connectivity over all n-element point sets S.

2 Drawing Biplane Graphs from Scratch

Given a point set S, we would like to construct a graph G € G3(.S) with high vertex connectivity «(G).
We determine the maximum (G) that can be attained for every (sufficiently large) point set S. We
also consider the special case that the point set S is in convex position.

For comparison, we briefly review analogous results for plane graphs G;(S) on a given point set S.
Refer to [17] for a survey article. Every set of n > 3 points in general position admits a spanning cycle
(a polygonization of S), which is 2-connected. For points in convex position, every plane graphs has a
vertex of degree 2, so in this case k(G) = 2 is the best possible value over all G € G1(S). As for the
maximum connectivity that can be attained, the vertex connectivity of every plane graph is at most 5,
since every planar graph has a vertex of degree not greater than 5. It is known that every set of n > 4
points not in convex position admits a 3-connected triangulation. Additionally, every set of n > 6 points
whose convex hull is a triangle admits a 4-connected triangulation, provided that a certain condition
is satisfied (see [8] for details). No characterization is known for point sets in general position (with
arbitrary convex hull) that admit 4- or 5-connected triangulations.
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2.1 Point Sets in Convex Position

We begin with the special case of points in convex position. It turns out that all biplane graphs on
a point set in convex position are planar. Moreover, both the maximum number of edges and the
maximum possible vertex-connectivity are the same as for planar graphs.

Figure 1: Two 5-connected biplane graphs for points in convex position.

Lemma 1 Let S be a set of n points in the plane in convex position.
(i) Every graph in Go(S) is planar (as an abstract graph).

(ii) If G = (V, E) is a Hamiltonian planar (abstract) graph with n vertices, then it has a geometric
realization in Ga(S).

Proof. Let G = (S, E) be a biplane graph on a point set S in convex position. By definition, there is
an edge partition F = EjUF5 such that both G = (S, Fy) and Gy = (S, E3) are plane graphs. To show
that G is planar (as an abstract graph), it is enough to construct a crossing-free embedding of G in which
the edges are represented by Jordan arcs. Denote the vertices by s1,...,s, in counterclockwise order
along the boundary of ch(S). Move each vertex s; to point s, = (cos(2mi/n),sin(2mi/n)) on the unit
circle, and let S" = {s,...,s),}. This transformation maps G; and G2 to plane graphs G| = (5’, E})
and G = (9’, EY). Recall that an inversion is a continuous bijection on R? \ {0} that interchanges the
interior and the exterior of the unit circle, but every point on the unit circle is a fixed point. We apply
an inversion to map the line segments representing the edges in F) to a set Ef of pairwise non-crossing
circular arcs in the exterior of the unit circle. Hence (S’, E{ U EY) is a crossing-free embedding of graph
G, as required.

Let G = (V, E) be a planar Hamiltonian (abstract) graph with n vertices. By Fary’s theorem [10], G
can be embedded as a plane graph on some set of n points in the plane. In a straight-line embedding of
G, the Hamiltonian cycle is a simple polygon P, and the remaining edges are partitioned into internal
and external diagonals of P. This partition yields a biplane realization of G on any set S of n points
in convex position. Embed the Hamiltonian cycle into the boundary of the convex hull ch(S). The
convex hull edges and the internal diagonals of P form one layer of the biplane graph, and the external
diagonals of P form the other layer. O

However, not every planar graph can be realized as a biplane graph on a point set in convex position.
For example, there are edge-maximal planar graphs (triangulations) that are not Hamiltonian. These
planar graphs have 3n — 6 edges, which is the maximum number of edges in a biplane graph on a point
set S in convex position. However, in every edge-maximal graph in Go(S), the boundary of the convex
hull forms a Hamiltonian cycle. This yields a contradiction.

We can now characterize the maximal vertex connectivity in Go(S) when S is in convex position.

Theorem 2 Let S be a set of n points in convex position.

e G5(S) contains a 4-connected graph if and only if n > 6.
e G5(S) contains a 5-connected graph if and only if n =12 or n > 14.

e G5(S) contains no 6-connected graphs for any n € N.
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Proof. It is well known that every 4-connected (or 5-connected) planar graph G has a Hamiltonian
cycle [21]. By Lemma 1(ii), it is enough to establish the existence of a planar graph for a given n.

By Lemma 1(i), every graph in Go(S) is planar. Every planar graph on n > 3 vertices has at most
3n — 6 edges, and the sum of vertex degrees is at most 6n — 12. In a k-connected graph, the degree of
every vertex is at least k, and the sum of vertex degrees is at least kn. Comparing these bounds, we
have kn < 6n —12 or 12/(6 — k) < n. It follows that no planar graph is 6-connected, every 5-connected
planar graph has at least 12 vertices, and every 4-connected planar graph has at least 6 vertices.

It is easy to see that there is a 4-connected planar graph on n vertices for every n > 6. Specifically, the
1-skeleton of the octahedron is 4-connected with 6 vertices; and a vertex split operation can increase the
number of vertices by one while maintaining 4-connectivity. Barnette [3] and Butler [6] independently
designed algorithms for generating all 5-connected triangulations, using simple operations starting from
the icosahedron. The 1-skeleton of the icosahedron is 5-connected with 12 vertices, and each operation
either splits a vertex of degree 6 or higher, or simultaneously splits two adjacent vertices. Hence there
is a 5-connected planar graph for n = 12 and for every n > 14 (but not for n = 13). (]

Remark. We have shown that Go(S) contains 4- and 5-connected graphs, respectively, if n > 6 and
n > 12. The existence proof in Theorem 2 can be turned into an O(n)-time algorithm for constructing
such biplane graphs. Here we present explicit constructions for 5-connected biplane graphs for points
in convex position when n = 12 and n > 14 (Figure 1). Our constructions are formed by the n edges
of ch(S), and 2(n — 3) chords of ch(S) distributed into two layers. Each layer consists of two stars with
3 or 4 leaves each, connected by a zig-zag path. The construction in Figure 1(a) works when n is even
and n > 12, while the one in Figure 1(b) works when n is odd and n > 15.

2.2 Point Sets in General Position

In this section we find the largest k£ € N such that every sufficiently large point set .S in general position
admits a k-connected biplane graph. Hutchinson et al. [18] proved that every biplane graph in Go(S)
has at most 6n — 18 edges for n > 8. It follows that every biplane graph contains a vertex of degree
11 or less, hence k£ < 11. By Theorem 2, we have k < 5. We show that every point set S admits a
5-connected biplane graph, provided that S is sufficiently large.

Theorem 3 Let S be a set of n points in the plane in general position. If n is large enough, then G (S)
contains a 5-connected graph.

Proof outline. Given a set S of n points in general position, we build a 5-connected biplane graph on
S as follows. By the Erd&s-Szekeres theorem, if n is large enough, then S contains a subset Sy C S
of at least 14 points in convex position. By Theorem 2, Sy admits a 5-connected biplane graph Gj.
We increment G successively with new vertices from S\ Sy in 3 phases, maintaining 5-connectivity.
We add the points lying in the interior of ch(Sp) in the first phase, followed by the vertices of ch(S) in
the second phase, and then all remaining points lying in the exterior of ch(Sy). We continue with the
details. Before the proof of Theorem 3, we state and prove a lemma (Lemma 6) about the incremental
steps.

Preliminaries for the incremental steps. When incrementing a 5-connected biplane graph G = (S, E)
with a new vertex s, we shall add 5 new edges incident to s and delete at most one of the existing edges
of G. To ensure that we maintain 5-connectivity, we use the following well-known properties of graphs.

Property 1 Let G = (V, E) be a k-connected (abstract) graph. Augment G with a new vertex x joined
to k vertices of G. Then the new graph on vertex set V U {z} is also k-connected.

Property 2 Let G = (V, E) be a k-connected (abstract) graph in which vw is an edge. Remove edge
vw from G, and augment it with a new vertex x joined to both v, w and to k — 2 additional vertices.
Then the new graph with vertex set V U {z} is also k-connected.
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Before incrementing a 5-connected biplane graph G = (S, E) with a new vertex s, we augment
G = (5, F) to an edge-maximal biplane graph. Additional edges do not decrease the vertex connectivity.
We can rely on the following two structural results for maximal biplane graphs from the companion
paper [13].

Lemma 4 [13] Let G = (S, E) be a maximal biplane graph in Go(S). Then there are two triangulations
T1 = (S, El) and T2 = (S, EQ) such that E = El U EQ.

Lemma 5 [13] Let G = (S, E) be a maximal biplane graph in Go(S) such that E = E; U Ey, where
Ty = (S, Ey) and Tz = (S, E3) are two triangulations. If e € E1 N Es, then e is flippable in neither Ty
nor Ts. Furthermore, every maximal biplane graph with n > 4 vertices is 3-connected.

The following tool (Property 3) is crucial for increasing the vertex degree of a vertex in a triangulation.
This tool is applicable to all triangulations other than the wheel. A wheel is a triangulation on n points
such that n— 1 points are in convex position and one point lies in the interior of ch(.S), the points on the
convex hull induce a cycle on the boundary of ch(S) and the interior point is joined to all other n — 1
points. Given an edge e € E in a triangulation T = (S, E), denote by Q(e) the quadrilateral formed by
the two triangles adjacent to e if e is not on the boundary of ch(S); and Q(e) is undefined if e is an edge
of ch(S). Recall that e is flippable if and only if Q(e) is a convex quadrilateral.

Figure 2: Left: 5-connected biplane graph on 15 points. Middle: point s4 lies in the interior of two gray
triangles, which jointly have 5 distinct vertices. Right: point s4 is now part of the 5-connected biplane
graph.

Property 3 Let T = (S, E) be a triangulation other than the wheel. Let s € S be a point in the
interior of ch(S) such that it is adjacent to a vertex on the boundary of ch(S), and the graph induced
by its neighbors in T is a cycle. Then there is a triangle incident to s in which the edge opposite to s is
flippable.

Proof. Denote the neighbors of s in counterclockwise order by vy, v1,...,vx—1 € S, for some k > 3.
Since T is not a wheel, s must have two consecutive neighbors such that the edge between them is not
on the boundary of ch(S). Without loss of generality, assume that vy and v, are two such neighbors
(i.e., vovy is not an edge of ch(S)). Moreover, we can further assume that vy is a vertex of ch(5).

We proceed by contradiction. Suppose that the edge v;v;41 is not flippable for any i =0,1,...,k —1
(where indices are taken modulo k). This implies that all vertices vg,v1,...,v5—1 must be interior
vertices, contradicting our initial assumption. Specifically, we prove by induction that for every i =
0,...,k — 1 the quadrilateral Q(v;v;+1) is defined and has a convex vertex at v; (where the indices are
again taken modulo k). Note that the claim holds for ¢ = 0 by the choice of vy and v;.

The induction step is as follows: assume that Q(v;v;11) is defined, and has a convex vertex at v;. Then,
v;41 must form a reflex angle (otherwise Q(v;v;+1) would be convex). In particular, point v;11 must
be interior, hence Q(v;+1v;12) is defined. Since the neighbors of s induce a cycle, we have v;v;10 & E.
Since v;11 is a reflex vertex of Q(v;v;+1), it must be a convex vertex of Q(v;11v;42). This completes the
induction step, hence the proof of Property 3. d

The following lemma is the basis of our incremental construction.
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Lemma 6 Let G = (S,E) be a 5-connected biplane graph such that ch(S) has at least 4 vertices.
Denote by Sint C S the points lying in the interior of ch(S), and let s € S be a point such that s is in
the interior of ch(S) but in the exterior of ch(Si). Then a 5-connected biplane graph on S U {s} can
be constructed from G = (S, E) by adding 5 new edges incident to s and deleting at most one edge of
E.

Proof. (Sketch) First, augmenting G to a maximal biplane graph G (adding dummy edges if necessary),
we can divide G into two triangulations T and 75, by Lemma 4. The new point s will lie in the interior
of some triangles A; and As in the two triangulations (A; and Ay may share vertices and edges). Since
s lies in the exterior of ch(Sint), at least one vertex of A; (resp., Az) is on the boundary of ch(S). Now
we can augment T (resp., 7o) with vertex s and three edges joining s to the vertices of Ay (resp., As)
to a new triangulation. Three cases are analyzed, based on the total number of distinct vertices of Ay
and Ay. Figure 2 shows the construction when A; and As jointly have 5 or 6 distinct vertices. In
the figure, after connecting s to 5 distinct vertices of A; and As, the resulting graph is 5-connected
by Property 1, and biplane since the new edges can be inserted into T and T5, respectively, without
crossings. When the number of distinct vertices is 3 or 4, the constructions are a bit more complicated
and are based on flipping some edges of the triangulations to increase the number of edges adjacent to
S. (]

We are now ready to prove Theorem 3.

Figure 3: The boundaries of ch(Sy) and ch(S) are disjoint.

Proof. [Proof of Theorem 3.] Erdés and Szekeres proved that there is an integer f(k) for every k € N
such that every set of f(k) points in the plane in general position contains a subset of k points in convex
position. They conjectured f(k) = 2¥=2 + 1, and showed f(k) > 2*¥=2 + 1. The currently best upper
bound [20] for k > 7 is f(k) < (2k_5) + 1. For k = 14, this implies that S has a subset of at least 14

k—2
points in convex position if n > (Qif‘__;’) + 1 = 1352079. Consider all subsets of S in convex position
of maximal cardinality, and let Sg C S be one whose convex hull has maximum area. Clearly, we have
|So| > 14, and there is no other set S C S in convex position such that |Sy| = |Sp| and ch(Sy) C ch(Sp).
By Theorem 2, there is a 5-connected graph G € Ga(Sp).

Partition the points in S\ Sp into three sets: let Siyy C S\ Sp be the set of points in the interior of
ch(Sp), let Spou C S\ So be the set of points on the boundary of ch(S), and let Sexy C S\ So be the
set of all remaining points in the exterior of ch(Sp). We shall construct a 5-connected biplane graph on
S by incrementing G successively with the vertices in S\ Sy in three phases, adding the points in Sy,
Shou, and Seyt in this order.

Interior points. Denote the points in Sine by s1, ..., sg sorted by their z-coordinates (ties are broken
arbitrarily). We augment Gy successively by the vertices s1,...,s; as follows: For ¢ = 1,... k, we
construct a biplane graph G; on SoU{s1,...,s;}. Graph G; is obtained from G;_1 by applying Lemma 6.
This completes the description of phase 1. By Lemma 6, every edge inserted in this phase is incident
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to a point in Siy, so all edges between vertices of Sy were present already in Gy. Denote by Gy the
resulting 5-connected biplane graph in Ga(Sp U Sint)-

Boundary points. In this phase, we augment G, with the vertices of ch(S). If ch(Sp) = ch(S), then
all vertices of ch(S) are already in Gj, and the phase is complete. Assume that ch(Sp) # ch(S). We
define wvisibility for the edges of ch(Sp): a point s in the exterior of ch(Sp) sees an edge uv of ch(Sp) if
the triangle suwv is disjoint from the interior of ch(Sp); a segment st in the exterior of ch(Sy) sees uv if
both s and ¢ sees uv. Note that every exterior point s sees a sequence of consecutive edges of ch(Sy),
but does not see all the edges. By the maximality of Sy, every exterior vertex of ch(S) sees at least
three edges of ch(Sp). This property generalizes as follows.

Property 4 Every k consecutive vertices of ch(S) in the exterior of ch(Sy) jointly see at least k + 2
edges of ch(Sp).

Going back to the main proof, we distinguish two cases based on whether the boundaries of ch(Sp)
and ch(S) are disjoint or not.

Assume that the boundaries of ch(Sy) and ch(S) are disjoint and every two consecutive vertices of
ch(S) see some common edge of ch(Sp). In this case, every edge of ch(S) sees at least one edge of
ch(Sp). We show that every k > 2 consecutive edges of ch(S) jointly see at least k + 1 edges of ch(Sp).
Indeed, k consecutive edges of ch(S) form a path. The k — 1 interior vertices of this path jointly see
the same set of edges of ch(Sy) as the k edges of the path, and by Property 4, they jointly see at least
(k—1)4+2=k+1 edges of ch(Sp). In summary, every set of k > 1 consecutive edges of ch(S) jointly
sees at least k edges of ch(Sp). By Hall’s theorem, we can assign to every edge of ch(S) a visible edge
of ch(Sp). (See Figure 3.)

Denote the vertices of ch(Sp) by a1,...,a, (p > 14); and the vertices of ch(S) by b1,...,b, (¢ > 3)
in counterclockwise order. For each ¢ =1,...,q, if edge b;b;11 is assigned to aja;41, then b;b;y1a541a;
is a convex quadrilateral. If two such quadrilaterals, say b;b;11a;+1a; and bybyy1aj41a;, cross (have
intersecting interiors), then b;b; 11 also sees a;ry1a; and by by 41 also sees a;y1a;, thus we can exchange
the edges assigned to b;b;+1 and b; by 1. We can now assume that the edges of ch(S) and the assigned
edges of ch(Sp) form interior-disjoint convex quadrilaterals.

We can now augment G{, with the vertices b1, ..., b,. In one layer, add all edges of the cycle (b1, ..., by).
If edge b;b;41 is assigned to ajajy1, then join b; to a; and a;11 in one layer, and b1 to a; in the other
layer (where a1 = a1 and bgy1 = b1). Denote the resulting graph by G{j. All new edges are disjoint
from the interior of ch(Sy), and the edges in each layer are noncrossing, thus Gj is biplane. Each b; is
joined to at least three vertices of the cycle (a1, ..., ap), which is part of the 5-connected graph Gj,, and
to its two neighbors in the cycle (b1,...,b,). It follows that G is 5-connected. The case in which the
boundaries of ch(Sp) and ch(S) are not disjoint is studied in a similar way.

Exterior points. We sort the points of Sex into a sequence (si,...,Sk), which is the reverse of a
“removal order,” defined as follows. Let A = Sy U Sext and let i = [Sext|. Until A # Sp, let s; be an
arbitrary vertex of ch(A) in Sext, put A := A\ {s;}, and i := i — 1. By construction, s; is in the exterior
of the convex hull of So U {s1,...s;_1} fori=1,... k.

We augment Gjj successively by the vertices s1,...,sx. For i = 1,...,k, let G; denote the biplane
graph on Sp U {s1,...,s;} obtained by Lemma 6.

When all three phases of the algorithm are complete, we obtain a 5-connected biplane graph in Go(S).
We conclude that a point set S admits a 5-connected biplane graph if there are at least 14 points in
convex position in S, which holds for every set of at least 1352079 points. O

3 Graph Augmentation

In this section we study how the addition of a second layer can improve the vertex connectivity of a
graph. Suppose we are given a plane graph G = (S, E) in G;(5), and wish to augment it with a set E’
of new edges to obtain a biplane graph G = (S, EUE’) € G(S) such that the vertex connectivity x(G)
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is maximal. We are allowed to add new edges in the first layer (augmenting G to a triangulation), or
add new edges in the second layer. The more edges G has, the more constrained the problem becomes.
In the worst case, we may assume that G € G1(9) is a triangulation, and it is augmented with another
triangulation.

In Section 3.1 we show how to augment a triangulation with a second layer in order to make it
4-connected, whenever that is possible. In Section 3.2 we look into the problem of producing an aug-
mentation that uses as few extra edges as possible, that is, a minimal augmentation.

3.1 Increasing the connectivity of triangulations

Our first observation is that there are arbitrarily large point sets S and triangulations T' € G;(S) such
that T' cannot be augmented to a 4-connected biplane graph on S. These special triangulations are the
wheels and fans. Recall that a wheel is a triangulation on n points such that n — 1 points are in convex
position and one point (the center of the wheel) lies in the interior of ch(S), the points on the convex
hull induce a cycle on the boundary of ch(S) and the interior point is joined to all other n — 1 points.
A fan is a triangulation on n points in convex position, where one point (called center) is joined to all
other n — 1 points. Every wheel is 3-connected and every fan is 2-connected. We show below that their
connectivity cannot be increased to 4 by augmenting them with a set of pairwise noncrossing edges.

Lemma 7 Let T = (S, E) be a wheel or a fan. For every triangulation T' = (S, E'), the biplane graph
G = (S, EUFE’) is at most 3-connected.

Recall that every maximal biplane graph on n > 3 points is 3-connected (Lemma 5), hence Lemma 7
is tight. We show next that wheels and fans are the only exceptions, any other triangulation on n > 4
vertices can be augmented to a 4-connected biplane graph. To that end, we use the following well-known
auxiliary lemma.

Lemma 8 Let S be a set of n > 5 points in general position such that u, v, and w, are consecutive
vertices of ch(S). Let T be a triangulation on S including triangle A = (u,v,w) and an adjacent triangle
Ay = (u,v',w). Then, edge vw is flippable in T and, after flipping uw, one of the edges uv’ or v'w is
also flippable in the new triangulation.

We also recall the characterization of 2- and 3-vertex cuts in a triangulation 7' = (S, E) on n > 5
vertices. A set {u,v} C S is a 2-vertex cut in 7' if and only if uv is a chord of ch(S). A set {u,v,w} C S
is a 3-vertex cut in T if and only if {u, v, w} induces a separating triangle or a path between two vertices
of ch(S) via an interior point (such a path is called a bichord). In all three cases, the convex hull
ch(S) is split into two nonempty subsets by a chord, a separating triangle or a bichord, such that no
edge of T' connects vertices in distinct subsets. When we augment a triangulation 7' to a 4-connected
biplane graph G, we must add an edge between subsets of S on opposite sides of each chord, bichord
and separating triangle of T'. We will say that an edge properly crosses a bichord or a separating triangle
when the edge crosses it exactly once (a chord is always crossed properly).

Figure 4: Case of all the vertices belonging to bichords.

We wish to augment a triangulation T' = (S, F) on n > 5 vertices into a 4-connected biplane graph
G = (S,EUE’). Since T is 2-connected, to ensure the 4-connectivity of G it is enough to check that (i)
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all vertices have degree at least 4 in G, (ii) every separating triangle and every bichord of T is properly
crossed by at least one new edge, and (iii) every chord of T is properly crossed by at least two new
edges. In the latter case, if the part of ch(S) on one side of a chord contains two or more points, then
at least two of them must be incident to edges that properly cross the chord (otherwise the chord and
a common endpoint of the edges crossing the chord would be a 3-vertex cut).

We are now ready to augment any triangulation other than the wheel or the fan to a 4-connected
biplane graph.

Theorem 9 Let S be a set of n > 6 points in convex position or a set of n > 5 points not in convex
position. For every triangulation T = (S, E) other than the wheel and the fan, there is a triangulation
T' = (S, E’) such that G = (S, E U E’) is 4-connected.

Proof. (Sketch) We consider two cases depending on the original connectivity of T. Assume T is 3-
connected. Then, either a vertex not belonging to any 3-vertex cut exits or every vertex is part of a
3-vertex cut. If there is a vertex v that does not belong to any 3-vertex cut, then we augment 7T to
a 4-connected biplane graph with a star centered at v on the second layer. Otherwise, if every vertex
is part of a 3-vertex cut, then all the 3-vertex cuts are bichords. In this case, we can prove that two
vertices of ch(S) (v2 and v—1 in Figure 4) can be chosen such that T can be augmented to a 4-connected
biplane graph with two stars centered at these two vertices and connecting an interior vertex v’ and
every vertex of ch(S) to them.

If T is not 3-connected, then T" must have a 2-vertex cut because every triangulation is 2-connected.
Each 2-vertex cut {u, v} corresponds to a chord uv € E of ch(S) and the set of chords of ch(S) decom-
poses ch(S) into convex regions, called cells. Now we proceed by induction on n, the total number of
vertices. After removing a set of vertices corresponding to a particular cell, the remaining triangulation
can be augmented to 4-connected. Then, putting back the removed vertices, the edges on the second
layer can be retriangulated to obtain a 4-connected biplane graph on the n vertices. O

Note that, by Lemma 7, the fan and the wheel, respectively, are 2- and 3-connected triangulations
that cannot be augmented to 4-connected biplane graphs. It is also possible to prove that there are
4-connected triangulations that cannot be augmented to 5-connected biplane graphs.

Theorem 10 There exist arbitrarily large point sets S and 4-connected triangulations T = (S, E) such
that for any other triangulation T' = (S, E'), the biplane graph (S, E U E’) is not 5-connected.

3.2 Minimal Augmentation

Given a plane graph G = (5, E), we wish to augment G with a minimal set of new edges E’ such that we
obtain a k-connected biplane graph G = (S, E' U E’) for some target value k. In this section we present
an efficient solution (Lemma 12) when k& = 3 and G is a triangulation. We start with a helpful claim
about augmenting a plane tree to 2-edge-connectivity.

Lemma 11 Given a plane tree H = (S, E) with n vertices and m leaves, let L C S be the set of m
leaves of H. In O(nlogn) time, one can find a set E' of [m/2] pairwise noncrossing edges among the
leaves of H such that (S, E U E’) is a 2-edge-connected biplane graph. Moreover, if the m leaves are in
convex position, then E’ can be found in O(n) time, after computing ch(L) in O(mlogm) preprocessing
time.

Lemma 12 Given a triangulation G = (S, E), with n > 3 vertices, one can find a minimal set of edges
E’ such that G' = (S, E U E") is a 3-connected biplane graph in O(n) time, after computing ch(S) in
O(nlogn) preprocessing time.

Proof. Triangulation G is 2-connected. Recall that a set {u,v} C S is a 2-vertex cut if and only if
wv € E is a chord of ch(S). The biplane graph G’ = (S, E U E’) will be 3-connected if each chord of
ch(S) in E is crossed by at least one edge in F’.
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Figure 5: A point set, the associated graph H (green), and the additional edges to obtain 3-connectivity
(red).

The chords of ch(S) in E decompose ch(S) into convex cells. We construct a dual graph of this
decomposition, denoted H, as follows. The nodes of H correspond to the cells, and two nodes are joined
by an edge in H if and only if the corresponding cells share a chord. Clearly, H is a tree (see the green
edges in Figure 5), and can be easily constructed in O(n) time from G. The leaves of H correspond to
leaf cells, each leaf ¢ of H is associated with the set of vertices Ry C S that lie in the cell, excluding
the endpoints of the chord on the boundary of the cell. Distinct leaves of H are associated with disjoint
vertex sets (i.e., Rg N Ry = () for ¢ # ¢'). Consider chords that lie on the boundaries of the leaf cells.
These chords are in convex position, thus any new edge can cross at most two of them. It follows that
we need to add at least [m/2] new edges, where m denotes the number of leaves of H.

We now show that [m/2] new edges suffice, and can be computed in linear time. For each leaf £ of
H, pick a point vy € Ry on the boundary of ch(S), called the representative of £. Embed H in the plane
such that every leaf £ is embedded at point vy, and every nonleaf node is embedded at an arbitrary point
in the interior of its cell. Clearly, this embedding can be constructed in O(n) time, after computing
ch(9).

By Lemma 11, the embedding of H can be augmented to a 2-edge-connected graph H' by a set E’ of
[m/2] noncrossing edges among the leaves (that are representatives from S) in O(n) time, because all
the representatives are in convex position. We claim that (S, E U E’) is 3-connected. Every 2-cut of G
is a chord ¢ of ch(S) that corresponds to an edge e. of the embedding of H. When the embedding of
H is augmented to H', e, becomes part of at least one cycle in H’, and any of these cycles will contain
exactly one edge from E’. Observe that, if C is one of such cycles and e is the edge of E’ in C, then
every edge of C (except for e) corresponds to a chord that is crossed by e. In particular, e will cross
c. Since H' is 2-edge-connected, every edge of the embedding of H belongs to a cycle in H', so every
chord of ch(S) is crossed by some edge of F'. O

The above argument implies that we add one edge for every two leaf cells of H. Associate to each leaf
¢ of H all vertices in Ry and the two endpoints of the chord. Every vertex of ch(S) is the endpoint of at
most two chords that bound leaf cells. Therefore, one can assign to each leaf cell at least two vertices (a
vertex of Ry and half of each endpoint of the chord on the boundary of the leaf). It follows that there
are at most [n/2] leaf cells. This bound is tight, since the chords of the leaf cells may form a cycle of
n/2 edges. We obtain an upper bound for the total number of edges to be added in Lemma 12.

Corollary 13 Every triangulation G = (S, E) on n > 3 points can be augmented to a 3-connected
biplane graph by adding at most [|n/2]/2] = [2FL] edges.

4 Conclusions

We have presented several results on constructing biplane graphs on given sets to get high connectivity,
on augmenting given plane graphs to biplane graphs, again trying to achieve better connectivity, and we
have studied several extremal configurations. Improving on our combinatorial bounds is the obvious left
open problem. However, we want to conclude with a remark and a mention to a specific open problem:
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e Note that the proof of Theorem 3 needs the point set to be very large (roughly 1.3 x 10%). However,
we might reduce the constant to 137 by using the following result: for any convex polygon P of
k vertices, a triangle A in the interior of P, and r points inside A (for any r > k — 2), one can
construct a plane geometric 4-connected graph on the k + r + 3 points [12]. Since this result has
neither been published nor referred yet, we decided to use an alternative complete proof.

e Open problem: Given a 3-connected plane graph G = (S, E) with n > 6 vertices, can we find a
minimal set of edges E’ such that G’ = (S, E U E') is a 4-connected biplane graph in polynomial-
time?
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