
Analysis of the Task Superscalar Architecture
Hardware Design

Fahimeh Yazdanpanaha,b,, Daniel Jimenez-Gonzaleza,b, Carlos
Alvarez-Martineza,b, Yoav Etsionc, Rosa M. Badiaa,b

aUniversitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain
bBarcelona Supercomputing Center (BSC), Barcelona 08034, Spain

cTechnion – Israel Institute of Technology, Haifa 32000, Israel

Abstract

In this paper, we analyze the operational flow of two hardware implementations
of the Task Superscalar architecture. The Task Superscalar is an experimental
task based dataflow scheduler that dynamically detects inter-task data depen-
dencies, identifies task-level parallelism, and executes tasks in the out-of-order
manner. In this paper, we present a base implementation of the Task Superscalar
architecture, as well as a new design with improved performance. We study the
behavior of processing some dependent and non-dependent tasks with both base
and improved hardware designs and present the simulation results compared
with the results of the runtime implementation.

Keywords:
Task Superscalar; Hardware task scheduler; VHDL

1. Introduction

Concurrent execution assumes that each discrete part of a program, called
task, is serially executed in a processor and that the execution of multiple parts
appears to happen simultaneously. However, exploiting concurrency (i.e., cre-
ating, managing synchronization of tasks) to achieve greater performance is a
difficult and important challenge for current high performance systems. Al-
though the theory is plain, the complexity of traditional parallel programming
models in most cases impedes the programmer to harvest performance.

Several partitioning granularities have been proposed to better exploit con-
currency. Different dynamic software task management systems, such as task-
based dataflow programming models [1, 2, 3, 4, 5], benefit dataflow principles

∗Corresponding author. Tel.: +34 93 401 16 51; fax: +34 93 401 0055.
E-mail address: {fahimeh, djimenez, calvarez}@ac.upc.edu, yetsion@tce.technion.ac.il,

rosa.m.badia@bsc.es.

June 5-7 2013

to improve task-level parallelism and overcome the limitations of static task
management systems. These models implicitly schedule computation and data
and use tasks instead of instructions as a basic work unit, thereby relieving the
programmer of explicitly managing parallelism. While these programming mod-
els share conceptual similarities with the well-known Out-of-Order superscalar
pipelines (e.g., dynamic data dependency analysis and dataflow scheduling),
they rely on software-based dependency analysis, which is inherently slow, and
limits their scalability. The aforementioned problem increases with the number
of available cores. In order to keep all the cores busy and accelerate the over-
all application performance, it becomes necessary to partition it into more and
smaller tasks. The task scheduling (i.e., creation and management of the exe-
cution of tasks) in software introduces overheads, and so becomes increasingly
inefficient with the number of cores. In contrast, a hardware scheduling solution
can achieve greater speed-ups as a hardware task scheduler requires fewer cycles
than the software version to dispatch a task. Moreover, a tiled hardware task
scheduler is more scalable and parallel than the equivalent software.

The Task Superscalar [6, 7] is a hybrid dataflow/von-Neumann architecture
that exploits task level parallelism of the program. Therefore, the Task Super-
scalar combines the effectiveness of Out-of-Order processors together with the
task abstraction, and thereby provides a unified management layer for CMPs
which effectively employs processors as functional units. The Task Superscalar
has been implemented in software with limited parallelism and high memory
consumption due to the nature of the software implementation. A hardware
implementation will increase its speed and parallelism, reducing the power con-
sumption at the same time. In our previous work [8], we presented the details
of designing the different modules of a base prototype of hardware implemen-
tation of the Task Superscalar architecture. In this paper, we analyze of the
hardware implementation of the Task Superscalar architecture. Our analysis is
based on the base prototype of hardware implementation of the Task Super-
scalar architecture [8] and an improved design that is presented in this paper.
Using some testbenches, we simulate and evaluate the hardware designs of the
Task Superscalar architectures, and compare the results to the ones obtained
by running the same test cases on the Nanos runtime system [9] supports the
same programming model.

The reminder of the paper is organized as follows: In Section 2, we present
the related work and a brief overview of the Task Superscalar architecture.
Section 3 describes the hardware designs of the Task Superscalar architecture
and the operational flow of the pipeline of the improved hardware design. In
Section 4, we introduce our experimental setup and methodology, and, then,
results and evaluation of hardware designs are presented in this Section. Finally,
the paper concludes in Section 5.

2. Related Work

An emerging class of task-based dataflow programming models such as StarSs [1,
2, 3], OoOJava [5] or JADE [4] automates data dependency and solves the syn-

2

chronization problem of static task management systems. These models try
to support dynamic task management (creation and scheduling) with a simple
programming model [1]. However, their flexibility comes at the cost of a rather
laborious task management that should be done at runtime [10]. Moreover,
management of a large amount of tasks affects the scalability and performance
of such systems and potentially limits their applicability.

Some hardware support solutions have been proposed to speed-up task man-
agement, such as Carbon [11], TriMedia-based multi-core system [12] and TMU [13],
but most of them only schedule independent tasks. In these systems, the
programmer is responsible to deliver tasks at the appropriate time. Carbon
minimizes task queuing overhead by implementing task queue operations and
scheduling in hardware to support fast tasks dispatch and stealing. TriMedia-
based multi-core system contains a centralized task scheduling unit based on
Carbon. TMU is a look-ahead task management unit for reducing the task re-
trieval latency that accelerates task creation and synchronization in hardware
similar to video-oriented task schedulers [14].

Dynamic scheduling for system-on-chip (SoC) with dynamically reconfig-
urable architectures is interesting for the emerging range of applications with
dynamic behavior. As an instance, Noguera and Badia [15, 16] presented a
micro-architecture support for dynamic scheduling of tasks to several reconfig-
urable units using a hardware-based multitasking support unit. In this work the
task dependency graph is statically defined and initialized before the execution
of the tasks of an application.

Task Superscalar architecture [6, 7] has been designed as a hardware sup-
port for the StarSs programming model. Unlike in Noguera’s work, the task
dependency graph is dynamically created and maintained using runtime data
flow information, therefore increasing the range of applications that can be
parallelized. The Task Superscalar architecture provides coarse-grain managed
parallelism through a dynamic dataflow execution model and supports imper-
ative programming on large-scale CMPs without any fundamental changes to
the micro-architecture. As our work is based on Task Superscalar architec-
ture, in the following section we describe this architecture. Nexus++ [17, 18]
is another hardware task management system designed based on StarSs that is
implemented in a basic SystemC simulator. Both designs leverage the work of
dynamically scheduling tasks with a real-time data dependence analysis while,
at the same time, maintain the programmability, generality and easiness of use
of the programming model.

2.1. Task Superscalar Architecture

The Task Superscalar architecture uses the StarSs programming model to
uncover task level parallelism. This programming model enables programmers
to explicitly expose task side-effects by annotating the directions of the param-
eters. With those annotations, the compiler can generate the runtime calls that
will allow the Task Superscalar pipeline to dynamically detect inter-task data
dependencies, identify task-level parallelism, and execute tasks in the out-of-
order manner.

3

Figure 1 presents the organization of the Task Superscalar architecture. A
task generator thread sends tasks to the pipeline front-end for data dependency
analysis. The recently arrived tasks are maintained in the pipeline front-end.
The front-end asynchronously decodes the task dependencies, generates the data
dependency graph, and schedules tasks when all their parameters are available
(i.e., following dataflow philosophy). Ready tasks are sent to the backend for
execution. The backend consists of a task scheduler queuing system (TSQS)
and processors.

The Task Superscalar front-end employs a tiled design, as shown in Figure 1,
and is composed of four different modules: pipeline gateway (GW), task reserva-
tion stations (TRS), object renaming tables (ORT) and object versioning tables
(OVT). The front-end is managed by an asynchronous point-to-point protocol.
The GW is responsible for allocating TRS space for new tasks, distributing tasks
and their parameter to the different modules, and blocking the task generator
thread whenever the pipeline fills. TRSs store the meta-data of the in-flight
tasks and, for each task, check the readiness of its parameters. TRSs maintain
the data dependency graph, communicating with each other in order to relate
consumers to producers and notify consumers when data is ready. The ORTs
are responsible to match memory parameters to the most recent task accessing
them, and thereby detect object dependencies. The OVTs save and control all
the live versions of every parameter in order to manage dependencies. That
helps Task Superscalar to maintain the data dependency graph as a producer-
consumer chain. The functionality of the OVTs is similar to a physical register
file, but only to maintain meta-data of parameters.

Figure 1 also shows at its right the Out-of-Order equivalent component to the
Task Superscalar modules. The Task Superscalar extends dynamic dependency
analysis in a similar way to the traditional Out-of-Order pipeline, in order to
execute tasks in parallel. In Out-of-Order processors, dynamic data dependen-
cies are processed by matching each input register of a newly fetched instruction
(i.e., a data consumer), with the most recent instruction that writes data to that
register (data producer). The instruction is then sent to a reservation station
to wait until all its input parameters become available. Therefore, the reserva-
tion stations effectively store the instruction dependency graph composed by all
in-flight instructions.

The designers of the Task Superscalar pipeline opted for a distributed struc-

Out-of-Order equivalents:

Register Renaming Table

Physical Register File

(Only meta-data)

Reservation Station

Processor

Frontend

(Task Window)

Backend

Task Generator Thread

ORT ORT ORT ORT

OVT OVT OVT OVT

TRS TRS TRS TRS

TRS TRS TRS TRS

Pipeline Gateway

TSQS

Processor Processor Processor

Figure 1: The Task Superscalar architecture

4

ture that, through careful protocol design that ubiquitously employ explicit data
accesses, practically eliminates the need for associative lookups. The benefit of
this distributed design is that it facilitates high levels of concurrency in the con-
struction of the dataflow graph. These levels of concurrency trade off the basic
latency associated with adding a new node to the graph with overall throughput.
Consequently, the rate in which nodes are added to the graph enables high task
dispatch throughput, which is essential for utilizing large many-core fabrics.

In addition, the dispatch throughput requirements imposed on the Task
Superscalar pipeline are further relaxed by the use of tasks, or von-Neumann
code segments, as the basic execution unit. The longer execution time of tasks
compared to that of instructions means that every dispatch operation occupies
an execution unit for a few dozen microseconds, and thereby further amplifies
the design’s scalability.

3. Hardware Prototypes of the Task Superscalar Architecture

In our previous work [8], we have presented the detail of each module of the
base hardware prototype of the Task Superscalar architecture. Each module is
written in VHDL and synthesized into two FPGAs of Virtex 7 family. In this
work, we focus on the behavior of the whole Task Superscalar implementation
using these modules. Figure 2-a shows the structure of the base design that
includes one GW, two TRSs, one ORT, one OVT and one TSQS. These modules
communicate with each other using messages (packets).

Figure 2-b illustrates an improved version of the base design. In the new de-
sign, we have merged the ORT and the OVT in order to save hardware resources
and reduce the latency for processing both new and finished tasks. The new
component is called extended ORT (eORT). As Figure 2-b shows, the modified
design is mainly composed of one GW, two TRSs, one eORT, and one TSQS.

GW

Trace Memory

ORT
PM FSM

OVT_arbiter

TSQS

TRS_arbiter H_TRS_arbiter

from OVT

from TRSs

from TRSs

 from TRSs

to TRSs to OVT to GW

OVT VM FSM

TRS TM FSM TRS TM FSM

to TRSs to OVT to GW

GW

Trace Memory

TSQS

TRS_arbiter H_TRS_arbiter

from TRSs

from TRSs

to TRSs to eORT to GW

TRS TM FSM TRS TM FSM

to TRSs to eORT to GW

eORT_arbiter

from TRSs

 eORT
PM FSM VM

(a) (b)

Figure 2: Task Superscalar hardware designs, a) base prototype, b) improved prototype

One of the objectives in the hardware prototype implementation is to mini-
mize the FPGA resources used in controllers, buses, and registers to maximize

5

the available FPGA resources for the memory units of the modules. TRS mem-
ory (TM) is divided into slots. Each slot has sixteen 200-bit entries, one for
every meta-data of the task. With this size, each TRS can store up to 512
tasks, so it has a total of 8K entries of memory organized as 512 sixteen-entry
slots (one slot per task). Therefore, the whole prototype with two TRSs can
store up to 1024 in-flight tasks. The memory of the OVT, called versions mem-
ory (VM), can save up to 8K versions of parameters. The ORT memory, called
parameters memory, (PM) has 1024 sets and each set has eight ways. It can
store the meta-data of 8K parameters. In the improved design, the eORT has
two memories, one for saving parameters (PM) and the other for saving the
versions (VM). The PM is an 8-way set-associative memory with 1024 sets for
storing the meta-data of 8K parameters. The VM is a direct mapped memory
that can save up to 8K versions of parameters.

Another important consideration was to minimize the cycles required for
processing input packets in order to increase the overall system speed. Each
module of the prototype has a finite state machine (FSM) in order to process
the main functionality of the module. In that design, the FSMs are implemented
in such a manner that each state uses one clock cycle.

As Figure 2 illustrates, we have used four-element FIFOs and arbiters to
interconnect the different modules of the prototype. The FIFOs decouple the
processing of every component in the system. This interconnection organization
allows the system to scale while reduce the possibility of stalls.

For designing these prototypes, we have modified the operational flow of
processing arrived and finished tasks of the original Task Superscalar. Therefore,
the hardware design has fewer packets that are also denser than the packets
used in the software design. For instance, for sending non-scalar parameters,
we have modified the information flow, so we have removed two packets that
are used in the software version. In software version, non-scalar parameters are
sent to the ORT. After that, the ORT sends a request for creating a version
to the OVT and meanwhile, passes the parameter to the TRS. Then, the TRS
asks the OVT for the address of the version in the memory of the OVT. After
processing the request for creating a version, the OVT informs the address of
the version to the TRS. In contrast, in the hardware version, instead of the
ORT, the OVT is responsible for sending both the parameter and address of
the version to the TRS, after processing the request for creating a version.
With these modifications the functionality is maintained (without parameter
renaming) diminishing the time needed to process a task.

In addition, since in the hardware design, the allocating and deleting of VM
entries is controlled by the ORT, we have removed another packet which was
originally sent from the ORT to the OVT as a response for asking permission for
releasing a version. Moreover, in the hardware designs, for creating producer-
consumer chains, fewer packets are used. Therefore, we have less traffic between
modules and also fewer cycles for creating the chains.

6

3.1. Operational Flow of the Improved Prototype

In this section, we describe the operation flow of the improved design for
processing arrived and finished tasks.

Algorithm 1 shows the operational flow of processing arrived tasks that be-
gins when the GW sends an allocation request to one of the TRSs. The GW
gets a task from the task generator thread and selects a TRS that has space for
saving the task. After selecting a TRS, the GW sends a request to the TRS to
allocate a slot of TM for meta-data of the task. Once a slot is allocated, the
GW starts to send the scalar parameters of the allocated task to the TRS. For
data dependency decoding, the GW sends non-scalar parameters to the eORT.
When all of the parameters of a task are sent, the GW is ready to send allocation
request of the next task.

When the eORT receives a parameter from the GW, it checks the existence
of any entry for this parameter. If there is an entry for the parameter in the
PM, the eORT updates it; otherwise, a new entry is created. For every output
parameter (producer), eORT creates a new version in the VM for that and
updates the previous version of the parameter, if it exists. For every input
parameter, if it is the first time that the parameter appears, the eORT creates
a new version for it. Otherwise, it only updates the existing version of the
parameter adding a new consumer. Meanwhile, the eORT sends the parameter
with version information to the TRS.

Algorithm 2 shows the procedure of a finished task. When execution of a
task finishes, the TRS starts to release the parameters of the task and also
notifies the eORT releasing of each parameter. After all the parameters of the
task are released, the TRS frees the task.

For each output parameter, if there are consumers waiting for its readiness,
the eORT notifies the TRS that is on the top of the consumer stack that the pa-
rameter is ready. When a consumer TRS gets a Ready message for a parameter,
it updates the associated memory entry and, if there is another TRS consumer,
sends the message to it. The ready message is propagated between producer
and consumers based on consumer chaining that is repeated until there are no
more consumers in the stack. In this architecture, each producer does not send
a ready message of an output parameter to all of its consumers; instead, a pro-
ducer sends a ready message only to one of the consumer which is on top of
the consumer stack of that parameter [6]. Then each consumer of an output
parameter passes the ready message to the next consumer. When execution of
all of consumers of a producer (an output parameter) finished, this producer
sends a ready message to the next producer of that parameter.

Meanwhile, when the eORT receives notification of releasing a parameter,
it decreases the total number of users of that parameter. If there are no more
users for the version it may be deleted. In the case that the version is the last,
and there are no more users for the parameter, the eORT entry and its related
version in the VM are deleted. In the case that the version is not the last one
and there are no more users for the parameter, the eORT frees two entries of
the VM (one for the version that will not be used more, and the other for the

7

last version) and also deletes the corresponding eORT entry. The reason of this
behavior is the fact that the last version of a parameter should not be deleted
before all previous versions are deleted because if a new consumer arrives, it
should be linked to the last version.

Although the above description focuses on the decoding of individual tasks
and parameters, the pipeline performance stems from its concurrency. As the
GW asynchronously pushes parameters to the eORT, the different decoding
flows, task executions and task terminations occur all in parallel.

Algorithm 1: Procedure of processing an arrived task

1 GW gets meta-data of a task and its parameters from trace memory;
2 GW selects a free TRS based on the round robin algorithm;
3 GW sends the task to the allocated TRS;
4 if #param = 0 then
5 TRS sends the task for execution;
6 else
7 for all parameters do
8 if parameter is scalar then
9 GW directly sends the parameter to the TRS;

10 TRS saves it in the TM;
11 if all the parameters are ready then
12 TRS sends the task for executing;

13 else
14 GW sends each non-scalar parameter to eORT for data dependency

analysis;
15 eORT saves the parameter in PM;
16 if parameter is input then
17 if first time then
18 eORT creates a version for the parameters in the VM;
19 else
20 eORT updates the current version of the parameter in the VM;

21 else
22 eORT creates a version for the parameter in the VM;
23 if NOT first time then
24 eORT updates the previous version of the parameter in the VM;

25 eORT sends the parameter to the TRS;
26 TRS saves it in the TM;
27 if all the parameters are ready then
28 TRS sends the task for executing;

4. Results and Evaluation

In this section we detail the results for the base and the improved hardware
prototypes. The objectives are: (1) to analyze the latency of managing one
isolated task with different number and types of parameters, and (2) compare
a real software runtime systems and our prototype proposals. In particular, we
analyze 14 different cases that represent the best, the worst and the average cases
for isolated tasks, and then, the influence of the data dependency management
of several tasks.

8

Algorithm 2: Procedure of processing a finished task

1 TRS releasing all parameters and task from the memory;
2 TRS notifies the eORT for each output parameter;
3 if parameter is output then
4 eORT notifies readiness of the parameter to the TRS which is the top element of

the consumer stack;

5 if #users of the version = 0 then
6 if the version is the last one then
7 if all other version deleted then
8 eORT deletes the last version and the eORT entry;

9 else
10 eORT deletes the version;
11 if all other version deleted then
12 eORT deletes the last version and the eORT entry;

4.1. Experimental Setup and Methodology

The hardware prototypes have been written in VHDL. To verify the func-
tionality of the pipeline of the designs, we have simulated them using the wave-
form feature of the ModelSim 6.6d. In this context, we use different bit-stream
test-benches as individual tasks and sets of non-dependent and dependent tasks.

For the real software runtime system results, we use the experimental re-
sults for the Nanos 0.7 runtime system, that supports the OmpSs programming
model [19]. We have coded in C the same examples of non-dependent and de-
pendent tasks used for our prototypes experiments, using the OmpSs directives
to specify the input and output dependencies. Those codes have been compiled
with the Mercurium 1.3.5.8 source to source compiler [9], that has Nanos 0.7a
support and uses, as backend compiler, the gcc 4.6.3 (with -O3 optimization
flag). The compilation has been done with Extrae 2.3 instrumentation linking
options. We have run the applications in a 2.4GHz Core2 Duo machine, with
OMP NUM THREADS=2 and Extrae instrumentation options. Each applica-
tion execution generates a trace that is translated to a Paraver trace, which
has been analyzed to obtain the execution time spent in the runtime library on
managing the tasks and data dependency tasks.

4.2. Hardware Analysis

Table 1 illustrates the latency cycles required for processing isolated tasks
with different number of parameters and status of the parameter in the base
and improved hardware prototypes. We have selected these cases to find out
the minimum and maximum cycles that required for processing different kinds
of tasks: tasks without parameter, tasks with one parameter, tasks with two
parameters, and tasks with fifteen (i.e., maximum number of parameter in this
prototype) parameters. As the Table shows, the minimum latency cycles of pro-
cessing parameters are for scalar parameters which are the same in both designs.
The maximum latency cycles are for processing output (or inout) parameters
that do not appear for the first time in the pipeline. The results show that the

9

improved version (with the eORT: OVT + ORT) has fewer latency cycles than
the base prototype.

Table 1: Latency cycles for processing isolated tasks

 #params Condition of the parameter(s)
Latency for processing tasks (cycles)

Basic design Improved design

Case 1 0 - 17 17

Case 2 1 scalar 32 32

Case 3 1 non-scalar (input or output) and first time 50 43

Case 4 1 non-scalar, input, and not first time 51 44

Case 5 1 non-scalar, output, and not first time 52 45

Case 6 2 both scalar parameters 44 44

Case 7 2
1st: scalar

2nd: non-scalar (output or input) and first time
55 48

Case 8 2
1st: scalar

2nd: non-scalar, input and not first time
56 49

Case 9 2
1st: scalar

2nd: non-scalar, output and not first time
57 50

Case 10 2
1st: non-scalar, input and first time

2nd: non-scalar, output and first time
64 51

Case 11 2
1st: non-scalar, input and not first time

2nd: non-scalar, output and not first time
67 54

Case 12 2 both non-scalar, output and not first time 68 56

Case 13 15 all scalar 148 148

Case 14 15 all non-scalar, output and not first time 198 186

Figures 3 and 4 show examples of non-dependent and dependent tasks. In
these examples, we have five tasks (Ti), each of them has two parameters. Each
Si is related to the task Ti and indicates a TRS entry (a slot of TM) which
is assigned to the Ti. TRSs are assigned to the tasks according to the round
robin algorithm, so in this examples T1, T3, and T5 are stored in one TRS of
the prototypes and T2 and T4 are stored in the other TRS.

Figure 3 shows the slots and versions of five non-dependent tasks. In the
Figure, Vxi is the corresponding version of the parameter xi that stored in the
VM. For the base prototype, it takes 163 cycles for completing this trace while
the improved design requires 147 cycles to process these tasks. The hardware
designs operate at about 150 MHz.

D: DropParam packet

Vxi: Version of param xi

Si: TRS Slot i

T1 x1 , 10

T2 b , x2

T3 c , x3

T4 x4 , 20

T5 d , x5

Vx1

D1

TRS1

S1

Vx2

D2

Vx3

D3

Vx4

D4

Vx5

D5

TRS1

S3

TRS2

S2

TRS2

S4

TRS1

S5

Figure 3: An example of five non-dependent tasks.

Figure 4 presents an example of a set of five dependent tasks. By this exam-
ple, we show the producer-consumer chain of hardware designs. The producer-
consumer chain of the parameter x is shown in Figure 4. Vix is a version of x in
the VM. Task T1 is a producer for x and T2 and T3 are its consumers. Therefore,
tasks T2 and T3 are dependent on T1. V1x is the corresponding version for these
three tasks. T4 is another producer for x and T5 is its consumer. For these two
tasks, we have version V2x in the VM.

When T1 finished, the TRS which is responsible for T1 sends a message
(called DropParam packet) to its related version (V1x) in order to notify it
releasing parameter x. Then, V1x sends a ready message (R1) to notify the
readiness of x to S3 which is on the top of the consumer stack. S3 immediately
forwards the ready message to S2 which is another (and also the last) consumer

10

R: DataReady packet
D: DropParam packet

Vix: Version i of param x

Si: TRS Slot i

T1 x , 10

T2 b , x

T3 c , x

T4 x , 20

T5 d , x
R3

V1x

V2x

R2

R4

R1 D1

D3

D4

D5

D2 1 2

3

4 5

6

7 8

9

TRS1

S1

TRS1

S3

TRS2

S2

TRS2

S4

TRS1

S5

Figure 4: An example of five dependent tasks

of x (produced by T1). Whenever T2 and T3 finished, S2 and S3 inform the V1x.
As soon as all the consumers related to V1x finished, V1x sends a ready message
to the TRS which saves the next producer of x (i.e., T4). A similar scenario
is done for T4, V2x and T5. For the base prototype, it takes 212 cycles for
completing this trace while the improved design spends 195 cycles. Operating
frequency for both designs is near 150 MHz.

Table 2 shows the overall number of cycles and time that those two examples
take on the two prototypes: base and improved design. The table also shows the
latency in cycles and time for those examples on the real software runtime system
Nanos. The execution time/cycles of the tasks is the same in both designs and
Nanos runtime and depends on the kind of backend processors. Therefore, we
have decided to not include their latency/time in the overall count. The table
also shows the task throughput (tasks executed per second) for the hardware
designs and runtime implementation. Our designs are more than 100x faster
than the software runtime.

Figure 5 shows the processing of the packets related to the tasks, their pa-
rameters and their dependencies for the two testbenches on our two prototypes
(The description of the labels is presented in the caption). In particular, Figures
5-a and 5-b show that processing for the five non-dependent tasks on base and
improved prototypes respectively, and Figures 5-c and 5-d for the five depen-
dent tasks on base and improved prototypes. The results show that due to the
tiled structure of the Task Superscalar architecture, most of the operations of
processing a new task and its parameters, and a finished task are simultaneously
accomplished.

Table 2: Latencies of processing five tasks on the prototypes and Nanos

 Latency for processing tasks (cycles) Latency for processing tasks (µs) Task Throughput (task/ sec)

Nanos

runtime

(2.40 GHz)

Base

design

(150 MHz)

Improved

design

(150 MHz)

Nanos

runtime

Base

design

Improved

design

Nanos

runtime

Base

design

Improved

design

Example 1:

5 non-dependent

tasks

413×103 163 147 172 1.087 0.98 30×103 4600×103 5100×103

Example 2:

5 dependent tasks
475×103 212 195 198 1.41 1.3 25×103 3540×103 3850×103

11

G
W

O
R

T

O
V

T

T
R

S
1

T
R

S
2

(a
)

G
W

O
R

T

T
R

S
1

T
R

S
2

(b
)

G
W

O
R

T

O
V

T

T
R

S
1

T
R

S
2

(c
)

G
W

O
R

T

T
R

S
1

T
R

S
2

(d
)

 0

2
0

 4

0

 6
0

8
0

1
0
0

 1

2
0

1
4
0

1
6
0

1
6
3

 0

2
0

 4

0

6
0

 8

0

1
0
0

 1

2
0

 1

4
0

 1

4
7

 1

6
0

 0

 2

0

 4

0

6
0

 8

0

 1

0
0

 1

2
0

 1

4
0

1
6
0

 1

8
0

 2

0
0

 2

1
2

 0

2
0

 4

0

6
0

 8

0

1
0
0

 1

2
0

1
4
0

 1

6
0

1
8
0

1
9
5

P
1
1
 P

1
2

T

2

T
1

P
2
1
 P

2
2

T

3

P
3
1
 P

3
2

T

4

P
4
1
 P

4
2

T

5

P
5
1
 P

5
2

T
2

P
1
2

P

2
1

P

2
2

P

3
1

P

4
2

P

5
1

P

5
2

P

3
1

D

1

D
2

D
3

D
4

P
2
1

P

2
2

S

e
n

d
 T

2

T
4

P
4
1

P

4
2

S

e
n

d
 T

4

T
2

T
4

T
1

T
3

T
1

P
1
1

P

1
2

S

e
n

d
 T

1

P
3
1

P

3
1

S

e
n

d
 T

3

T
5

P
5
1

P

5
2

S

e
n

d
 T

5

T
3

C
y
cl

e

C
y
cl

es

C
y
cl

es

C
y
cl

es

P
1
1
 P

1
2

T

2

T
1

P
2
1
 P

2
2

T

3

P
3
1
 P

3
2

T

4

P
4
1
 P

4
2

T

5

P
5
1
 P

5
2

P
1
2

P

2
1

P

2
2

P

3
1

P

4
2

P

5
1

P

5
2

P

3
1

D
1

D
2

D
3

D
4

P
1
2

P

2
2

P

2
1

P

3
1

P

3
1

P

4
2

P

5
1

P

5
2

T
3

T
1

P
1
1

P

1
2

S

e
n
d
 T

1

P
3
1

P

3
1

S

e
n

d
 T

3

T
5

P
5
1

P

5
2

S

e
n
d
 T

5

T
1

T

3

T
2

P
2
1

P

2
2

S

e
n
d
 T

2

T
4

P
4
1

P

4
2

S

e
n
d
 T

4

T
2

T

4

P
1
1
 P

1
2

T

2

T
1

P
2
1
 P

2
2

T

3

P
3
1
 P

3
2

T

4

P
4
1
 P

4
2

T

5

P
5
1
 P

5
2

P
1
2

P

2
1

P

2
2

P

3
1

P

4
2

P

5
1

P

5
2

P

3
1

T
3

T
1

P
1
1

P

1
2

S

e
n
d
 T

1

P
3
1

P

3
1

S

e
n

d
 T

3

T
5

P
5
1

P

5
2

S

e
n
d
 T

5

T
3

R
4

T
1

R

1

T
2

P
2
1

P

2
2

S

e
n
d
 T

2

T
4

P
4
1

P

4
2

S

e
n
d
 T

4

R
2

T
4

T

2

R
3

P
1
2

P

2
2

P

2
1

P

3
1

P

3
1

P

4
2

P

5
1

P

5
2

D

4

D
1

D
2

D
3

T
1

P
1
1
 P

1
2

T

2

P
2
1
 P

2
2

T

3

P
3
1
 P

3
2

T

4

P
4
1
 P

4
2

T

5

P
5
1
 P

5
2

T
3

T
1

P
1
1

P

1
2

S

e
n
d
 T

1

P
3
1

P

3
1

S

e
n

d
 T

3

T
5

P
5
1

P

5
2

S

e
n
d
 T

5

T
1

R

1

T
3

R
4

R
2

R

3

T
2

P
2
1

P

2
2

T

4

P
4
1

P

4
2

S

e
n
d
 T

4

T
4

S

e
n
d
 T

2

T
2

D
1

P
1
2

P

2
1

P

2
2

P

3
1

P

4
2

P

5
1

P

5
2

P

3
1

D

3

D
4

D
2

F
ig

u
re

5
:

T
im

e
sc

h
ed

u
li
n

g
o
f

fi
v
e

ta
sk

s
in

th
e

h
a
rd

w
a
re

p
ip

el
in

e
o
f

th
e

T
a
sk

S
u

p
er

sc
a
la

r,
a
)

fi
v
e

n
o
n

-d
ep

en
d

en
t

ta
sk

s
o
n

b
a
se

p
ro

to
ty

p
e,

b
)

fi
v
e

n
o
n

-d
ep

en
d

en
t

ta
sk

s
o
n

im
p

ro
v
ed

p
ro

to
ty

p
e,

c)
fi

v
e

d
ep

en
d

en
t

ta
sk

s
o
n

b
a
se

p
ro

to
ty

p
e,

b
)

fi
v
e

d
ep

en
d

en
t

ta
sk

s
o
n

im
p

ro
v
ed

p
ro

to
ty

p
e.

(T
i
:

T
h

e
re

q
u

ir
ed

n
u

m
b

er
o
f
cy

cl
es

th
a
t

ea
ch

co
m

p
o
n

en
t

n
ee

d
s

fo
r

p
ro

ce
ss

in
g

p
a
ck

et
s

re
la

te
d

to
T

a
sk

i,
P
i
j
:

T
h

e
re

q
u

ir
ed

n
u

m
b

er
o
f

cy
cl

es
th

a
t

ea
ch

co
m

p
o
n

en
t

n
ee

d
s

fo
r

p
ro

ce
ss

in
g

p
a
ck

et
s

re
la

te
d

to
P

a
ra

m
et

er
j

o
f

T
a
sk

i,
S
e
n
d

T
i
:

T
h

e
re

q
u

ir
ed

n
u

m
b

er
o
f

cy
cl

es
fo

r
p

re
p

a
ri

n
g

a
p

a
ck

et
fo

r
T

a
sk

i
fo

r
se

n
d

in
g

to
ex

ec
u

ti
o
n

,
D
i
:

T
h

e
re

q
u

ir
ed

n
u

m
b

er
o
f

cy
cl

es
fo

r
p

ro
ce

ss
in

g
a

D
ro

p
P

a
ra

m
p

a
ck

et
(T

h
e

in
d

ex
is

th
e

o
rd

er
th

a
t

th
is

p
a
ck

et
is

cr
ea

te
d

in
F

ig
u

re
s

3
,4

),
R
i
:

T
h

e
re

q
u

ir
ed

n
u

m
b

er
o
f

cy
cl

es
fo

r
p

ro
ce

ss
in

g
a

R
ea

d
y

p
a
ck

et
(T

h
e

in
d

ex
is

th
e

o
rd

er
th

a
t

th
is

p
a
ck

et
is

cr
ea

te
d

in
F

ig
u

re
s

3
,4

).

12

5. Conclusions

In this paper, we present and analyze the first hardware implementations
of the full Task Superscalar architecture. The Task Superscalar is a task-based
hybrid dataflow/von-Neumann architecture designed to support the StarSs pro-
gramming model, adapting the out-of-order principle for parallel executing of
tasks. In order to do so, two different complete hardware designs capable of
keeping up to 1024 in-flight tasks, have been simulated. Our results show that
both our prototypes are around 100x faster than the real software run-time
implementation (i.e., Nanos) when executed at about 10x less frequency. Our
results also demonstrate that the improved hardware prototype of the Task
Superscalar utilizes less hardware resources and requires fewer cycles for task
processing.

We expect to synthesize the hardware implementations of the full Task Su-
perscalar architecture on an FPGA and test it with real workloads, in a near
future.

Acknowledgements
This work is supported by the Ministry of Science and Technology of Spain

and the European Union (FEDER funds) under contract TIN2007-60625, by the
Generalitat de Catalunya (contract 2009-SGR-980), and by the European FP7
project TERAFLUX id. 249013, http://www.teraflux.eu. We would also like to
thank the Xilinx University Program for its hardware and software donations.

References

[1] P. Bellens, J. M. Perez, R. M. Badia, J. Labarta, CellSs: A programming
model for the Cell BE architecture, in: Supercomputing, 2006.

[2] J. Perez, R. Badia, J. Labarta, A dependency-aware task-based program-
ming environment for multi-core architectures, in: Intl. Conf. on Cluster
Computing, 2008, pp. 142–151.

[3] P. Bellens, J. M. Perez, F. Cabarcas, A. Ramirez, R. M. Badia, J. Labarta,
CellSs: Scheduling techniques to better exploit memory hierarchy, Sci. Pro-
gram. 17 (1-2) (2009) 77–95.

[4] M. C. Rinard, M. S. Lam, The design, implementation, and evaluation of
Jade, ACM Trans. Program. Lang. Syst. 20 (3) (1998) 483–545.

[5] J. C. Jenista, Y. h. Eom, B. C. Demsky, OoOJava: Software Out-of-Order
execution, in: ACM Symp. on Principles and practice of parallel program-
ming, 2011, pp. 57–68.

[6] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, M. Valero, Task Superscalar: An Out-of-Order task pipeline,
in: Intl. Symp. on Microarchitecture, 2010, pp. 89–100.

13

[7] Y. Etsion, A. Ramirez, R. M. Badia, E. Ayguade, J. Labarta, M. Valero,
Task Superscalar: Using processors as functional units, in: Hot Topics in
Parallelism, 2010.

[8] F. Yazdanpanah, D. Jimenez-Gonzalez, C. Alvarez-Martinez, Y. Etsion,
R. M. Badia, FPGA-based prototype of the Task Superscalar architecture,
in: 7th HiPEAC Workshop of Reconfigurable Computing, 2013.

[9] M. Gonzalez, J. Balart, A. Duran, X. Martorell, E. Ayguade, Nanos Mer-
curium: A research compiler for OpenMP, in: European Workshop on
OpenMP, 2004.

[10] R. M. Badia, Top down programming methodology and tools with StarSs
- enabling scalable programming paradigms: Extended abstract, in: Work-
shop on Scalable algorithms for large-scale systems, 2011, pp. 19–20.

[11] S. Kumar, C. J. Hughes, A. Nguyen, Carbon: Architectural support for
fine-grained parallelism on chip multiprocessors, in: Intl. Symp. on Com-
puter Architecture, 2007, pp. 162–173.

[12] J. Hoogerbrugge, A. Terechko, A multithreaded multicore system for em-
bedded media processing, Trans. on High-performance Embedded Archi-
tectures and Compilers 3 (2).

[13] M. Själander, A. Terechko, M. Duranton, A look-ahead task management
unit for embedded multi-core architectures, in: Conf. on Digital System
Design, 2008, pp. 149–157.

[14] G. Al-Kadi, A. S. Terechko, A hardware task scheduler for embedded video
processing, in: Intl. Conf. on High Performance & Embedded Architectures
& Compilers, 2009, pp. 140–152.

[15] J. Noguera, R. M. Badia, Multitasking on reconfigurable architectures:
Microarchitecture support and dynamic scheduling, ACM Trans. Embed.
Comput. Syst. 3 (2) (2004) 385–406.

[16] J. Noguera, R. M. Badia, System-level power-performance trade-offs in task
scheduling for dynamically reconfigurable architectures, in: Intl. Conf. on
Compilers, architectures and synthesis for embedded systems, 2003, pp.
73–83.

[17] C. Meenderinck, B. Juurlink, A case for hardware task management sup-
port for the StarSs programming model, in: Conf. on Digital System De-
sign, 2010, pp. 347–354.

[18] C. Meenderinck, B. Juurlink, Nexus: Hardware support for task-based pro-
gramming, in: Conf. on Digital System Design, 2011, pp. 442–445.

[19] J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. M. Badia,
E. Ayguade, J. Labarta, Productive cluster programming with OmpSs, in:
Euro-Par, 2011, pp. 555–566.

14

