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Abstract— Robots accompanying humans is one of the core
capacities every service robot deployed in urban settings should §
have. We present a novel robot companion approach based on
the so-called Social Force Model (SFM). A new model of robot-
person interaction is obtained using the SFM which is suited for
our robots Tibi and Dabo. Additionally, we propose an interac-
tive scheme for robot's human-awareness navigation using the
SFM and prediction information. Moreover, we present a new
metric to evaluate the robot companion performance based on
vital spaces and comfortableness criteria. Also, a multimodal
human feedback is proposed to enhance the behavior of the
system. The validation of the model is accomplished throughout Fig. 1. Tibi accompanies a personLeft: Person being accompanied by

an extensive set of simulations and real-life experiments. Tibi in an urban areaRight: The same scene using the system interface.
I. INTRODUCTION

Nowadays, robots interact naturally with people and their In the present paper, we use the Social Force Model (SFM)
environment. Thus, urban robots require some tools in ordartroduced by Helbing [8] to model the social interactions,
to successfully serve their purpose of being useful to peoplmore concretely we obtain a robot-person interaction force
The robot companion is a basic tool every urban robot shoufshrameters specifically suited for Tibi robot [9]. To thetbes
have, and it responds the basic necessity of accompaaf/the authors’ knowledge, no other work describes robot-
people in a safety and natural way, see Fig. 1. person interactions using the SFM.

In recent years, an increasing area of interest is the devel-we go deeper into the development of the SFM for
opment of autonomous companion robots [1]. Researchatsbot interactions. This work presents a powerful scheme
are making efforts on performing human-robot interaction ifor robot's human-awareness navigation based on the social
a more natural way. A robot companion should detect th@rces concept. A social aware navigation is well suitedafor
human operator and conduct his/her commands [2]. robot companion task. To this end, additional considenatio

Research into human-robot interaction in the field ofre required to make the system work properly, such as
companion robots is still new in comparison to traditionaprediction information and a learning stage.
service robotics, such as robots serving food in hospitals 0 noreover, we introduce a new metric to evaluate in general
providing specific security services. Therefore, prioe&sh  the robot companion performance, based on vital spaces and
in this particular field is relatively minimal [3]. Most of & comfortableness criteria. Since the verification of maitiier
current research predominantly studies robots that j@ate |oop systems is fuzzy, we require an analytical metric that
insocial-human interactions as companions [4]. Furthggstifies the behavior of our robot companion approach.
research shown that there are other mediating factorswhic |, addition, we present a model of human feedback
can impact this preference, such as a persons experierite Wilgnonse of the behavior of the system. Given the unceytaint
robots [5], gender [6] or in which part of the room she wag,gsqciated to this problem, we believe that the interaction
standing or sitting [7]. L , . system can enhance the accuracy of the robot companion

Robqt companion is a multldlsup.llnary field of robotics '_napproach: the interaction can be achieved by showing the
which intervenes a mixture of subjects such as perceptiopyn 4 petter companion behavior, while simultaneously,
robot navigation and human robot interaction. Despite thfﬁe human can feedback the system to improve the robot

heterogeneity of the subjects treated, the problem can@ot Bq o rmance. The validation of the model is accomplished
tackled independently but in a holistic way, which is not an, o ghout an extensive set of simulations and real-life

easy endeavor. experiments.

Work supported by the Spanish Ministry of Science and Intiomaunder In the remainder of the paper we start by introducing the
project RobTaskCoop(DPI2010-17112). o " theory of the social force model. Section 1l briefly desesb

The authors are with the Institut de Rulwa i Informatica In- he h . di S . vV bot’
dustrial (CSIC-UPC). Llorens Artigas 4-6, 08028 Barcelorpain. the human motion predictor. Section presents robot's

{gferrer,agarrell,sanfeliu}@ri.upc. edu human-aware navigation and a novel metric to evaluate the




performance to accompany a person. Results and conclusionteraction since, to the authors’ knowledge, these patensne
are presented in sections V and VI, respectively. had not been obtained before.

Given the limited field of view of humans, influences
might not be isotropic. This is formally expressed by saalin

In order to achieve a model capable of represent th@e interaction forces with an anisotropic factor depegdin
interactions between a pedestrian and a robot, we wegg ©p.4 betweenv; andd; ,

inspired by works of Helbing [8] and Zanlungo [10]. Their ST 1+ cos(piq) 5
main contribution is the following idea: changes in behavio w(pig) = + (1= )f (6)
(trajectory) can be explained in terms of social fields or where) defines the strength of the anisotropic factor,
forces. However, the cited works do not consider the in- (pia) = -y %
teraction between a person and a robot, which is one of the - Co9\Wig) = g & .
contributions of the present work. The termn, , is the normalized vector pointing from g to
Formally, the social forces model assumes that a pedestriBRSOn»: which descr.lbes the direction of the force.
p: With massm; tries to move at a certaiiesired speed? in ~ A. Parameters Learning

Il. SOoCIAL-FORCEMODEL

a desired directione;, i.e., with desired velocity!? = v) e,. We consider three kinds of interaction forces: person-
Hence, the basic equation of motion for a pedestrian igerson, person-obstacle and person-robot. The first and the
given by a social force term: second interactions has been studied in previous papers lik
d v;(t) [8], [10]. However, the person-robot interaction paramete

e T Fi(t) (1) were not directly obtained in any previous work, thereby,

and describes the movements of the pedespjasver time. in this section we present a learning method to obtain the

For the sake of simplicity, we will value:; as the unity for parameterA,,, By, Apr, dpr }-

all the persons considered. We decouple the training in two steps: firstly, we optimize
A person wants to keep his/her desired velocity througt€ intrinsic parameters of the model forcgs} describing

the steering force,figoal, but is also influenced by other the expected human trajectories under no external constrai

pedestriang;, fj}”, by obstacles,f,”"" and, in the present Secondly, we optimize the extrinsic parameters of the force

study we model the robot interactio, ™. The resulting interaction model Ay, By, Ay, dyr} under the presence

force F; governs the trajectory described by the target Of @ moving robot, making sure it is the only external
E fooal | int @ force altering the outcome of the described trajectory. All
i= 4 i

o ) optimizations used to learn the model forces parameters
Below, the description of each component & is pre-  are carried out using genetic optimization algorithms [11]
sented. Assuming that pedestrian tries to adapt his or hgfinimizing the following error function throughout alv

velocity within arelaxation timek~', f,%°" is given by: training trajectories:
B = k(W) = w) ®
Furthermore, repulsive effects from the influences of othe{ 4, B, \,d} = arg min {Z D lIxolt) — xe(t)|}
: : : {A,B\d} :
people, obstacles and robot in the environment are describe N time

by an interaction force/"t. This force prevents humans (8)

from walking along their intended direction, moreover, itwhere Xo Is the person's observed position ard is the

is modeled as a summation of forces either introduced b\g;;\lue expected after propagating accordinglyto

peoplep;, by static obstacles in the environmentor the Ill. PEOPLEPREDICTION
robot r. We require a model capable of forecasting the set of trajec-
Fint _ Z fint 4 Z f int 4 ¢ int 4) tories that any person might describe at any time, spedifical
K3 1,] 7,0 7,7 . . . .
ier oco in urban settings. As we are using the social forces model

roposed by Helbing [8], we require information regarding
he final destination a person aims to, that is, a long-term
intentionality prediction method.
4 d. In order to predict to which destination the target is aiming
fint = Agelda=dia)/ By f (5) to, we have used a geometrical approach in which a Bayesian
4 predictor calculates the person posteriori probabilities
here,q € P U O U {r} is either a person, an object of thereach all destinations in the scene. The problem is treated a
environment or the robotd, and B, denote respectively a sequential data classification, where orientation inédiom
the strength and range of interaction forek, is the sum with respect to each destination is required to infer thetmos
of the radii of a pedestrian and an entity amil, = r;, — expectable goal, making use of a variant of the Sliding
rq. In order to calculate the Euclidean distance betwgen Window approach.
and the entityg, humans and objects are assumed to be of Therefore, we can obtain a motion propagation to all
circular shape with radit; andr,. The parameterd,, B,,d, destinations in the scene and the probability to occur of
are deffined depending on the nature of the object. In theach future trajectory. This information is useful, splgia
paper we obtain the parameters describing the robot-persoombined with the SFM, which requires destinations, that is

where, P is the set of people moving in the environmen
where the human interacts ar@ is the set of obstacles.
These forces are modeled as:



long term intentionality predictions, in order to calceldhe

Target
driven forces to a final goal. For a more detailed discussion Pérsen
on the prediction issue, see [12].

IV. HUMAN-AWARENESSNAVIGATION

The requirements for a social navigation system consid-
ered in this paper are: a general social interaction model
based on the SFM (Sec. Il), a pedestrian detector system and
a prediction algorithm to estimate the best suited destinat -
a persons aims to. These independent topics are aggregated
to build a unified navigation framework, using the following
idea: the robot is considered as a social agent movirfgg. 2. Robot's Social Forces: Forces applied to the robot while
naturally in human environments accordingly to the SociaPttompanies a person.

Force Model, and thus, aiming to a destination and reacting using the specific parametefst,o, Bro, Ao, dro} COITE-

to obstacles and persons. Furthermore, we believe that a = = : .
sPondmg to the interaction person-obstacle.

more humanized navigation, in the sense that the robo As can be seen in Fig. 2, we have defined an additional

responds to the SFM, will highly increase the acceptance .. . .
over pedestrians, due to the similarities between the robcg?stmatlon to the robot approach. The robot aims to thetarg

. . ._—person in order to accompany him/her, following the Eq. 9.
behaV|c_)r and the expected behavior of another pedestnanp Similarly as presentedp inysection I repulgive eff?acts
i ;?o;hzzseunedé:gleegrﬁSr%Zi?an%\iLizgrr?:\fih ;ct)i:)rr:e LObOtlgta?/rbm the influences of other people and obstacles in the
9 . . '9 " . environment are described by an interaction force which is
as an instantaneous reaction to sensory mformaﬂon,rdnveﬁl sum of forces either introduced by people or by static
by the social-forces centered at the robot. More predselX’ostaCIes in the environment y peop y

we aim to obtain a short-term goal-driven robot navigation In contrast to the social-force model, two different goals

ruled by the SFM. In addition, we make use of the SFM irstl p K h bot dri ds th
framework to successfully accompany a person while safefpPear First Y, & lorce nlwa es the robot drive towards the
redicted destinationf 99", Furthermore, the robot must

U . - ; : rdest:
navigating Ina cr(_)Wded environment, avoiding either Stat'approach the person who accompanies, and hence a second
and dynamical objects.

!
Thereby, it is mandatory to clearly formulate all thegoal pushes the robot to move closer to the peysorf, ;™.

. . o The trade off of these forces in addition to the intéracting
social-forces (Sec. Il) intervening in the human-awarene . .

- ; . . “Jorces, describes the resultant force governing the robot
navigation approach. The following equations are Stra'ghmovement'
forward derivations of the eqs. 2-6. The force to the tasget '
destination is inferred by using the intentionality presidig, F'=a fﬂggjt + Bf90 o F e 45 F Obs (14)
and thus the robot aims to the target's most expectable gnce ghtained the reactive force action, the system be-
destination: haves consequently to these stimuli and propagates lnearl

f goal k(2 — v, (9) its position and velocity according to this force value.

r,dest

The forces of interaction due to pedestrians are the repul- The most interesting part of the system so far, resides

sive forces each person generates to the robot, as followg the fact that the approach proposed does not require
static targets, the robot is able to navigate near to moving

er wnt ] .
P = Z frj (10 persons. Moreover, it can accompany those people who aim
int jep ] ] to the same destination. The following section discusses th
where the forcesf, ;" represent the interaction betweenprocedure to obtain the value of the parameterss, v, 5}
the pedestrian and the robot: and how they are updated.
f?«f?t = Appeltrr=dri) Brow (o 5 Ap) (11) A. Interactive Learning

In order to learn the values of the introduced parameters

which is the formulation of the spherical force (Eq. 5){a, 3,+,5}, we use an Interactive Learning scheme [13]
using the parametefsi,,,, By, A\pr, dyr ;. These parameters under the shape of the person’s response to the stimuligener
correspond to the person-to-robot interaction, and in ggne ated by the robot. This method helps to enlighten the nature

are dependent of the robotic platform used. of the model, in addition to generate controlled interactio
Correspondingly, the interaction between robot and obstgsrces that otherwise would be extremely complicated to
cles is modelled as: generate.
Fobs — Z f it (12) The on-line feedback comes from the target person to

whom the robot tries to approach. The interaction provided
by a human agent by using a wii remote control has been
defined. Here, we expect to receive a feedback measure of the
frffjt = Ame(dm‘d“")/B”’w(@m, Aro) (13) subjective comfortableness of the target being approached

o€ 0
where frf;” is obtained following



This feedback is a subjective measure, nevertheless, we
have modeled a system weighting the contribution of all 9
active forces. VWolunteers had a wii remote control. Partic-
ipants were told to press the button ‘+' if they wanted the

BUC) | d(z,p:) <3}

B= {zc R2 \Q\\ d(z, pi) < 311‘(,:,,_,.)}

robot to get closer to them. However, if people preferred £ @_g {z e R? | dlr,pi) < w(pp..)}
the robot to move directly to the destination, they should £ PersGni(o))
push button *-’. Below, parameters’ variations depending o - ] : .
people’s feedback are presented.
Firstly, we can define the functioV (7") as follows: 2
T
N(T) =) e(t) (15) N
Wheree(t) is expressed ast-:O Fig. 3. Quantitative Metrics: Diagram of the areas used in the evaluation
' of the robot’s performance.
(1) = { +1 if human presses button ‘+' at tinte robot and obstacles has to be considelelj,, f,/2, this
—1 if human presses button *- at tinte force is controlled by the parameter The value ofy has

16 ; ;
N(T) is the difference between the number of tir(neg th@een computed under simulation. _
The combination of these four forces determines the

person presses button ‘+’ and button ‘-’ at tirfieé Then, . , , X
N(T) >0, it N(T) < 0 we imposeN (T') = 0. behavior of the robot while physically approaching a person

Secondly, the forces that appear during the process of'¢ feedback provided refines the weights of the force
accompanying vary according to the distance between tp@rameters and we can infer an interactive behavior where
robot and the person. Then, the variation of the paramete%e person feels comfortable under the presence of the.robot

will change depending on such distance.
Formally, if L(N(T)) denotes the function corresponding
to human’s response, it can be expressed as:

B. Quantitative Metrics

To evaluate the performance of the task accomplished by
the robot, a quantitative metric is defined. This assessiaent
h(N(T)) = { a(N(T)), B(N(T)) if dry > w(er) based on “proxemics”, proposed in [14]. This work considers
Y(N(T)),6(N(T)) if dry <w(pr;) the following taxonomy of distances between people:

. (17) - Intimate distance: the presence of another person is
Where, {a(N(T)), B(N(T)),y(N(T)). 6(N(T))} is'the  ~ Tia s SEseee o P P

set .Of we|ght|ng functions for the parametes, 5, 7,0}, - Personal distance: comfortable spacing (45cm-1.22m).
d,; is the distance between the robot and the person, and, . . T .
: - Social distance: limited involvement (1.22m-3m).

w(¢r,s) represents the personal space of a person, see eq. 6. Public distance: outside circle of involvement gm).

Below, the weighting functions are presented. . . .
Force to the target destinationa: We infer the destination .TO define the metric us_ed n the pr,ese_nt work, three
different areas must be define@l) Human'’s vital space,

of the target by using the intentionality prediction deised gbot’s navigation has to be socially accepted by the person

in section Ill, and thus the robot aims to the most expectablg ied. it | that th bot d i
target’s destination . As it has been described above, £'ng accompanied, 1t 1S necessary that the robot does no

parameter controls the magnitude of the forc 900l The perturb the human'’s vital space, eq. Zil) Social distance

i ; dest’ area A, robots must be allocated in an acceptance social
value of this parameter is compuited as follows: distance.(iii) Finally, the robot should be in the human’s
a(N(T)) =log(1+ N(T)/4) (18) field of view as they interact during the performance of the

Force to the person being accompanieg: An attractive taskB.
force towards the accompanied person has been described. A= {z eR*\ (BUC)|d(z,p;) <3}

Either the current target position as well the expected onoti B 2
.. = eR*\C|d(x,p;) <3 o
prediction are known. The parametgrcontrols the mag- { 2\ | (@, pi) w(@pir)}
nitude of the force fr‘ff“l. The value of this parameter is C = {xeR|d(z,p;) <wlppr)} (21)
computed as follows: wherew(p,, ») is defined in eq. 6.
B(N(T)) = log(1 + N(T)) (19) Moreover, robot can be represented as a circle of 1 meter

of diameter, with center robot’s position, R = {z €
Force of interaction with people v: A repulsive force R?|d(x,r) < 0.5}, whose area i$R| = .
due to the relative position and velocity between the robot Thus, we can now define the performance of the task
and people must be considere, ., f,'}, this force is accomplished by the robot, depending on human’s position
controlled by the parameter. The value ofy is defined as: p; and robot’s position.

Y(N(T)) =1In(1+ N(T)/2) (20) P(r. o) 1 . 1 . 0.1 @2
. . . . . yPi) = 757 + € ,
Force of interaction with obstaclesd: Finally, a repulsive np R| Jear * 2IR| Janr .
force due to the relative position and velocity between the



TABLE |

The function presented has the maximum performance i?lnteraction Tk T A [ B [ d [ & ]
the area described i, since it is the area of human'’s field S 18] > To5 01 032 05
of view and where the interaction between the robot andpgrper [10] 29 10 034 [ 016 1
the human is maximal. Additionally, the aref is a partial Robot-Per 23 266 | 0.79 0.4 0.59
success, since this area is less tolerable by humans. yinall (our approach)) (+ 0.37)| (4 4.51)| (+ 0.21)| (+ 0.25)| (& 0.36)

in the area described further than three meters there is NQodel Forces Parameters.Parameters learned after applying

interaction, and therefore its performance is zero. a,8 and y time evolution
1.4 i T T T
V. EXPERIMENTS w2 g | ‘ ammctT i
. . . L4
In previous sections, we have presented the theoreticeg 1 =="¥/10 8
aspects of a wide variety of topics, including a social force € osf L .cecacaaann . 1
. . . . . = F T R e P P
model (SFM), a long-term predictor of motion intentiongalit 2o . =~ Ttoooooes |
and a human-awareness navigation. Additionally, we haves ,,| ,
discussed how these independent topics can be unified int | ‘ , ;
the same robot companion framework. 0/—(_f ‘ ‘ ‘ ‘ ‘ ‘ ‘
. . . 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A. Robotic Platform, Environment and Implementation trajectory completed [0.1]

. ig. 4. Force parameters «, 3,~: Evolution in time from start to end
To conduct the experiments and to test the approagfe,ch experiment. These variables are averaged usingfteeedt results

presented, we have used two twin mobile service robotsach of the participants chose during the experiment.

called Tibi and Dabo (Fig. @ep), designed to work in urban )
pedestrian areas and interact with people [1]. Table | shows the parameters learned after applying the

The experimental areas where the experiments were cdRinimization process (see Sec. II-A), using genetic algo-
ducted are the Barcelona Robot Lab (BRL), and the Facultdihms, to all database trajectories. Each parameter declu
de Matenatiques i Estaistica (FME). Both are outdoor @ Standard deviation obtained after estimating each trajec
urban environments covering over 10.088, with multiple ~ tory independently. In the same table, it can be seen the

ramps, stairs and obstacles such as bicycle stands, trashda@rameters proposed by Luber [18] and Zanlungo [10] works
or flower pots. refered to the person-person SFM. However, in the present

We are using a probabilistic localization, an implementa/Ork, we are applying the SFM to learn the parameters for a
tion of the adaptive (or KLD-sampling) Monte Carlo local-human-robot interaction, opposite to [10], [18]. Furthers
ization approach, which uses a particle filter to track theepo the standard de\{latlon of some parameters Is .hlgh, because
of a robot against a known map [15]. Our implementatioﬂi’eoP'e behave differently when they interact with robots.
of the people detector is fundamentally based on las@. «, 3, v and§ parameters
information ([16]). This approach uses a boosting method to Once obtained the parameters of the SFM person-robot,
classify if a group of laser points is a human being. And thgue are prepared to obtain the parametgss3,~,d}. The
final requirement is a people tracking, which implementatioexperiment setting, using a robot in a real scenario (FME),
follows a similar approach of the work presented in [17]. is as follows: we explain each volunteer to naturally walk
B. SFM parameters towards its chosen destination, among two options. While

The first step required for the robot companion is th@pproaching the desired destination, the robot will accom-
study of the SFM that governs human motion in generaPany the volunteers and they should behave naturally.

We consider three kinds of interaction forces: personguers ~ As part of the second learning phase, the system learns
person-obstacle and person-robot. The first and the secdfi§ desired robot behavior as explained in Sec. IV-A. The
interactions have been studied in previous papers like [gpurpose of the provided feedback is to learn a general
[10] and [18]. However, the person-robot interaction pa@Pproaching rule that defines a better robot behavior. It is
rameters were not directly obtained in any previous workorovided directly by the target agent to be approached wsing
thereby, in this section we present the results obtained fégmote control, in this way the system automatically wesight
the parameter§ A, By, Apr, dpy. }. the contribution of the active forces, Sec. IV-A.

As discussed in Sec. II-A, we have recorded two different Fig. 4 shows thga, 3,~} obtained from the user feedback
databases of human motion in a real scenario. During tfBat determines the robot behavior. It has been averaged usi
first part, we optimize the intrinsic parameter of the SEM} 25 different experiments and it is depicted as a function
describing the expected human trajectories under no elter®f time, normalized from the start of the experiment to its
constrains. endingt € [0,1].

The second part of the SFM parameter learning was. Simulations
done under the influence of the Tibi robot. We optimize In order to evaluate mathematically the correctness of the
the extrinsic parameters of the force interaction modekactive navigation model, and the performance of the robot
{A,, B, \-,d,} under the presence of a moving robotcompanion approach, we have built a simulated social envi-
making sure it is the only external force altering the outeomronment. This simulated environment serves two purposes:
of trajectory described by the person. firstly it permits a readjustment of theandd parameters, as
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Fig. 5. Synthetic Experiments. Top: Unconstrained areaBottom: Urban settings corresponding to the Barcelona Robot Lale Jéctond column
corresponds to the performance presented previously; bhagiroxemics approach, green the SFM companion and red thenstRrediction information.
All results are function of the pedestrian density in theiemment. The third column are bar diagrams showing the rateiofessful robot arrivals.

the system was not tested in highly crowded environments the scene and the destination they are aiming to. This
Secondly, the simulated environment allows us to validateonditions are calculated randomly and the robot has to
the performance of the approach, using the metrics definedcompany a person under this uncertain environment. We
in Sec. IV-B, in different environments and under differenwould like to stress on the fact that the environment has a
density of pedestrians. high density of persons and each person aims to a random
To this end, we have implemented a complete socialestination. This generates rapidly a chaotic and chaheng
environment, depicted in the left column in Fig. 5, whichenvironment for the robot companion testing (see video at
takes into account pedestrians, obstacles and robots im-anthe project web).
teractive way and each element is reactive to its surrogndin Under this circumstances, we can test the stability of the
according to the SFM. By doing this, we can get a dynamicahethod, that is, if the robot can reach the goal indepengentl
environment, in which each action of the robot alters thef the initial conditions and the environment conditiongisu
behavior of nearby pedestrians and vice versa. as the deployment of external agents or obstacles. We have
To validate the performance of our contributions, we havebserved that most of the times, the robot or person escapes
prepared a set of simulations. Our method makes use of tleeal minima thanks to the surrounding interactions and the
SFM of surrounding persons and obstacles while approactenstant steering force towards a destination.
ing the target and additionally uses prediction informratio The second column of Fig. 5 shows the overall perfor-
regarding the target destination to enhance its performanmance of the different methods with respect to the den-
(red in figure). A second configuration takes into accourgity of pedestrians in the scene. As expected, using social
only the SFM model (green in figure). For this reasoninteraction forces highly increases the performance, it is
the avoidance of moving targets and obstacles is executedtural to suppose that a more awareness robot navigation
dynamically using the interaction forces in addition to thevould help to improve its efficiency. The predictive behavio
goal force. Our method is compared to a robot companiotiearly enhances the performance of the task, either in the
based on proxemics where the robot follows the targetnconstrained scenario or in the urban environment.
person, not considering the force of interactions of other The third column of Fig. 5 shows an average percentage
persons. When some person enter the robot inner safety zooesuccessful arrivals to the destinations, that is, if thigot
the robot stops until the path is clear (black lines in Fig. 5)is within the companion zone (Sec. IV-B) at the moment the
The experiment settings have been tested in two differetdrget achieves its destination.
scenarios, as can be seen in the left column in Fig. 5, the )
first setting is an unconstrained area, free of obstaclesyavh E- R€al experiments
four destinations are defined. The second is a urban settingsNowadays, real experimentation is mandatory in order to
in which obstacles are present as well as pedestrians.  evaluate a robot model, independently on how many simula-
For each environment, the algorithms have been testéidns have been carried out. The proposed robot companion
depending on the density of persons in the unoccupied aregaproach, has been tested in the FME and in the Barcelona
To give statistical consistency to the results, more than 50Robot Lab.
experiments have been carried out, only varying the initial We carried out 60 experiments with different volunteers.
conditions, which is the initial position of each pedestria The robot was able to achieve its goal (the target's goal)



Fig. 6. Real-life experiments: Some examples of the conducted real experimerdp: Dabo accompanying a person to a desired gBattom: The

same scene using the system interface.

20 700 720

20 60 £
Time [seconds]

Fig. 7. Trajectories and Performance: Left: Trajectories of the robot and
the volunteerRight: Performance obtained during the experiment

(1]

in all conducted experiments. The volunteers were told tqy,
naturally walk and the robot accompanied the target usiag th
human-awareness navigation described in Sec. IV. During
the validation of the model in real experiments, we sets
unexpected obstacles and pedestrians in the targets pdth, a
the robot avoided them successfully. n
The performance of a robot companion experiment, anJi
the trajectories of the robot and the volunteers for that

experiment are shown in Fig. 7. 5]
We would like to point the reader to check all the videos of

synthetic and real experiments on following lifd¢ p: / 7 waw.

o (6]

ri.

upc. edu/ groups/ | robot s/ r obot _conpani on/ i r0s2013. php

VI. CONCLUSIONS ANDFUTURE WORK

We have presented a novel robot companion approaci]
based on the so called Social-Forces Model. The major
contributions of this paper are threefold. First, we obtaing
the force parameters of robot-person interaction, spadific
suited for Tibi. We have gone one step ahead into th
development of the SFM for robot interactions, we presente
a powerful scheme for robot's human-awareness navigation
based on the social-forces concept. A social aware naviO!
gation is well suited for a robot companion task, a bettgfiq;
performance has been demonstrated if human interactiens ar
taken into account and intentionality prediction inforroat (12]
is used, specially in open spaces.

Second, the metric is also a contribution of the paper, sin¢&3]
the verification of any system in which a human intervenerE

5]

9l

is hard to evaluate, and thus, we require an analytical met
that justifies the behavior of our robot companion approach.
Finally, we have introduced a model of human feedback®
that is able to obtain the set of weighting parameters for thez,
robot companion behavior. We believe that human feedback
for parameter learning is a key point for the developmer{ils]
of robots whose purpose is interacting with people. The
validation of the model has been demonstrated throughout

an extensive set of simulations and real-life experimemts i
a urban area.

1 §o In future work, we aim to obtain more sophisticated robot
|z behavior, by exploring the enhancement of the model of the
human motion prediction.
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