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Reliability Analysis

Transient Analysis of LargeMarkovModels with
Absorbing States Using Regenerative Randomization

JUAN A. CARRASCO

Departament d’Enginyeria Electrònica, Universitat Politècnica de
Catalunya, Barcelona, Spain

In this article, we develop a new method, called regenerative randomization, for
the transient analysis of continuous time Markov models with absorbing states.
The method has the same good properties as standard randomization: numerical
stability, well-controlled computation error, and ability to specify the computation
error in advance. The method has a benign behavior for large t and is significantly
less costly than standard randomization for large enough models and large enough t.
For a class of models, class C, including typical failure/repair reliability models
with exponential failure and repair time distributions and repair in every state with
failed components, stronger theoretical results are available assessing the efficiency
of the method in terms of “visible” model characteristics. A large example belonging
to that class is used to illustrate the performance of the method and to show that it
can indeed be much faster than standard randomization.

Keywords Continuous time Markov chains; Fault-tolerant systems; Randomi-
zation; Reliability; Transient analysis.

Mathematics Subject Classification 60522.

1. Introduction

Homogeneous continuous time Markov chains (CTMCs) are frequently used for
performance, dependability, and performability modeling. The transient analysis
of these models is usually significantly more costly than the steady-state analysis,
and very costly in absolute terms when the CTMC is large. This makes the
development of efficient transient analysis techniques for CTMCs a research topic
of great interest. Commonly used methods are ODE (ordinary differential equation)
solvers and randomization. Good recent reviews of these methods with new results
can be found in Malhotra et al. (1994), Malhotra (1995), and Reibman and
Trivedi (1988). The randomization method (also called uniformization) is attractive
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1028 Carrasco

because of its excellent numerical stability and the facts that the computation
error is well controlled and can be specified in advance.1 It was first proposed by
Grassman (1977) and has been further developed by Gross and Miller (1984). The
method is offered by well-known performance, dependability and performability
modeling packages (Béounes et al., 1993; Ciardo et al., 1989; Couvillon et al.,
1991; Goyal et al., 1986). The randomization method is based on the following
result (Kijima, 1997, Theorem 4.19). Let X = �X�t�� t ≥ 0� be a CTMC with finite
state space �; let �i�j� i� j ∈ �� i �= j be the transition rate of X from state i to
state j, and let �i =

∑
j∈�−�i� �i�j� i ∈ � be the output rate of state i. Consider any

	 ≥ maxi∈� �i and define the homogeneous discrete time Markov chain (DTMC)
X̂ = �X̂k� k = 0� 1� 2� 
 
 
 � with same state space and initial probability distribution
as X and transition probabilities P�X̂k+1 = j � X̂k = i� = Pi�j = �i�j/	� i �= j� P�X̂k+1 =
i � X̂k = i� = Pi�i = 1− �i/	. Let Q = �Q�t�� t ≥ 0� be a Poisson process with arrival
rate 	 (P�Q�t� = k� = e−	t�	t�k/k!) independent of X̂. Then, X = �X�t�� t ≥ 0� is
probabilistically identical to �X̂Q�t�� t ≥ 0� (we call this the randomization result). The
DTMC X̂ is called the randomized DTMC of X with rate 	. The CTMC X is called
the derandomized CTMC of X̂ with rate 	.

Assume that a reward rate structure, ri ≥ 0� i ∈ � is defined over the state space
of X. The quantity ri has the meaning of “rate” at which reward is earned while
X is in state i. Then, a useful measure to consider is the expected transient reward
rate ETRR�t� = E�rX�t��. Using the facts that X = �X�t�� t ≥ 0� and �X̂Q�t�� t ≥ 0�
are probabilistically identical and that X̂ and Q are independent, we can express
ETRR�t� in terms of the transient regime of X̂ as

ETRR�t� = ∑
i∈�

riP�X�t� = i� = ∑
i∈�

ri

�∑
k=0

P�X̂k = i�P�Q�t� = k�

=
�∑
k=0

∑
i∈�

riP�X̂k = i�e−	t �	t�k

k! =
�∑
k=0

d�k�e−	t �	t�k

k! � (1.1)

with d�k� = ∑
i∈� riP�X̂k = i�. Denoting by q�k� = �P�X̂k = i��i∈� the probability row

vector of X̂ at step k� q�k�� k > 0 can be obtained from q�0� using

q�k+ 1� = q�k�P� (1.2)

where P = �Pi�j�i�j∈� is the transition probability matrix of X̂.
In a practical implementation of the randomization method, an approximate

value for ETRR�t�� ETRRa
N �t�, is obtained by truncating the summatory (1.1) so that

N steps have to be given to X̂:

ETRRa
N �t� =

N∑
k=0

d�k�e−	t �	t�k

k! �

1The computation error has two components: truncation error and round-off error;
the truncation error can be made arbitrarily small, the round-off error will have a very
small relative value due to the numerical stability of the method if double precision is used.
Rigorous bounds for the round-off error have been obtained in Grassman (1993) under
certain conditions concerning the values that transition rates can have and assuming a
special method for computing Poisson probabilities.
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Transient Analysis of Large Markov Models 1029

and, taking into account that 0 ≤ d�k� ≤ rmax = maxi∈� ri, the truncation error
verifies

0 ≤ ETRR�t�− ETRRa
N �t� ≤ rmax

�∑
k=N+1

e−	t �	t�k

k! 


A usual accuracy requirement is to limit the truncation error to a value ≤. Then,
N is chosen as

N = min
{
m ≥ 0 � rmax

�∑
k=m+1

e−	t �	t�k

k! ≤ 

}



Stable and efficient computation of the Poisson probabilities e−	t�	t�k/k!
avoiding overflows and intermediate underflows is a delicate issue and several
alternatives have been proposed (Bowerman et al., 1990; Fox and Glynn, 1988;
Knüsel, 1986; Moorsel and Sanders, 1997). Our implementation of both standard
randomization and regenerative randomization use the method described in Knüsel
(1986, pp. 1028–1029) (see also Abramowitz and Stegun, 1964), which has good
numerical stability.

For large models, the computational cost of the randomization method is
roughly due to the N vector-matrix multiplications (1.2). The truncation parameter
N increases with 	t and, for that reason, 	 is usually taken equal to maxi∈� �i.
Using the well-known result (Ross, 1983) that Q�t� has for 	t → � an asymptotic
normal distribution with mean and variance 	t, it is easy to realize that, for large
	t and  � 1, the required N will be ≈ 	t. If one is interested in solving the model
for values of t for which 	t is very large, randomization will be highly inefficient.
Consider, for instance, a CTMC dependability model of a fault-tolerant system with
hot restarts having an exponential duration with mean 1 minute so that 	 is of the
order of 1min−1. For a time t = 1 year� 	t ≈ 525,600, making randomization very
inefficient if X is large.

The randomization result can also be exploited to develop methods to compute
more complex measures such as the distribution of the interval availability (de Souza
e Silva and Gail, 1986; Rubino and Sericola, 1993, 1995) and the performability (de
Souza e Silva and Gail, 1989, 1998; Nabli and Sericola, 1996; Qureshi and Sanders,
1994). The performance of those methods also degrades as 	t increases.

Several variants of the (standard) randomization method have been proposed
to improve its efficiency. Miller (1983) has used selective randomization to solve
reliability models with detailed representation of error handling activities. The
idea behind selective randomization (Melamed and Yadin, 1984) is to randomize
the model only in a subset of the state space. Reibman and Trivedi (1988) have
proposed an approach based on the multistep concept. The idea is to compute PM

explicitly, where M is the length of the multistep, and use the recurrence q�k+M� =
q�k�PM to advance X̂ faster for steps which have negligible contributions to the
transient solution of X. Since, for large 	t, the number of q�k�’s with significant
contributions is of the order of

√
	t, the multistep concept allows a significant

reduction of the required number of vector-matrix multiplications. However, when
computing PM , significant fill-in can occur if P is sparse. Adaptive uniformization
(Moorsel and Sanders, 1994) is a recent method in which the randomization rate
is adapted depending on the states in which the randomized DTMC can be at a
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1030 Carrasco

given step. Numerical experiments have shown that adaptive uniformization can
be faster than standard randomization for short to medium mission times. In
addition, it can be used to solve models with infinite state spaces and not uniformly
bounded output rates. Recently, it has been proposed to combine adaptive and
standard uniformization to obtain a method which outperforms both for most
models (Moorsel and Sanders, 1997). Another recent proposal to speed up the
randomization method is steady-state detection (Malhotra et al., 1994). A method
performing steady-state detection with error bounds has been developed (Sericola,
1999). Steady-state detection is useful for models which reach their steady-state
before the largest time at which the measure has to be computed.

In this article, we focus on CTMC models with absorbing states and develop
a method called regenerative randomization for their transient analysis. Specifically,
we will consider CTMCs X with finite state space �= S ∪ �f1� f2� 
 
 
 � fA�� �S� ≥ 2,
A≥ 1, where fi are absorbing states and will consider the particular instance of
the ETRR�t� measure, m�t� = ∑A

i=0 rfiP�X�t� = fi�, where all reward rates rfi ≥ 0
are different. The method will require the selection of a “regenerative” state r ∈ S.
It will be assumed that either (a) all states in S are transient, or (b) S has a single
recurrent class of states and the selected regenerative state r belongs to that class.
It will be also assumed that all states are reachable from some state with non null
initial probability and, to simplify the description of the method, that X has a non
null transition rate from r to S′ = S − �r�. The latter condition can, however, be
circumvented in practice by adding, if X has no transition rate from r to S′, a tiny
transition rate � ≤ 10−10/�2rmaxtmax� from r to some state in S′, where  is the
allowed error, rmax = max1≤i≤A rfi and tmax is the largest time at which m�t� has to
be computed, with a negligible impact on m�t� ≤ 10−10� t ≤ tmax.

2

The measure m�t� for CTMC models with the assumed structure has important
applications. Thus, S could include the operational states of a fault-tolerant system
and entry into a single absorbing state f1 could model the failure of the system.
Then, with rf1 = 1 and P�X�0� = f1� equal to the probability that initially the system
is failed, the m�t� measure would be the unreliability of the system at time t. As
another example, S could include a proper subset of the set of operational states of
a fault-tolerant system, entry into an absorbing state f1 could model system failure,
and entry into another absorbing state f2 could model entry into an operational
state not in S. Then, with rf1 = 1� rf2 = 0� P�X�0� = f1� equal to the probability that
initially the system is failed, and P�X�0� = f2� equal to the probability that initially
the system is in an operational state outside S�m�t� would be a lower bound for the
unreliability of the system at time t. As a third example, S could include a proper
subset of the set of operational states of a fault-tolerant system and entry into a
single absorbing state f1 could model either entry into an operational state outside S
or system failure. Then, with rf1 = 1 and P�X�0� = f1� equal to the probability that
initially the system is in an operational state outside S or failed, m�t� would be an
upper bound for the unreliability of the system at time t. Applications also exist in
the performance domain. Thus, the states in S could be states visited by a system

2Let p��� t� be the probability distribution column vector of X at time t as a function
of the added transition rate � from r to S′. Using Lemma 1 in Carrasco (2005), p��� t�−
p�0� t�1 ≤ AT

� 1t, where AT
� is a matrix with all elements null except an element with

value � and an element with value −�, both in the column corresponding to state r. Then,
AT

� 1 = 2� and p��� t�− p�0� t�1 ≤ 2�t, implying that the absolute error in m�t� due to
the addition of the transition rate � is upper bounded by 2rmax�t.
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Transient Analysis of Large Markov Models 1031

while completing a task and entry into a single absorbing state f1 could model task
completion. Then, m�t� would be the probability distribution function of the task
completion time.

Let r be the selected regenerative state. The basic idea in regenerative
randomization is to obtain a transformed CTMC model, of potentially smaller
size than the original CTMC model, by characterizing with enough accuracy the
behavior of the original model from S′ up to state r or a state fi and from
r until next hit of r or a state fi, and solve the transformed CTMC model
by standard randomization. The performance of the method depends, of course,
on the selection for r. The method offers the same good properties as standard
randomization: numerical stability, well-controlled computation error, and ability
to specify the computation error in advance, and can be much faster than standard
randomization. The rest of the article is organized as follows. In Sec. 2, we develop
and describe the method. In Sec. 3, we state the so-called benign behavior of
the method, which implies that for large enough models and large enough t, the
method will be significantly less costly than standard randomization. Also, for a
class of models, class C, including typical failure/repair reliability models with
exponential failure and repair time distributions and repair in every state with failed
components, we obtain stronger theoretical results assessing the computational cost
of the method in terms of “visible” model characteristics. In Sec. 4, using a large
reliability model belonging to class C, we illustrate the performance of the method
and show that it can indeed be much faster than standard randomization. Section 5
discusses preliminary related work. Finally, Sec. 6 concludes the article.

2. Regenerative Randomization

As previously said, the regenerative randomization method combines a model
transformation step with the solution of the transformed model by standard
randomization. Such decomposition is conceptually clear and furthermore allows
the future development of variants of the method by simply using alternative
methods to solve the transformed model. The model transformation step can,
conceptually, be further decomposed into two steps. In the first step, a CTMC
model, V , with infinite state space is obtained such that the m�t� measure can be
expressed exactly in terms of the transient regime of V . Intuitively, such a model
transformation is done by characterizing, using states, the behavior of X from S′ up
to state r or a state fi and from r until next hit of r or a state fi. In the second
step, V is truncated to obtain a CTMC model with finite state space whose transient
regime gives with some upper bounded, arbitrarily small error the m�t� measure.
An important aspect of the method is the use of computationally inexpensive upper
bounds for the model truncation error.

In this section, we will develop and describe algorithmically the method. We will
also show that the method has the same good properties as standard randomization
and will analyze its memory overhead with respect to standard randomization.
Theoretical properties of the method regarding its computational cost will be
investigated in Sec. 3. The rest of the section is organized as follows. Section 2.1
will derive and describe the transformed CTMC model V with infinite state space.
Section 2.2 will deal with the truncation of V . Finally, Sec. 2.3 will give an
algorithmic description of the method, will show that the method has the same good
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1032 Carrasco

properties as standard randomization, and will analyze its memory overhead with
respect to standard randomization.

As in the previous section, we will denote by �i�j� i� j ∈ �� j �= i the transition
rates of X, by �i� i ∈ � the output rates of X, by X̂ = �X̂k� k = 0� 1� 2� 
 
 
 � the
randomized DTMC of X with randomization rate 	, by Pi�j� i� j ∈ � the transition
probabilities of X̂, and by P = �Pi�j�i�j∈� the transition probability matrix of X̂.
We will also use the notation �i�B = ∑

j∈B �i�j� B ⊂ �− �i�� Pi�B = ∑
j∈B Pi�j� B ⊂ �,

�i = P�X�0� = i�, and �B = ∑
i∈B �i� B ⊂ �. Given a DTMC Y , we will denote by

Ym�nc the predicate which is true when Yk satisfies condition c for all k�m≤ k≤ n,
(by convention, Ym�nc will be true for m > n) and by #�Ym�nc�, the number of
indices k�m ≤ k ≤ n, for which Yk satisfies condition c. To simplify the method, we
will assume 	 slightly larger than maxi∈� �i = maxi∈S �i (i.e., 	 = �1+ ��maxi∈S �i,
where � is a small quantity > 0). This implies Pi�i > 0� i ∈ S. Also, since it has been
assumed �r�S′ > 0, we have Pr�S′ > 0.

2.1. Transformed Model with Infinite State Space

We will start by introducing two DTMCs, Z�Z′. It will turn out that the transition
rates of V can be expressed in terms of the transient regimes of Z and Z′.
Furthermore, the benign behavior of the method will depend on the transient nature
of some states of Z and Z′.

The DTMC Z = �Zk� k = 0� 1� 2� 
 
 
 � follows X̂ from r till re-entry in r.
Formally, considering a version of X̂� X̂′, with initial probability distribution
concentrated in state r,

Z0 = r�

Zk =
{
i ∈ S′ ∪ �f1� f2� 
 
 
 � fA� if X̂′

1�k �= r ∧ X̂′
k = i

a if #�X̂′
1�k = r� > 0

� k > 0


The DTMC Z has state space S ∪ �f1� f2� 
 
 
 � fA� a� and its (possibly) nonnull
transition probabilities are:

P�Zk+1 = j �Zk = i� = Pi�j� i ∈ S� j ∈ S′ ∪ �f1� f2� 
 
 
 � fA�� (2.3)

P�Zk+1 = a �Zk = i� = Pi�r � i ∈ S� (2.4)

P�Zk+1 = fi �Zk = fi� = P�Zk+1 = a �Zk = a� = 1� 1 ≤ i ≤ A
 (2.5)

States f1� 
 
 
 � fA� a are absorbing in Z. Also, because of the assumed properties for
X, it can be easily checked that there is a path in Z from every state i ∈ S to an
absorbing state and, therefore, that all states in S are transient in Z.

The second transient DTMC, Z′ = �Z′
k� k = 0� 1� 2� 
 
 
 �, follows X̂ until its first

visit to state r. Formally, Z′ is defined as

Z′
k =

{
i ∈ S′ ∪ �f1� f2� 
 
 
 � fA� if X̂0�k �= r ∧ X̂k = i

a if #�X̂0�k = r� > 0
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Transient Analysis of Large Markov Models 1033

The DTMC Z′ has state space S′ ∪ �f1� f2� 
 
 
 � fA� a�, initial probability distribution
P�Z′

0 = i� = �i, i ∈ S′ ∪ �f1� f2� 
 
 
 � fA�, P�Z′
0 = a� = �r , and (possibly) nonnull

transition probabilities:

P�Z′
k+1 = j �Z′

k = i� = Pi�j� i ∈ S′� j ∈ S′ ∪ �f1� f2� 
 
 
 � fA�� (2.6)

P�Z′
k+1 = a �Z′

k = i� = Pi�r � i ∈ S′� (2.7)

P�Z′
k+1 = fi �Z′

k = fi� = P�Z′
k+1 = a �Z′

k = a� = 1� 1 ≤ i ≤ A
 (2.8)

States f1� 
 
 
 � fA� a are absorbing in Z′. Also, because of the assumed properties for
X, it can be easily checked that there is a path in Z′ from every state i ∈ S′ to an
absorbing state and, therefore, that all states in S′ are transient in Z′.

Let �i�k� = P�Zk = i�, �′
i�k� = P�Z′

k = i� and consider the row vectors ��k� =
��i�k��i∈S and �′�k� = ��′

i�k��i∈S′ . Let PZ be the transition probability matrix of Z
restricted to S × S. Let PZ′ be the transition probability matrix of Z′ restricted to
S′ × S′. Vector ��0� has components �r�0� = 1, �i�0� = 0� i ∈ S′. From ��0�, ��k�,
k > 0 can be obtained using

In words, V̂k = sl if, by step k� X̂ has not left S, has made some visit to r, and the
last visit to r was at step k− l� V̂k = s′k if, by step k� X̂ has not left S′; and V̂k = fi if,
by step k� X̂ has been absorbed into state fi. Note that V̂k = s0 if and only if X̂k = r.
Informally, states sl� l ≥ 0 characterize the behavior of X̂ from r until next hit of
r or a state fi and states s′l� l ≥ 0 characterize the behavior of X̂ from S′ up to state
r or a state fi.

Let a�l�=∑
i∈S �i�l� and a′�l�=∑

i∈S′ �′
i�l�. Note that, being Pr�S′ > 0 and Pi�i > 0,

i ∈ S′� a�l� > 0� l ≥ 0 and, for �S′ > 0� a′�l� > 0� l ≥ 0. The following proposition
states formally that V̂ is a DTMC and gives its initial probability distribution and
transition probabilities for the case �S′ > 0. Note that, since a�l� > 0� l ≥ 0 and, for
�S′ > 0� a′�l� > 0� l ≥ 0, there are not divisions by 0.

Proposition 2.1. Assume �S′ > 0. Let vjl =
∑

i∈S �i�l�Pi�fj
/a�l�, ql =

∑
i∈S �i�l�Pi�r/a�l�,

wl =
∑

i∈S �i�l�Pi�S′/a�l�, v
′j
l = ∑

i∈S′ �′
i�l�Pi�fj

/a′�l�, q′
l =

∑
i∈S′ �′

i�l�Pi�r/a
′�l�, w′

l =∑
i∈S′ �′

i�l�Pi�S′/a
′�l�. Then, V̂ is a DTMC with state space �s0� s1� 
 
 
 � ∪ �s′0� s

′
1� 
 
 
 � ∪

�f1� f2� 
 
 
 � fA�, initial probability distribution P�V̂0 = s0� = �r� P�V̂0 = s′0� = �S′ ,
P�V̂0 = fi� = �fi , P�V̂0 = i� = 0, i �∈ �s0� s

′
0� f1� f2� 
 
 
 � fA�, and (possibly) non

null transition probabilities P�V̂k+1 = fj � V̂k = sl� = v
j
l , P�V̂k+1 = s0 � V̂k = sl� = ql,

P�V̂k+1 = sl+1 � V̂k = sl� = wl, P�V̂k+1 = fj � V̂k = s′l� = v
′j
l , P�V̂k+1 = s0 � V̂k = s′l� = q′

l,
P�V̂k+1 = s′l+1 � V̂k = s′l� = w′

l, and P�V̂k+1 = fi � V̂k = fi� = 1 (the state transition
diagram of V̂ is illustrated in Fig. 1 for the case A = 1).

Proof. See Carrasco (2005). �

In the case �S′ = 0� V̂ has state space �s0� s1� 
 
 
 � ∪ �f1� f2� 
 
 
 � fA�, initial
probability distribution P�V̂0 = s0� = �r = �S , P�V̂0 = fi� = �fi , P�V̂0 = i� = 0,
i �∈ �s0� f1� f2� 
 
 
 � fA� and identical state transition diagram as for the case �S′ > 0
except for the absence of states s′0� s

′
1� 
 
 
 .

The CTMC V has same state space and initial probability distribution as V̂ . Its
state transition diagram is illustrated in Fig. 2 for the case �S′ > 0� A = 1. In the
case �S′ = 0, states s′0� s

′
1� 
 
 
 would be absent. The following theorem establishes

that m�t� can be expressed exactly in terms of the transient regime of V .
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1034 Carrasco

Figure 1. State transition diagram of the DTMC V̂ for the case �S′ > 0, A = 1.

Theorem 2.1. m�t� = ∑A
i=1 rfiP�V�t� = fi�.

Proof. Note that (??) V̂k = fi if and only if X̂k = fi. Then, using the probabilistic
identity of X = �X�t�� t ≥ 0� and �X̂Q�t�� t ≥ 0� on one hand, and of V = �V�t��

t ≥ 0� and �V̂Q�t�� t ≥ 0� on the other hand, where Q is a Poisson process with arrival
rate 	 independent of both X̂ and V̂ ,

m�t� =
A∑
i=1

rfiP�X�t� = fi� =
A∑
i=1

rfi

�∑
k=0

P�X̂k = fi�P�Q�t� = k�

=
A∑
i=1

rfi

�∑
k=0

P�V̂k = fi�P�Q�t� = k� =
A∑
i=1

rfiP�V�t� = fi�
 �

2.2. Truncation of the Transformed Model

In this section we will show how V can be truncated to obtain a CTMC model with
finite state space yielding the measure m�t� with some arbitrarily small error and will

Figure 2. State transition diagram of the CTMC V for the case �S′ > 0, A = 1.

D
ow

nl
oa

de
d 

by
 [

M
ar

y 
A

nn
 M

ul
le

r]
 a

t 0
7:

06
 2

1 
Ja

nu
ar

y 
20

14
 



Transient Analysis of Large Markov Models 1035

derive computationally inexpensive upper bounds for the resulting model truncation
error.

For the case �S′ > 0, the truncated CTMC is called VK�L and is obtained from
V by keeping the states sk up to sK�K ≥ 1 and the states s′k up to s′L� L ≥ 1 and
directing to an absorbing state a the transitions rates from states sK and s′L. The
initial probability distribution of VK�L is the same as that of V and its state transition
diagram is illustrated in Fig. 3 for the case A = 1. Formally, VK�L can be defined
from V as

VK�L�t� =
{
V�t� if, by time t� V has not exited state sK or state s′L�
a otherwise


(2.9)

For the case �S′ = 0, the truncated CTMC is called VK and is obtained from V
by keeping the states sk up to sK�K ≥ 1 and directing to an absorbing state a the
transition rates from sK . The initial probability distribution of VK is the same as that
of V and its state transition diagram is the same as that of VK�L without the upper
part, corresponding to the states s′k� 0 ≤ k ≤ L. Formally, VK can be defined from
V as

VK�t� =
{
V�t� if, by time t� V has not exited state sK�

a otherwise


For the case �S′ > 0, an approximate value for m�t� can be obtained in terms of
the transient regime of VK�L as:

ma
K�L�t� =

A∑
i=1

rfiP�VK�L�t� = fi�
 (2.10)

For the case �S′ = 0, an approximate value for m�t� is given by:

ma
K�t� =

A∑
i=1

rfiP�VK�t� = fi�
 (2.11)

Figure 3. State transition diagram of the CTMC VK�L for the case A = 1.
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1036 Carrasco

The following proposition gives upper bounds for the model truncation error in
terms of the transient regimes of VK�L and VK (rmax = max1≤i≤A rfi ).

Proposition 2.2. For �S′ > 0, 0 ≤ m�t�−ma
K�L�t� ≤ rmaxP�VK�L�t� = a� = me

K�L�t�.
For the case �S′ = 0� 0 ≤ m�t�−ma

K�t� ≤ rmaxP�VK�t� = a� = me
K�t�.

Proof. Consider the case �S′ > 0. Using (2.9), letting A�t� the proposition “by
time t� V has not exited state sK or state s′L”, and denoting by A�t� the negated
proposition of A�t�, we have:

P�V�t� = fi�− P�VK�L�t� = fi� = P�V�t� = fi�− P�V�t� = fi ∧ A�t��

= P�V�t� = fi ∧ A�t���

implying

P�V�t� = fi�− P�VK�L�t� = fi� ≥ 0

and

A∑
i=1

�P�V�t� = fi�− P�VK�L�t� = fi�� ≤ P�A�t�� = P�VK�L�t� = a�


Since

m�t�−ma
K�L�t� =

A∑
i=1

rfiP�V�t� = fi�−
A∑
i=1

rfiP�VK�L�t� = fi�

=
A∑
i=1

rfi �P�V�t� = fi�− P�VK�L�t� = fi��

and 0 ≤ rfi ≤ rmax� 1 ≤ i ≤ A, we have:

0 ≤ m�t�−ma
K�L�t� ≤ rmax

A∑
i=1

�P�V�t� = fi�− P�VK�L�t� = fi��

≤ rmaxP�VK�L�t� = a� = me
K�L�t�


The result for the case �S′ = 0 can be proved similarly. �

There does not seem to exist any specially efficient way of computing the
probabilities P�VK�L�t� = a� and P�VK�t� = a� and, then, use of the upper bounds for
the model truncation error given by Proposition 2.2 could be relatively expensive.
In the remaining of this section, we will obtain upper bounds for me

K�L�t� and me
K�t�

which can be computed quite inexpensively. The regenerative randomization method
will use those upper bounds to control the model truncation error. Use of those
looser upper bounds may result in an increase of the model truncation parameter
K. However, as we shall illustrate in Sec. 4, for class C models, the increase seems
to be very small.

We will start by obtaining some simple relationships. Using Proposition 2.1,
taking into account that, according to (2.3)–(2.5), Z can only enter S′ from states

D
ow

nl
oa

de
d 

by
 [

M
ar

y 
A

nn
 M

ul
le

r]
 a

t 0
7:

06
 2

1 
Ja

nu
ar

y 
20

14
 



Transient Analysis of Large Markov Models 1037

i ∈ S and, therefore (2.3),
∑

i∈S′ �i�k+ 1� = ∑
i∈S �i�k�Pi�S′ , and using the fact that

�r�k� = 0 for k > 0, we have, for k ≥ 0,

wk =
∑

i∈S �i�k�Pi�S′

a�k�
=

∑
i∈S′ �i�k+ 1�

a�k�
=

∑
i∈S �i�k+ 1�

a�k�
= a�k+ 1�

a�k�



and, using a�0� = 1,

k−1∏
i=0

wi =
k−1∏
i=0

a�i+ 1�
a�i�

= a�k�

a�0�
= a�k�


Similarly, assuming �S′ > 0, which implies a′�k� > 0� k ≥ 0, using Proposition 2.1,
taking into account that, according to (2.6)–(2.8), Z′ can only enter S′ from states
i ∈ S′ and, therefore (2.6),

∑
i∈S′ �′

i�k+ 1� = ∑
i∈S′ �′

i�k�Pi�S′ , for k ≥ 0,

w′
k =

∑
i∈S′ �′

i�k�Pi�S′

a′�k�
=

∑
i∈S′ �′

i�k+ 1�
a′�k�

= a′�k+ 1�
a′�k�

�

and, using a′�0� = �S′ ,

k−1∏
i=0

w′
i =

k−1∏
i=0

a′�i+ 1�
a′�i�

= a′�k�
a′�0�

= a′�k�
�S′


 (2.12)

Next, we will consider the randomized DTMCs with randomization rate 	
of the truncated models VK�L and VK . For the case �S′ > 0, let V̂K�L = ��V̂K�L�k�
k = 0� 1� 
 
 
 � be the randomized DTMC of VK�L (its state transition diagram is
illustrated in Fig. 4 for the case A = 1). For the case �S′ = 0, let V̂K = ��V̂K�k�
k = 0� 1� 
 
 
 � be the randomized DTMC of VK (its state transition diagram is the
same as that of V̂K�L but without the states s′k� 0 ≤ k ≤ L).

The quantity me
K�L�t� can be decomposed as me′

L �t�+me′′
K�L�t�, where m

e′
L �t� is rmax

times the probability that, by time t� VK�L has entered a through s′L and me′′
K�L�t� is rmax

times the probability that, by time t� VK�L has entered a through sK . The term me′
L �t�

can be easily computed using the probabilistic identity of VK�L = �VK�L�t�� t ≥ 0� and

Figure 4. State transition diagram of the DTMC V̂K�L for the case A = 1.
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1038 Carrasco

��V̂K�L�Q�t�� t ≥ 0�, where Q is a Poisson process with arrival rate 	 independent of
V̂K�L, by noting that the only path to a of V̂K�L with non null probability which
enters a through s′L is �s′0� s

′
1� 
 
 
 � s

′
L� a� and that path has probability �S′�

∏L−1
i=0 w′

i�.
Using (2.12):

me′
L �t� = rmax�S′

( L−1∏
i=0

w′
i

)
P�Q�t� ≥ L+ 1� = rmaxa

′�L�
�∑

k=L+1

e−	t �	t�k

k! 
 (2.13)

Let cK�L�k� be the probability that, by step k� V̂K�L has entered a through sK
and let cK�k� = P��V̂K�k = a�. Note that, using the probabilistic identity of VK�L and
��V̂K�L�Q�t�� t ≥ 0�, where Q is a Poisson process with arrival rate 	 independent of
V̂K�L,

me′′
K�L�t� = rmax

�∑
k=0

cK�L�k�e
−	t �	t�k

k! � (2.14)

and, using the probabilistic identity of VK and ��V̂K�Q�t�� t ≥ 0�, where Q is a Poisson
process with arrival rate 	 independent of V̂K ,

me
K�t� = rmax

�∑
k=0

cK�k�e
−	t �	t�k

k! 
 (2.15)

The exact values of cK�L�k� and cK�k� are difficult to compute. The following
proposition gives inexpensive upper bounds for those quantities (Ic denotes the
indicator function returning value 1 when condition 1 is satisfied and value 0
otherwise).

Proposition 2.3. For the case �S′ > 0, cK�L�k� ≤ Ik>K�S�k− K�a�K�. For the case
�S′ = 0, cK�k� ≤ Ik>K�S�k− K�a�K�.

Proof. See Carrasco (2005). �

Using (2.13)–(2.15) and Proposition 2.3, it is relatively simple to obtain
computationally inexpensive upper bounds for me

K�L�t� and me
K�t� in terms of a′�L�

and a�K�:

Theorem 2.2. For the case �S′ > 0, me
K�L�t� ≤ rmaxa

′�L�
∑�

k=L+1 e
−	t�	t�k/k! +

rmax�Sa�K�
∑�

k=K+1�k− K�e−	t�	t�k/k!. For the case �S′ = 0�me
K�t� ≤ rmax�Sa�K�∑�

k=K+1�k− K�e−	t�	t�k/k!.

Proof. We consider first the case �S′ > 0. Using (2.14) and Proposition 2.3,

me′′
K�L�t� = rmax

�∑
k=0

cK�L�k�e
−	t �	t�k

k! ≤ rmax

�∑
k=K+1

�S�k− K�a�K�e−	t �	t�k

k!

= rmax�Sa�K�
�∑

k=K+1

�k− K�e−	t �	t�k

k! �
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Transient Analysis of Large Markov Models 1039

and the result follows using me
K�L�t� = me′

L �t�+me′′
K�L�t� and (2.13). For the case

�S′ = 0, using (2.15) and Proposition 2.3,

me
K�t� = rmax

�∑
k=0

cK�k�e
−	t �	t�k

k! ≤ rmax

�∑
k=K+1

�S�k− K�a�K�e−	t �	t�k

k!

= rmax�Sa�K�
�∑

k=K+1

�k− K�e−	t �	t�k

k! 

�

Being the states in S transient in Z� �i�k�� i ∈ S decrease geometrically fast
with k (Seneta, 1981, Theorem 4.3), implying that a�k� = ∑

i∈S �i�k� also decreases
geometrically fast with k. Similarly, being the states in S′ transient in Z′� �′

i�k�� i ∈ S′

decrease geometrically fast with k, implying that a′�k� also decreases geometrically
fast with k. Then, the upper bounds for me

K�L�t� and me
K�t� given by Theorem 2.2 can

be made arbitrarily small by choosing large enough values of K and L (see proof of
Theorem 3 in Carrasco, 2005, for a rigorous justification), and the model truncation
error can be made arbitrarily small.

Notice that
∑�

k=L+1 e
−	t�	t�k/k! is the probability that in the time interval �0� t�

there have been more than L arrivals in a Poisson process with arrival rate 	 and,
therefore,

∑�
k=L+1 e

−	t�	t�k/k! is increasing with t. Regarding
∑�

k=K+1�k− K�e−	t

�	t�k/k!, we can write

�∑
k=K+1

�k− K�e−	t �	t�k

k! =
�∑

k=K+1

k∑
i=K+1

e−	t �	t�k

k! =
�∑

i=K+1

�∑
k=i

e−	t �	t�k

k! �

and, since each term
∑�

k=i e
−	t�	t�k/k! is increasing with t�

∑�
k=K+1�k− K�

e−	t�	t�k/k! is also increasing with t. Then, the upper bounds for me
K�L�t� and me

K�t�
given by Theorem 2.2 are both increasing with t.

2.3. Algorithmic Description and Discussion

An algorithmic description of the regenerative randomization method is given in
Fig. 5. The algorithm has as inputs the CTMC X, the number A of absorbing
states fi, the reward rates rfi ≥ 0� 1 ≤ i ≤ A, an initial probability distribution row
vector � = ��i�i∈�, the regenerative state r, the allowed error , the number of
time points n at which m�t� has to be computed, and the time points t1� t2� 
 
 
 � tn.
The algorithm has as outputs the estimates for m�t�� m̃�t1�� m̃�t2�� 
 
 
 � m̃�tn�. The
algorithm uses � = 10−4 and, therefore, 	 is taken equal to �1+ 10−4�maxi∈S �i.
Of the allowed error , a portion /2 is allocated for the error associated with
the truncation of the transformed model and a portion /2 is allocated for
the error associated with the solution of the truncated transformed model by
standard randomization. Since the upper bounds for me

K�L�t� and me
K�t� given

by Theorem 2.2 increase with t, the error associated with the truncation of
V is controlled for tmax = max�t1� t2� 
 
 
 � tn�. For the case �S′ > 0, the error
allocated for the truncation of V� /2, is divided equally between the contributions
rmaxa

′�L�
∑�

k=L+1 e
−	tmax�	tmax�

k/k! and rmax�Sa�K�
∑�

k=K+1�k− K�e−	tmax�	tmax�
k/k!

to the upper bound for that error given by Theorem 2.2. The error upper bound
associated with the solution of the truncated transformed model by standard
randomization, rmax

∑�
k=N+1 e

−	t�	t�k/k!, where N is the truncation point, also

D
ow

nl
oa

de
d 

by
 [

M
ar

y 
A

nn
 M

ul
le

r]
 a

t 0
7:

06
 2

1 
Ja

nu
ar

y 
20

14
 



1040 Carrasco

Figure 5. Algorithmic description of regenerative randomization.

increases with t, and, therefore, that error is also controlled for tmax. Using the
probabilistic identity between VK�L and ��V̂K�L�Q�t�� t ≥ 0�, where Q = �Q�t�� t ≥ 0� is
a Poisson process with arrival rate 	 independent of V̂K�L, and (2.10), for the case
�S′ > 0, the estimates for m�t�� m̃�t�, are computed using

m̃�t� =
A∑
i=1

rfi

N∑
k=0

P��V̂K�L�k = fi�e
−	t �	t�k

k! =
N∑
k=0

d�k�e−	t �	t�k

k! �

with d�k� = ∑A
i=1 rfiP��V̂K�L�k = fi�. Similarly, using the probabilistic identity

between VK and ��V̂K�Q�t�� t ≥ 0�, where Q = �Q�t�� t ≥ 0� is a Poisson process with
arrival rate 	 independent of V̂K , and (2.11), for the case �S′ = 0, the estimates for
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Transient Analysis of Large Markov Models 1041

m�t�� m̃�t�, are computed using

m̃�t� =
N∑
k=0

d�k�e−	t �	t�k

k! �

with d�k� = ∑A
i=1 rfiP��V̂K�k = fi�.

The method requires the computation of S�m� = ∑�
k=m+1 e

−	tmax�	tmax�
k/k! and

S′�m� = ∑�
k=m+1�k−m�e−	tmax�	tmax�

k/k! for increasing values of m. Reasonably
efficient and numerically stable procedures for performing those computations are
described in Carrasco (2005).

We note that P��V̂K�L�k = fi��P��V̂K�k = fi�� are determined, once P has been
computed, by adding always positive numbers smaller than 1 and, therefore,
regenerative randomization has the same excellent numerical stability as standard
randomization. In addition, the computation error is well controlled and can be
specified in advance. Thus, regenerative randomization has the same good properties
as standard randomization.

We analyze next the memory overhead of regenerative randomization with
respect to standard randomization. Given the relationships (2.3)–(2.5), (2.6)–(2.8)
between the transition probabilities of, respectively, Z and Z′ and the transition
probabilities of X̂, it is not necessary to store PZ and PZ′ explicitly. In addition,
vectors � and �′ and vectors n� and n�′ can share the same storage, and a
similar storage is required by standard randomization. The memory overhead
of regenerative randomization with respect to standard randomization is, then,
basically restricted to the space needed to store the vector of size �S�� �Pi�S′�i∈S and
the transition probabilities of V̂K�L (V̂K) v

i
k� qk� wk� 0 ≤ k ≤ K − 1� 1 ≤ i ≤ A and, if

�S′ > 0� v′ik � q
′
k� w

′
k� 0 ≤ k ≤ L− 1� 1 ≤ i ≤ A.

3. Theoretical Properties

As discussed in Sec. 1, standard randomization requires a number of steps on X̂
which, for large 	t and  � 1, is approximately equal to 	t. Regarding regenerative
randomization, using the facts that all states in S are transient in Z and that all
states in S′ are transient in Z′. It can be shown that:

Theorem 3.1. For the case �S′ > 0, the number of steps K on Z and the number of
steps L on Z′ required in regenerative randomization are, respectively, O�log�	t/��
and O�log�1/��. For the case �S′ = 0, the number of steps K on Z required in
regenerative randomization is O�log�	t/��.

Proof. See Carrasco (2005). �

Theorem 3.1 asserts that, contrary to standard randomization, the model
truncation parameters K and L are smooth functions of 	t. That property is
called “benign behavior”. A consequence of Theorem 2.3 is that, for large enough
	t, the number of steps on Z and Z′ required in regenerative randomization
will be significantly smaller than the number of steps on X̂ required in standard
randomization, implying that the computational cost of the first phase of
regenerative randomization (generation of the truncated transformed model) will
be significantly smaller than the computational cost of standard randomization.
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1042 Carrasco

In addition, for large enough X, the truncated transformed model will be
significantly smaller than X, and, since the maximum output rate of the truncated
transformed model is only slightly larger than maxi∈� �i and, then, for large
t, the truncation point N of the standard randomization method applied to
the solution of the truncated transformed model would be almost identical to
the truncation point N of standard randomization applied to X, the second
phase of regenerative randomization (solution of the truncated transformed model
by standard randomization) will have significantly smaller computational cost
than standard randomization. In summary, for large enough X and 	t, the
computational cost of regenerative randomization will be significantly smaller than
the computational cost of standard randomization.

The computational cost of regenerative randomization depends, of course, on
the selection of the regenerative state r, since that selection influences the behavior
of a�k� and a′�k� and the required values for the truncation parameters K and L.
Ideally, the state r should be chosen so that a�k� and a′�k� decrease as fast as
possible. For as wide class of models as covered by regenerative randomization,
automatic selection of r does not seem to be easy in general, and, then, the method
relies on the user’s intuition to select an appropriate state r. We will consider,
however, a class of models, class C, for which a natural selection for the regenerative
state exists, and, for models in that class and that natural selection, will obtain stronger
theoretical results than the benign behavior asserted by Theorem 3.1 assessing the
performance of regenerative randomization in terms of “visible”model characteristics.

The model class C includes all CTMCs X with the properties described in Sec. 1
for which a partition S0 ∪ S1 ∪ · · · ∪ SNC

for S exists satisfying the following two
properties:

P1. S0 = �o��i.e., �S0� = 1�.
P2. max0≤k≤NC

maxi∈Sk �i�Sk−�i�∪Sk+1∪···∪SNC is significantly smaller than min0<k≤NC

mini∈Sk �i�S0∪···∪Sk−1∪�f1�


�fA� > 0.

Class C covers failure/repair reliability models with exponential failure and
repair time distributions and repair in every state with failed components when
failure rates are significantly smaller than repair rates (the typical case). For
those models, a partition for which properties P1 and P2 are satisfied is Sk =
�states in S with k failed components�. To illustrate those models, Fig. 6 shows a
small failure/repair reliability model of a fault-tolerant system using the pair-and-
spare technique (Johnson, 1989), in which active modules have failure rate �M,
the spare module does not fail, the failure of an active module is “soft” with
probability SM and “hard” with probability 1− SM, and, whether soft or hard,
the failure of an active module is covered with probability CM. Modules in soft
failure are independently recovered at rate �S and modules in hard failure are
repaired by a single repairman at rate �H. The system is initially in the state with
no module failed. With rf1 = 1, the measure m�t� would be the unreliability of the
fault-tolerant system. Assuming �M much smaller than both �H and �S, a partition
for S = �1� 2� 3� 4� 5� 6� showing that the model is in class C is S0 = �1�, S1 = �2� 3�,
S2 = �4� 5� 6�. Class C also covers failure/repair models with exponential failure
time distributions, repair times with acyclic phase-type distributions (Neuts, 1994)
(which can be used to fit distributions of non-exponential positive random variables
(Bobbio and Telek, 1994)), and repair in every state with failed components,
provided that the transition rates of the transient CTMCs defining the phase-type
distributions are sufficiently large compared with failure rates.
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Transient Analysis of Large Markov Models 1043

Figure 6. CTMC reliability model of a repairable fault-tolerant system using the pair-and-
spare technique.

Since, for class C models, X moves “fast” to either state o or an absorbing
state fi, a natural selection for the regenerative state for those models is r = o.
That selection is possible. Consider a class C model and a partition S0 ∪ · · · ∪ SNC

for S satisfying properties P1 and P2, and let

� =
max0≤k≤NC

maxi∈Sk �i�Sk−�i�∪Sk+1∪···∪SNC
min0<k≤NC

mini∈Sk �i�S0∪···∪Sk−1∪�f1�


�fA�



The parameter � can be seen as a “rarity” parameter measuring how small the
transition rates �i�j , i ∈ Sk, j ∈ Sk − �i� ∪ Sk+1 ∪ · · · ∪ SNC

, 0 ≤ k ≤ NC are
compared to min0<k≤NC

mini∈Sk �i�S0∪···∪Sk−1∪�f1�


�fA�. In terms of the rarity parameter
�, we can model the transition rates �i�j , i ∈ Sk, j ∈ Sk − �i� ∪ Sk+1 ∪ · · · ∪
SNC

, 0 ≤ k ≤ NC as �i�j = 	i�j�, where 	i�j are constants satisfying
∑

j∈Sk−�i�∪Sk+1···∪SNC
�	i�j/min0<k≤NC

minl∈Sk �l�S0∪···∪Sk−1∪�f1�


�fA�� ≤ 1 and study the behavior of a�k� and
a′�k� with the selection r = o as � → 0. Since � is small, the actual behavior
should be close to that limit behavior. Let Pi�j��� denote the transition probabilities
of X̂ as a function of the rarity parameter � and let PZ��� and PZ′��� denote,
respectively, the matrices PZ and PZ′ as a function of �. Note that, for i ∈ Sk,
j ∈ Sk − �i� ∪ Sk+1 ∪ · · · ∪ SNC

, 0 ≤ k ≤ NC , lim�→0 Pi�j��� = 0 and that

lim
�→0

Pi�i��� = 1− �i�S0∪···∪Sk−1∪�f1�


�fA�
�1+ ��max0≤k≤NC

maxi∈Sk �i�S0∪···∪Sk−1∪�f1�


�fA�
� i ∈ Sk� 0 < k ≤ NC


We have the following result.3

3x�k� ∼ y�k� for k → � denotes limk→� x�k�/y�k� = 1.
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1044 Carrasco

Theorem 3.2. For class C models and the selection r = o, a�k� ≤ h�k� and
a′�k� ≤ �S′h

′�k�, where, for k → �, h�k� ∼ B���
(

k
p���−1

)
��PZ���

T �k, B��� > 0, p���
integer ≥1 and h′�k� ∼ B′���

(
k

p′���−1

)
��PZ′���T �k� B′��� > 0� p′��� integer ≥1, with

lim�→0 ��PZ���
T � = lim�→0 ��PZ′���T � = q,

q = 1− min0<k≤NC
mini∈Sk �i�S0∪···∪Sk−1∪�f1�


�fA�

�1+ ��max0≤k≤NC
maxi∈Sk �i�S0∪···∪Sk−1∪�f1�


�fA�




Proof. From (??), ��k�T = PZ���
Tk��0�T . Then, since �i�k� ≥ 0, i ∈ S, and∑

i∈S �i�0� = 1,

a�k� = ∑
i∈S

�i�k� = ��k�T1 ≤ PZ���
Tk1��0�T1 = PZ���

Tk1
∑
i∈S

�i�0�

= PZ���
Tk1


Let ��PZ���
T � denote the spectral radius of PZ���

T . We have (Varga, 1962,
Theorem 3.1) that, for k → �� PZ���

Tk1 ∼ B���
(

k

p���−1

)
��PZ���

T �k� B��� > 0� p���
integer ≥ 1.4 Also, since the eigenvalues of a matrix are continuous functions of the
elements of the matrix (Schott, 1997, Theorem 3.13), we have lim�→0 ��PZ���

T � =
��PZ�0�

T �. But, with the ordering of states S0� S1� 
 
 
 � SNC
, the elements in the

lower triangular portion of PZ�0�
T are 0 and the diagonal elements have values

0 and values 1− �i�S0∪···∪Sk−1∪�f1�


�fA�/��1+ ��max0≤k≤NC
maxi∈Sk �i�S0∪···∪Sk−1∪�f1�


�fA��,

i ∈ Sk, 0 < k ≤ NC and, then, ��PZ�0�
T � = q.

From (??), �′�k�T = PZ′���Tk�′�0�T . Then, since �′
i�k� ≥ 0, and

∑
i∈S′ �′

i�0� = �S′ ,

a′�k� = ∑
i∈S′

�′
i�k� = �′�k�T1 ≤ PZ′���Tk1�′�0�T1 = PZ′���Tk1

∑
i∈S′

�′
i�0�

= �S′ PZ′���Tk1


As before, we have that, for k → �� PZ′���Tk1 ∼ B′���
(

k
p′���−1

)
��PZ′���T �k,

B′��� > 0, p′��� integer ≥ 1 and lim�→0 ��PZ′���T � = ��PZ′�0�T �. But, with the
ordering of states S1� 
 
 
 � SNC

, the elements in the lower triangular portion of
PZ′�0�T are 0 and the diagonal elements have values 1− �i�S0∪···∪Sk−1∪�f1�


�fA�/
��1+ ��max0≤k≤NC

maxi∈Sk �i�S0∪···∪Sk−1∪�f1�


�fA��, i ∈ Sk, 0 < k ≤ NC and, then,
��PZ′�0�T � = q. �

Theorem 3.2 tells that, for class C models with the selection r = o, both
a�k� and a′�k� are upper bounded by something which decays asymptotically
by a factor with value q for � → 0. Let R = maxi∈S �i/mini∈S−�o� �i ≥ 1.
For small ��min0<k≤NC

mini∈Sk �i�S0∪···∪Sk−1∪�f1�


�fA� ≈ mini∈S−�o� �i and max0≤k≤NC

maxi∈Sk �i�S0∪···∪Sk−1∪�f1�


�fA� ≈ maxi∈S �i and, since � is a small quantity > 0� q ≈
1− 1/R. Then, the closer R to 1, the smaller q should be, the faster should a�k� and
a′�k� decrease, and the smaller the model truncation parameters should be. Note
that R is a “visible” model characteristic, i.e., one that can be easily estimated.

Theorem 3.2 also suggests that the K and L required by regenerative
randomization could be roughly upper bounded assuming a�k� = a′�k� = qk. In

4Strictly speaking, Theorem 3.1 of Varga (1962) asserts the result for the Euclidean
norm, but the result easily extends to the considered 1-norm.
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Transient Analysis of Large Markov Models 1045

Figure 7. State transition diagram of the paradigmatic CTMC.

order to asses the accuracy in practice of that approximation, we will consider
the paradigmatic CTMC with initial state state s2 and the state transition diagram
of Fig. 7. That example falls in the model class C if � � � + � (the subsets of a
partition satisfying properties P1 and P2 are Sk = �sk�� 0 ≤ k ≤ NC). The value of q
for the example is

q = 1− � + �

�1+ ����� + ��



We will consider the values � = 10 and � = 100 and will take � = 10−4. This yields
q ≈ 0
9 for � = 10 and q ≈ 0
99 for � = 100. We will consider two values for
� � � = 0
02 and � = 10−4, yielding � ≈ 0
02 and � ≈ 10−4, respectively. The left-
hand side of Fig. 8, shows the behavior of qk and a�k� for NC = 5. The right-hand
side of Fig. 8, shows the behavior of qk and a′�k�, also for NC = 5. Although a�k�
are obviously significantly different from qk� qk seems to be a reasonable pessimistic
approximation for a�k�. The behavior of a′�k� is very well matched by qk, but this
depends on the selection of the initial state of the CTMC. We found that as the
initial state is farther apart from s0 the difference between a′�k� and qk increases,
but, nevertheless, qk is still a reasonable approximation for a′�k�. Using further
the approximation q ≈ 1− 1/R, we can try to approximate the K and L required

Figure 8. Behavior of a�k� (left) and a′�k� (right) compared with qk for the paradigmatic
CTMC for NC = 5.
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1046 Carrasco

by regenerative randomization taking a�k� = a′�k� = �1− 1/R�k. It is easy to prove
that, for not small R, fixed, small  and fixed, large 	t, that approximation yields
required K and L which are proportional to R. For the paradigmatic example, R ≈ �
and, in the light of the results shown in Fig. 8, we can propose the rule of thumb
that, for class C models with the selection r = o, the required K and L can be
roughly upper bounded by 30R.

4. Analysis

In this section, using a large reliability example belonging to the class C described
in Sec. 3, we illustrate the performance of regenerative randomization and show
that it can indeed be much faster than standard randomization. The example is
the fault-tolerant system whose block diagram is given in Fig. 9. The system is
made up of two processing subsystems, each including one processor P and two
memories M, two sets of controllers with two controllers per set, and ten sets of
disks, each with four disks. Each set of controllers controls five sets of disks. The
system is operational if at least one processor and one memory connected to it
are unfailed, one controller of each set is unfailed, and three disks of each set
are unfailed. Processors fail with rate 2× 10−5 h−1; a processor failure is soft with
probability 0
8 and hard with probability 0
2. Memories fail with rate 10−4 h−1.
Controllers fail with rate 2× 10−5 h−1. Disks fail with rates 10−5 h−1. A failure of
a controller is uncovered and is propagated to two disks of a randomly chosen
set of disks controlled by it with probability 0
01. There are two repairmen who
repair processors in soft failure with rate �PS. The other repair actions are performed
by another repairman, with first priority given to disks, next to controllers, next
to processors, and last to memories. Components with the same repair priority
are chosen at random. The repair rates are 0
2 h−1 for processors in hard failure
mode, 0
2 h−1 for memories, 0
5 h−1 for controllers, and 0
5 h−1 for disks. For
�PS we will consider two values: �PS = 1 h−1 and �PS = 10 h−1. The measure of
interest is the unreliability at time t� ur�t�, a particular case of the measure m�t�
considered in this article. The number of states and transitions of the corresponding
CTMC X are 131,073 and 1,876,132, respectively. As regenerative state r we
choose, of course, the single state without failed components. Under the partition

Figure 9. Block diagram of the example.
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Transient Analysis of Large Markov Models 1047

Table 1
Required K and L in regenerative randomization and required number of steps N
in standard randomization, for increasing t and  = 10−8� 10−10 for the example
with initial state the state in which one controller C1 is failed and �PS = 1 h−1

 = 10−8  = 10−10

t (h) K L N K L N

100 110 98 224 136 130 234
200 121 98 402 153 131 417
500 130 98 909 163 131 931

1,000 135 98 1,723 169 131 1,754
2,000 141 98 3,314 174 131 3,357
5,000 148 98 7,996 181 131 8,062
10,000 153 98 15,701 186 131 15,795
20,000 158 98 30,995 191 131 31,126
50,000 164 98 76,587 198 131 76,794

Sk = �operational states with k failed components�� � = 0
004596, and the analysis
for the performance of regenerative randomization for class C models made in
Sec. 3 should apply. The standard randomization method is implemented with
	 = maxi∈S �i. The methods are run with a single target time t.

We illustrate first the dependence of the required K and L in regenerative
randomization on t and  and compare K and L with the number of steps N

required in standard randomization. Table 1 gives results for  = 10−8� 10−10 for the
example with �PS = 1 h−1 and initial state the state in which one controller C1 is
failed. The unreliability ur�t� varied from 1
220× 10−4 for t = 100 h to 4
062× 10−2

for t = 50�000 h. Table 2 gives results for the model with same initial state but �PS =
10 h−1. In that case, ur�t� varied from 1
220× 10−4 for t = 100 h to 4
059× 10−2 for

Table 2
Required K and L in regenerative randomization and required number of steps N
in standard randomization, for increasing t and  = 10−8� 10−10 for the example
with initial state the state in which one controller C1 is failed and �PS = 10 h−1

 = 10−8  = 10−10

t (h) K L N K L N

100 801 722 1,237 980 967 1,263
200 886 722 2,362 1,120 967 2,398
500 953 722 5,662 1,197 967 5,718

1,000 995 722 11,081 1,241 967 11,159
2,000 1,035 722 21,820 1,282 967 21,930
5,000 1,086 722 53,795 1,333 967 53,969
10,000 1,124 722 106,833 1,371 967 107,077
20,000 1,161 722 212,595 1,409 967 212,940
50,000 1,210 722 529,116 1,458 967 529,660
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1048 Carrasco

Figure 10. CPU times in seconds required by regenerative randomization (RR) and
standard randomization (SR) to solve the example with initial state the state without failed
components and  = 10−8 for �PS = 1 h−1 (left) and �PS = 10 h−1 (right).

t = 50� 000 h. The required K increases logarithmically with t while the required L is
almost independent on t. The results also show a moderate increase of the required
K and L when  decreases. All this is in agreement with the fact that the required K
is O�log�	t/�� and the required L is O�log�1/��. Also, the rule of thumb given in
Sec. 3 that the required K and L are roughly upper bounded by 30R seems to work
well (R = 7
48 for �PS = 1 h−1 and R = 52
3 for �PS = 10 h−1). The number of steps
on Z�Z′ in regenerative randomization, K + L, is smaller than N in all cases except
for �PS = 1 h−1,  = 10−10, and t = 100 h, and for �PS = 10 h−1 and t = 100 h. For
large t, K + L is much smaller than N .

We compare next the computational costs (measured in terms of CPU
times) of regenerative randomization and standard randomization. Figure 10 gives
measured CPU times for regenerative randomization and measured/estimated CPU
times for standard randomization (when the CPU times required by standard
randomization were very large we estimated them from the number of required
steps) for the example with initial state the state without failed components, t
varying from 100 to 50,000h, �PS = 1 h−1 (left) and �PS = 10 h−1 (right). In both
cases we took  = 10−8. The measure ur�t� varied from 8
280× 10−5 to 4
058×
10−2 for �PS = 1 h−1 and from 8
274× 10−5 to 4
056× 10−2 for �PS = 10 h−1. All
CPU times were measured/estimated on an 167MHz, 128MB UltraSPARC 1
workstation. Memory usage of both methods was about 70MB. For regenerative
randomization we decompose the CPU time in CPU time required to obtain
the truncated transformed model (trans) and CPU time required to solve it by
standard randomization (sol). We can note that regenerative randomization is
always faster than standard randomization. The total CPU time required by
regenerative randomization increases smoothly with t, whereas the CPU time
required by standard randomization increases approximately linearly with t. For
�PS = 1 h−1, the total CPU time required by regenerative randomization goes from
76.93 s for t = 100 h to 119.4 s for t = 50�000 h, whereas the CPU time required
by standard randomization goes from 141.5 s for t = 100 h to 4
835× 104 s (about
13hours) for t = 50�000 h; for the largest t, regenerative randomization is 405 times
faster than standard randomization. For �PS = 10 h−1, the total CPU time required
by regenerative randomization goes from 545.4 s for t = 100 h to 1,035 s for t =
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Transient Analysis of Large Markov Models 1049

Figure 11. CPU times in seconds required by regenerative randomization (RR) and
standard randomization (SR) to solve the example with initial state the state with one
controller C1 failed and  = 10−8 for �PS = 1 h−1 (left) and �PS = 10 h−1 (right).

50�000 h, whereas the CPU time required by standard randomization goes from
777.1 s for t = 100 h to 3
363× 105 s (about 4 days) for t = 50�000 h; for the largest
t, regenerative randomization is 325 times faster than standard randomization.
Also interesting is the distribution of the CPU time required by regenerative
randomization. For �PS = 1 h−1, the time spent solving the truncated transformed
model by standard randomization is negligible compared to the time spent obtaining
that model. However, for �PS = 10 h−1, that time is significant for large t. This
is because, being the maximum output rate of the truncated transformed model,
equal to �1+ ��maxi∈S �i, larger for �PS = 10 h−1, standard randomization becomes
a relatively less efficient method to solve the truncated transformed model.
Figure 11 compares the CPU times of regenerative randomization and standard
randomization for the example with initial state the state with one controller C1
failed and  = 10−8 for �PS = 1 h−1 (left) and �PS = 10 h−1 (right). In those cases,
there is a crosspoint time t below which standard randomization is faster than
standard randomization. For �PS = 1 h−1, the CPU time required by regenerative
randomization goes from 148.4 s for t = 100 h to 192.3 s for t = 50�000 h, whereas
the CPU time required by standard randomization goes from 140.9 s for t = 100 h
to 4
765× 104 s for t = 50,000 h, making regenerative randomization 248 times
faster than standard randomization for the largest t. For �PS = 10 h−1, the CPU
time required by regenerative randomization goes from 1,088 s for t = 100 h to
1,585 s for t = 50,000 h, whereas the CPU time required by standard randomization
goes from 775.6 s for t = 100 h to 3
292× 105 s for t = 50,000, making regenerative
randomization 208 times faster than standard randomization for the largest t.

Table 3 compares the K required by the regenerative randomization method and
the K�K′, which would be required were the error associated with the truncation of
the transformed model controlled by computing me

K�t� exactly, for the example with
initial state the state without failed components,  = 10−8, and �PS = 1 h−1, 10 h−1.
We can note that K is very close to K′ (in most cases equal and in some cases greater
by one). Thus, the upper bounds for me′′

K�L�t� and me
K�t� given in Sec. 2 seem to be,

for class C models, quite tight.
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1050 Carrasco

Table 3
Required K and K′ for increasing t and  = 10−8 for
the example with initial state the state without failed

components and �PS = 1 h−1, 10 h−1

�PS = 1 h−1 �PS = 10 h−1

t (h) K K′ K K′

100 106 106 770 770
200 116 116 850 850
500 125 125 916 916

1,000 130 130 959 958
2,000 136 136 998 998
5,000 143 143 1,049 1,048
10,000 148 148 1,086 1,086
20,000 153 153 1,124 1,123
50,000 159 159 1,173 1,172

5. Related Work

Calderón and Carrasco (1995), which is based on Carrasco and Calderón (1995),
describes preliminary related work. In Calderón and Carrasco (1995), it is
considered the particular case in which A = 1 and all states in S are transient,
the error associated with the truncation of the transformed model is controlled by
computing me′′

K�L�t��m
e
K�t� using a numerical Laplace inversion algorithm, and the

approximated model solution ma
K�L�t��m

a
K�t� is computed using also a numerical

Laplace inversion algorithm. That strategy for controlling the error associated
with the truncation of the transformed model is expensive when the required K is
large. Also, computing ma

K�L�t��m
a
K�t� using a numerical Laplace inversion algorithm

results in a method in which the computation error is less well-controlled. Finally,
Calderón and Carrasco (1995) does not analyze the performance of the method for
class C models with the selection r = o.

6. Conclusions

We have developed a new method called regenerative randomization for the
transient analysis of continuous time Markov chain models with absorbing states.
The method has the same good properties (numerical stability, well-controlled
computation error, and ability to specify the computation error in advance) as the
well-known standard randomization method and can be significantly less costly than
that method for large models and large t. The method requires the selection of a
regenerative state, on which the performance of the method depends. Automatic
selection of the regenerative state seems to be difficult, in general, and the method
relies on the user’s intuition to select a good regenerative state. However, a class of
models, class C, including typical failure/repair models with exponential failure and
repair time distributions and repair in every state with failed components, has been
identified for which a natural selection for the regenerative state exists and, for those
models, theoretical results assessing approximately the performance of the method
with that natural selection in terms of visible model characteristics have been
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Transient Analysis of Large Markov Models 1051

obtained. Those theoretical results can be used to anticipate, for class C models and
that natural selection for the regenerative state, when regenerative randomization
can be expected to be significantly less costly than standard randomization.
Using an example belonging to that class, we have illustrated the performance
of regenerative randomiztion and have shown that it can indeed be much faster
than standard randomization, allowing a numerically stable transient analysis, with
well-controlled and specifiable-in-advance computation error, of very large CTMC
models with absorbing states in affordable CPU times.
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