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Abstract— This paper deals with the motion planning prob-
lem for parallel orienting platforms with one non-holonomic
joint and two prismatic actuators which can maneuver to
reach any three-degree-of-freedom pose of the moving platform.
Since any system with two inputs and up to four generalized
coordinates can always be transformed into chained form, this
path planning problem can be solved using well-established
procedures. Nevertheless, the use of these procedures requires
a good understanding of Lie algebraic methods whose tech-
nicalities have proven a challenge to many practitioners who
are not familiar with them. As an alternative, we show how
by (a) properly locating the actuators, and (b) representing
the platform orientation using Euler parameters, the studied
path planning problem admits a closed-form solution whose
derivation requires no other tools than ordinary linear algebra.

I. INTRODUCTION

Consider a mechanism consisting of a sphere whose center

is fixed with respect to the world and whose orientation is

controlled by three prismatic actuators anchored by their

ends to the sphere and the world through spherical joints,

as shown in Fig. 1(top). This kind of mechanism, which can

be regarded as a parallel robot, have been studied by several

authors due to their practical interest as a robotics wrist or, in

general, as an orienting platform. The works of Innocenti and

Parenti-Castelli [1], and Wohlhart [2], are usually referred as

the pioneering ones on the kinematics analysis of this parallel

platform.

In those applications in which it is necessary to reduce

bulk, weight or cost, it is possible to substitute one of the

prismatic joints by a disk that rolls without slipping with

respect to the sphere as shown in Fig. 1(bottom). This idea

was first introduced by Stammers in [3] and generalized by

Di Gregorio [4] following the ideas presented by Grosch et

al. [5].

The problem of moving the sphere between two arbitrary

orientations by means of suitable movements transmitted to

it by the two prismatic actuators is a challenging problem

due to the non-holonomic constraint arising from the non-

slip condition between the disk and the sphere. Although

the experience indicates that, outside some apparent singu-

larities, the resulting parallel robot is controllable, it is not

trivial to establish such property on a mathematical basis.
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Fig. 1. Top: parallel orienting platform actuated by three prismatic joints.
Bottom: non-holonomic variation in which one prismatic joint has been
substituted by a disk that rolls without slipping.

If the system is analyzed at a first-order kinematic level

(the dynamics of the system is not considered), it can be

shown that the differential equations that describe the system

can be expressed in the standard form of two-input drift-

less (no motion takes place for null inputs) non-holonomic

system. If the dynamics of the system is introduced, the

system will exhibit drift but an invertible feedback control

can eliminate the dynamic parameters [6]. Therefore, the

analysis of the system can be addressed as that of a two-

input driftless non-holonomic system.

An important class of non-holonomic systems for which

a satisfactory understanding has been reached is the class

of systems that can be put, by feedback transformation, in

the so-called chained form [7]. A complete characterization

of such systems (i.e., necessary and sufficient conditions for

the existence of a feedback transformation to chained-form)

has been provided by [8], while an algorithm for finding

the necessary coordinate transform has been presented in

[9]. This is important in the presented problem because it



has been shown that a two-input driftless non-holonomic

system with up to four generalized coordinates can always be

transformed in chained form [10], [11], [7]. Once in chained

form, different methods can be used for motion planning.

Essentially two kinds of steering inputs signals have been

considered: sinusoidal and piecewise constant. While the first

approach was pioneered by [7], the second is attributed to

[12].

It is not difficult to prove that driftless systems which, up

to changes of coordinates and static or dynamic endogenous

feedbacks, can be put into chained form, are necessarily

flat [13]. With the flatness property, states and inputs can

be parametrized by a finite set of independent variables,

called the flat outputs, and their derivatives. Moreover, the

number of flat outputs is equal to the number of control

inputs. This nice properties are useful for motion planning

because the desired trajectory can be planned in flat output

space. In addition, exponential stabilizing controllers can be

developed since in the flat output space, the system has the

representation of a chain of integrators.

Putting a system in chained form is not an easy task and

the result is not always satisfactory. The generated feedbacks

introduce, in general, singularities that lead to unfeasible

control inputs, i.e., infinite steering rates. Moreover, the

characterization of these singularities, in the general case, is

difficult due to the complexity of the generated expressions.

Besides this, the standard procedures to derive chained forms

assume that the number of generalized coordinates coincides

with the number of degrees of freedom of the system. This

leads to an important drawback when working with spatial

orientations as they cannot be parameterized by only three

parameters without introducing more singularities.

In this paper, it is shown how, by properly arranging

the actuators and representing the platform orientation using

Euler parameters, a bilinear model can be derived and this

derivation requires an endogenous feedback whose singu-

larities coincide with the mechanical singularities of the

platform. Thus, no extra singularities are added. Then, it is

shown how this bilinear model admits a closed-form formula

for the path planning problem by relying on linear algebra

arguments.

This paper is organized as follows. The kinematic model

of the general parallel orienting platform with one non-

holonomic joint and two prismatic actuators is derived in

Section II. Next, Section III shows how this model can

be expressed in bilinear form by properly arranging the

actuators. This bilinear form depends on two matrices whose

properties are investigated in Section IV. Then, a closed-form

solution to the path planning problem is finally derived in

Section V. The singularities of the system are analyzed in

Section VI. A description of the experimental testbed where

the derived path planner have been verified is presented

in Section VII. Finally, Section VIII summarizes the main

results and gives some prospects for further research.

II. KINEMATIC MODEL OF NON-HOLONOMIC PARALLEL

ORIENTING PLATFORMS

A. Notation

R 3 × 3 rotation matrix defining the orientation of the

moving platform.

ω vector of angular velocities.

r̂ unit vector of the non-holonomic constraint. Rotations

about this axis are forbidden.

ai position vector of leg attachment i to the base in the

base reference frame.

b0
i position vector of leg attachment i to the moving

platform in the moving platform reference frame.

bi position vector of leg attachment i to the moving

platform in the base reference frame. bi = Rb0
i .

li length of leg i. li = ‖bi − ai‖
ĝi unit vector in the direction of leg i. ĝi =

bi−ai

li
.

B. Holonomic constraints
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Fig. 2. A holonomic constraint is imposed on a freely rotating sphere by
attaching a prismatic actuator anchored by its ends to the rotating body and
the world through spherical joints.

Let us suppose a sphere that rotates ωx rad/s, ωy rad/s, and

ωz rad/s, about the x, y, and z axes, respectively. The linear

velocity, due to these angular velocities, of a point attached

to this sphere with reference position vector b is

v = (ωx, 0, 0)
T× b+ (0, ωy, 0)

T× b+ (0, 0, ωz)
T× b

= ω × b,

where ω = (ωx, ωy, ωz)
T . Then, the linear velocity of this

point along the direction given by the unit vector ĝ is

l̇ = ĝ · (ω × b) = ω · (b× ĝ). (1)

Now, if we introduce a prismatic actuator anchored by its

ends to the rotating sphere and the world through spherical

joints, as depicted in Fig. 2, one degree of freedom of the

rotating sphere is constrained according to (1), where ĝ is a

unit vector in the direction of the actuator and l̇, its linear

velocity.
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Fig. 3. A non-holonomic constraint is imposed on a freely rotating sphere
by putting in contact with it a disk that freely rolls without slipping.

C. Non-holonomic constraints

Alternatively to the holonomic constraint introduced

above, we can also constrain the motion of the freely rotating

sphere by putting in contact with it a disk that rolls without

slipping as shown in Fig. 3. This disk prevents the sphere to

rotate about the axis oriented in the direction of the wheel.

In other words,

ω · r̂ = 0. (2)

D. Constraining the motion of a sphere

Now, let us consider the case depicted in Fig. 1(bottom)

in which the rotation of the sphere is constrained by two

actuated prismatic joints and a disk. In this case, the angular

velocity of the sphere must satisfy the following system of

equations:

l1 = ω · (b1 × ĝ1)
l2 = ω · (b2 × ĝ2)
0 = ω · r̂







(3)

which can be expressed in matrix form as

Jω =





l̇1
l̇2
0



 , (4)

where

J =
(

b1 × ĝ1 b2 × ĝ2 r̂
)T

. (5)

Since ĝi = (bi−ai)/li and bi = Rb0
i , the above expression

for J can be rewritten as:

J =

(

1/l1 0 0

0 1/l2 0

0 0 1

)

(

a1 ×Rb0
1 a2 ×Rb0

2 r̂
)T

. (6)

Therefore,

ω = K

(

l̇1l1
l̇2l2

)

, (7)

where

K =
[

(

a1 ×Rb0
1 a2 ×Rb0

2 r̂
)T
]−1

(

1 0

0 1

0 0

)

. (8)

III. DERIVING A BILINEAR MODEL

Although three is the minimum number of parameters

required to describe the kinematics of a rotating rigid body,

every such three-dimensional parametrization of the motion

is singular. This is the case of the Euler angles and the

Cayley-Rodrigues parameters. Alternatively, a non-singular

parameterization is possible by using four parameters. This

is the case of the Euler parameters defined as

q =









a
b
c
d









=









cos φ

2

nx sin
φ

2

ny sin
φ
2

nz sin
φ

2









. (9)

where n̂ = (nx, ny, nz)
T is the equivalent axis of rotation

and φ, the angle rotated about it. From this definition, one

can easily derive the following constraint

‖q‖2 = a2 + b2 + c2 + d2 = 1. (10)

See [14] and [15] for a detailed analysis of Euler parameter

and their connections with other parameterizations.

It can be shown that the rotation matrix, in terms of Euler

parameters, can be expressed as

R = 2





a2 + b2 − 1
2 bc− ad bd+ ac

bc+ ad a2 + c2 − 1
2 cd− ab

bd− ac cd+ ab a2 + d2 − 1
2



 . (11)

If we substitute this parametrization of R in (8), the result

is rather awkward. Nevertheless, an important simplification

is attained if the anchor points of the prismatic actuators

are oriented at π/2 one from each other in their local

reference frames. For example, if we set a1 = (1, 0, 0)T ,

a2 = (0, 1, 0)T , b0
1 = ka1, and b0

2 = ka2, the substitution

of (11) in (8) yields

K =
2k

det(J)





−r2(ad+ bc) + r3(ac− bd)
r1(ad+ bc)
−r1(ac− bd)

r2(ad− bc)
r1(−ad+ bc) + r3(ab+ cd)

−r2(ab + cd)



 ,

where r = (r1, r2, r3)
T . Further simplifications are still

possible by properly locating the disk. For example, if we

set r =
(

1√
2
, 1√

2
, 0
)T

, then

K =

√
2k

det(J)





−ad− bc ad− bc
ad+ bc bc− ad
bd− ac −ab− cd



 . (12)

Since the relationship between angular velocities and time

derivatives of Euler parameters is given by

q̇ =
1

2









−b −c −d
a −d c
d a −b

−c b a









ω, (13)



the substitution of (7), with the expression of K given in

(12), in (13) yields

q̇ =









−b −c −d
a −d c
d a −b

−c b a













−ad− bc ad− bc
ad+ bc bc− ad
bd− ac −ab− cd





(

u1

u2

)

(14)

where

ui =

(√
2kli

det(J)

)

l̇i. (15)

Equation (15) can be seen as a transformation in the input

variables. It actually represents a local feedback transfor-

mation because both det(J) and li depend on q. Observe

that this change of inputs is singular at the mechanical

singularities of the platform, that is, at those configurations in

which det(J) = 0. These singularities are studied in Section

VI.

Now, let us define the transformation in the new input

variables defined by

(

u1

u2

)

=

(

ad+ bc bc− ad
bd− ac −ab− cd

)−1(− 1√
2

0

0 1

)(

v1
v2

)

. (16)

This is also a local feedback transformation because it

depends on the orientation of the platform. Those config-

urations for which the matrix inverse in (16) is not defined

are singularities introduced by this transformation. These

singularities are also analyzed in Section VI where it is

shown that they coincide with the mechanical singularities

of the platform. With this input transformation, (14) can be

rewritten as

q̇ =









−b −c −d
a −d c
d a −b

−c b a













− 1√
2

0
1√
2

0

0 1





(

v1
v2

)

, (17)

or, alternatively, as

q̇ = (Av1 +Bv2)q, (18)

where

A =
1√
2







0 1 −1 0

−1 0 0 −1

1 0 0 −1

0 1 1 0






(19)

and

B =







0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0






. (20)

This corresponds to the model of a driftless bilinear system

with two inputs and four states, but it is not a minimal

representation because the four states are not independent.

They must satisfy (10). That is, q ∈ S
3 where S

3 = {x ∈
R

3, ‖x‖2 = 1}. This dependency is already implicit in (18).

To make it explicit, let us derive (10) with respect to time

to obtain

qT q̇ = 0. (21)

Then, by substituting (18) in (21), we have

v1q
TAq+ v2q

TBq = 0. (22)

Since the above equation must hold for any value of v1 and

v2, it can be concluded that qTAq = 0 and qTBq = 0, but

the quadratic form of a matrix is identically 0 if, and only

if, the matrix is skew-symmetric, as is our case.

IV. A, B, AND ROTATIONS IN R
4

Let us define

C = AB =
1√
2







0 1 1 0

−1 0 0 1

−1 0 0 −1

0 −1 1 0






. (23)

Then, it can be checked that

A2 = B2 = C2 = ABC = −I. (24)

Hamilton called quadruples with these rules of multiplica-

tion a quaternion. Actually, (24) reproduces the celebrated

formula that Hamilton carved into the stone of Brougham

Bridge. Therefore, the real linear span of {I,A,B,C} is

isomorphic to the real algebra of quaternions. As with stan-

dard quaternions, (24) determines all the possible products

of A, B, and C resulting in

AB = C, BA = −C,

BC = A, CB = −A,

CA = B, AC = −B.

According to (24), it can be said that A, B, and C behave

as imaginary magnitudes. Then, it is not surprising that

their matrix exponentials, defined according to the traditional

power series, have simple expressions similar to Euler’s

formula:

eωA = sin(ω)A+ cos(ω)I, (25)

eωB = sin(ω)B+ cos(ω)I, (26)

eωC = sin(ω)C+ cos(ω)I. (27)

Then, it is not either surprising to realize that eωA, eωB

and eωC behave as rotations in four dimensions. Indeed,

since the exponential of an antisymmetric matrix is an

orthogonal matrix with determinant equal to +1 and unit

length eigenvalues, eωA, eωB and eωC represent rotations.

According to Cayley’s factorization, a 4D rotation matrix

can always be expressed as the product of two matrices of

the form

RL(l1, l2, l3, l4) =







l1 −l2 −l3 −l4
l2 l1 −l4 l3
l3 l4 l1 −l2
l4 −l3 l2 l1






, (28)

and

RR(r1, r2, r3, r4) =







r1 −r2 −r3 −r4
r2 r1 r4 −r3
r3 −r4 r1 r2
r4 r3 −r2 r1






, (29)



which are known as left- and right-isoclinic rotation matrices,

respectively (see [16] for details on Cayley’s factorization).

Now, it can observed that

RR(r1, r2, r3, r4) = γ1I+ γ2A+ γ3B+ γ4C (30)

where








γ1
γ2
γ3
γ4









=









1 0 0 0

0 −
√
2
2

√
2
2 0

0 0 0 1

0 −
√
2
2

√
2
2 0

















r1
r2
r3
r4









. (31)

Hence,








r1
r2
r3
r4









=









1 0 0 0

0 −
√
2
2 0 −

√
2
2

0
√
2
2 0 −

√
2
2

0 0 1 0

















γ1
γ2
γ3
γ4









. (32)

Therefore, {I,A,B,C} is a basis for right-isoclinic ro-

tations and, as a consequence, (25)-(27) represent right-

isoclinic rotations.

Now, after somewhat tedious algebraic manipulations, it

can be checked that:

eω3Aeω2Beω1A = cos(ω2) cos(ω3 + ω1)I

+ cos(ω2) sin(ω3 + ω1)A

+ sin(ω2) cos(ω3 − ω1)B

+ sin(ω2) sin(ω3 − ω1)C. (33)

Therefore, any arbitrary right-isoclinic rotation can be

expressed as:

γ1I+ γ2A+ γ3B+ γ4C = eω3Aeω2Beω1A (34)

where

ω1 =
1

2
(atan2(γ2, γ1)− atan2(γ4, γ3)), (35)

ω2 = atan2(sin(atan2(γ4, γ3)), cos(atan2(γ2, γ1))), (36)

ω3 =
1

2
(atan2(γ2, γ1) + atan2(γ4, γ3)). (37)

This is the key result used in the next section to solve the

path planning problem.

V. PATH PLANNING

Let us suppose that v1 and v2 are constant, then (18)

becomes a linear differential equation which can be easily

integrated

q(t) = e(v1A+v2B)tq0, (38)

where q0 represents the initial orientation of the platform.

Now, let us introduce a maneuver consisting in a sequence

of actuations in which during t1 seconds v1 = k1 and v2 = 0,

then during t2 seconds v1 = 0 and v2 = k2 and, finally,

during t3 seconds v1 = k3 and v2 = 0. The configuration

reached, after this maneuver, by the moving platform can be

expressed as

qf = eω3Aeω2Beω1Aq0, (39)

where ωi = kiti. Then, if we compare (39) with (33), it

can be concluded that this simple maneuver permits to reach

any desired configuration by finding the proper values of

ωi, i = 1, 2, 3. To this end, we first need to find the right-

isoclinic rotation that drives the moving platform from q0 =
(a b c d)T to qf = (a′ b′ c′ d′)T , that is, the set of parameters

r1, r2, r3 and r4 that satisfies









r1 −r2 −r3 −r4
r2 r1 r4 −r3
r3 −r4 r1 r2
r4 r3 −r2 r1

















a
b
c
d









=









a′

b′

c′

d′









, (40)

which can be rewritten as








a −b −c −d
b a −d c
c d a −b
d −c b a

















r1
r2
r3
r4









=









a′

b′

c′

d′









. (41)

Then, substituting (32) in (41), we obtain











a
√
2
2 (b − c) −d

√
2
2 (b + c)

b
√
2
2 (−a− d) c

√
2
2 (−a+ d)

c
√
2
2 (a− d) −b

√
2
2 (−a− d)

d
√
2
2 (b + c) a

√
2
2 (−b+ c)



















γ1
γ2
γ3
γ4









=









a′

b′

c′

d′









.

(42)

Solving this linear system yields









γ1
γ2
γ3
γ4









=









a b c d
b−c√

2
−a+d√

2
a−d√

2
b+c√

2

−d c −b a
b+c√

2
−a−d√

2
−a+d√

2
− b−c√

2

















a′

b′

c′

d′









. (43)

Finally, substituting these values of γ1, . . . , γ4 in (35), (36),

and (37), we get the values of ω1, ω2, and ω3, respectively,

that define the maneuver that drives the platform from q0 to

qf .

VI. SINGULARITIES

The mechanical singularities of the studied platform are

those configurations in which det(J) = 0. From (5), it can

be concluded that they correspond to those orientations in

which the vectors a1 × b1, a1 × b1, and r̂ lie on a plane.

The expansion of (6) in terms of Euler parameters permits

to formulate this geometric condition in algebraic terms as

d2a(b− c)+ c2b(a−d)− b2c(a+d)−a2d(b+ c) = 0. (44)

The substitution of these parameters by their definition given

in (9) yields

(cosφ− 1)(p cosφ+ q sinφ+ r) = 0, (45)

where

p = nxnz(1− n2
y) + nynz(1 − n2

x),

q = ny(1− n2
y)− nx(1− n2

x),

r = nxnz(1 + n2
y) + nynz(1 + n2

x).



Then, the configuration is singular if, and only if, φ = 0, or

φ = atan2(q, p)± arccos

(

−r
√

p2 + q2

)

. (46)

To derive the bilinear model presented in Section III,

two input transformations are needed that might introduce

extra singularities. The first input transformation (15) is only

singular in a mechanical singularity, so it does not introduce

any new singularity. The second input transformation (16)

is apparently more complicated but the expansion of the

determinant of the matrix that depends on the configuration

yields

−a2d(b+c)−b2c(a+c)+c2b(d−a)+d2a(c−b) = 0, (47)

which is identical to (44), so it does not introduce any new

singularity either.

VII. EXPERIMENTAL TESTBED

Fig. 4. Implemented experimental testbed.

The testbed shown in Fig. 4 has been implemented for

validating the the presented path planner. The two prismatic

actuators are miniature Firgelli linear actuators with a stroke

of 100 mm. The non-holonomic joint is based on steel ball

extracted from a 3D rolling unit of a material handling sys-

tem. It has been perforated with electric discharge machining.

Its motion is constrained by two rollers arranged in opposing

positions from the center. Three free-rolling spheres are used

to keep the joint centered in the plane perpendicular to the

line between the contact points of the rollers.

The two motor controllers are based on DC motor drivers

(LM18200) and a PIC18f2550 with USB communication

with an external PC.

The orientation of the platform is measured using a

PhidgetSpatial 3/3/3 sensor that communicates via USB with

the external PC.

VIII. CONCLUSION

Designing a parallel orienting platform with only two

actuators —to reduce bulk, weight or cost— becomes fea-

sible by introducing mechanical elements that lead to non-

holonomic constraints. Unfortunately, the advantages of these

designs might seem dubious when facing the necessity of

introducing a path planner to generate the required maneu-

vers to reach a target from a given initial configuration.

This paper presents an alternative, based on the proper

arrangement of the actuators and the parameterization of the

orientation using Euler parameters, to the dominating Lie

algebraic methods to design this path planner. The result is

a closed-form singularity-free path planner as all introduced

singularities are subsumed by the mechanical singularities of

the platform. The result is a practical algorithm for planning

and controlling the motions of the studied platform that can

help to achieve all its potential benefits.

The presented ideas seem to be applicable to other non-

holonomic mechanical systems whose orientation has to be

controlled. This is a point that deserves further attention.
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