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Abstract

The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) problem models the flow of an
electrically charged fluid under the influence of an external electromagnetic field with thermal coupling. This system of
partial differential equations is strongly coupled and highly nonlinear for real cases of interest. Therefore, fully implicit
time integration schemes are very desirable in order to capture the different physical scales of the problem at hand.
However, solving the multiphysics linear systems of equations resulting from such algorithms is a very challenging task
which requires efficient and scalable preconditioners. In this work, a new family of recursive block LU preconditioners
is designed and tested for solving the thermally coupled inductionless MHD equations. These preconditioners are
obtained after splitting the fully coupled matrix into one-physics problems for every variable (velocity, pressure,
current density, electric potential and temperature) that can be optimally solved, e.g., using preconditioned domain
decomposition algorithms. The main idea is to arrange the original matrix into an (arbitrary) 2 × 2 block matrix,
and consider a LU preconditioner obtained by approximating the corresponding Schur complement. For every one
of the diagonal blocks in the LU preconditioner, if it involves more than one type of unknown, we proceed the same
way in a recursive fashion. This approach is stated in an abstract way, and can be straightforwardly applied to other
multiphysics problems. Further, we precisely explain a flexible and general software design for the code implementation
of this type of preconditioners.

1. Introduction

The thermally coupled incompressible inductionless magnetohydrodynamics (MHD) model describes the dynamics
of an electrically conducting fluid under an external electromagnetic field with thermal coupling where the magnetic
field induced by the currents is negligible with respect to the externally applied one. This system of partial differential
equations can be applied to simulate a wide range of applications, such as MHD pumps, steel casting processes, crystal
growth devices or breeding blankets in nuclear fusion reactors. The Galerkin finite element (FE) approximation of this
problem faces several well-known drawbacks. First, convective dominated flows may lead to oscillations because the
system loses its elliptic nature. Second, a strong coupling between the two saddle-point subproblems, the hydrodynamic
and the magnetic ones, may introduce numerical instabilities when solving the resulting linear systems of equations.
Finally, there is the need to satisfy the classical inf-sup conditions between the approximation spaces for the velocity
and the pressure and also for the current density and the electric potential in order to have a well-posed problem.
There exist several options to circumvent these difficulties being stabilization methods one of the most widely used.
In this work, we consider two stabilization techniques based on the variational multiscale ideas in [24, 16, 17].

The discretization of realistic problems with very fine finite element meshes leads to linear systems of equations
to be solved with a number of degrees of freedom in the range of 106 − 109. For the solution of such huge systems,
an efficient and scalable preconditioner is required. There exist several approaches for preconditioning this type of
problems. One approach that has been extensively used for preconditioning large-scale multi-physics problems is
the algebraic multigrid (AMG) algorithm [26, 34]. This technique is very efficient for Laplacian-type problems but
suffers for indefinite and nonsymmetric problems. Another interesting approach consists of an approximate block
LU factorization of the system matrix. This type of preconditioners have been widely studied for the incompressible
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Navier-Stokes equations in the fluid mechanics community [22, 21, 18]. Recently, this approach has been applied
to the full resistive MHD equations [9] (using the preconditioner as a solver in an operator splitting fashion) and
to the 2D incompressible (reduced) resistive MHD formulation [19]. The crucial aspect in these approximate block
preconditioners relies in an efficient approximation of the Schur complement that allows the uncoupling between the
several physical variables of the problem at the preconditioner level.

These approximate block factorization ideas have been used in this work to design new block recursive LU pre-
conditioners for the inductionless MHD and the thermally coupled inductionless MHD problems. As an example, the
inductionless MHD system involves four different unknowns (velocity, pressure, current density and electric potential)
and leads to a 4×4 block system matrix (one block per unknown). Our approach consists of arranging the multiphysics
4 × 4 block matrix as a 2 × 2 block matrix (grouping unknowns) where in turn every block is a 2 × 2 block matrix.
Then, we perform an incomplete LU factorization of the 2 × 2 system block matrix where we consider some (cheap)
approximation of the resulting Schur complement and possibly the rest of diagonal blocks. Recursively, since the
diagonal blocks are in fact 2×2 block matrices, we approximate these matrices the same way, i.e., using an incomplete
LU approximation. As a result, the only blocks that have to be inverted are one-variable (one-physics) problems. The
key point for these preconditioners to be efficient relies in obtaining a good approximation of the Schur complement
for all 2 × 2 systems. In order to define the Schur complement approximations, we have extended ideas from the
techniques used for the incompressible Navier-Stokes equations to the inductionless MHD system. Moreover, a study
of the exact Schur complement behavior and the effect of cancelling different terms in it has allowed us to propose an
improved version of the Pressure-Convection-Diffusion (PCD) preconditioner (see [22]) where we introduce additional
stabilization terms. The application of the MHD preconditioner to the thermally coupled problem is straightforward,
since the coupling is in one direction only.

The contributions of the article are the following. On one side, we propose new stabilized formulations based on
term-by-term projection stabilization for the inductionless MHD problem, and extend this formulation and the one
in [32] to the thermally coupled case. The most particular feature of our approach is the explicit introduction of the
current density as an additional unknown of the problem. We note that the typical approach is to decouple fluid
and electromagnetic problems [12, 28, 31, 30]. Then, the electromagnetic problem is solved in terms of the electric
potential only and the current density and Lorentz force are computed. Next, the fluid problem is solved with the
previously computed Lorentz force. This approach treats the multiphysics coupling explicitly (for transient problems),
and, in the best case, it is only coupled via fixed point iterations (if it converges). However, for large Hartmann
numbers (in fusion reaction breeding blanket simulations it is in the order of 104 − 105) this approach can only work
for extremely small time step values for transient problems and it cannot be used for steady problems. In any case,
in our approach the resulting linear systems still require efficient preconditioning for high Hartmann numbers. Thus,
we propose an abstract setting to design preconditioners for multiphysics problems, based on a recursive use of block
factorization. This general framework is applied to the (thermally coupled) inductionless MHD problem, considering
different preconditioners based on approximations of the resulting Schur complement matrices. The efficiency of these
preconditioners is assessed via a complete set of numerical experiments. Finally, we give details about an abstract and
flexible implementation of block recursive preconditioning. The combination of our FE formulations, with an explicit
treatment of the current density, and the recursive LU preconditioners we propose, allow us to solve realistic breeding
blanket simulations with very high Hartmann numbers.

The article is organized as follows. Section 2 states the problem in both its strong and weak form for the adimen-
sional version of the inductionless MHD equations and the thermally coupled inductionless MHD problem. In Section
3, the stabilization methods used in this work are presented and the block structure of the resulting linear system
of equations is highlighted. In Section 4, the underlying recursion in the design of block preconditioners is defined
together with a review of classical block preconditioners from fluid mechanics. Moreover, two different recursive block
preconditioners are developed for the inductionless MHD problem depending on the grouping of the physical variables.
For each preconditioner, the approximation of the Schur complement is chosen. An improved version of PCD block
preconditioners is also derived in Section 4 with an experimental justification of its design. To close Section 4, the
recursive block preconditioners derived for the inductionless MHD problem are extended for the thermally coupled
problem in a straightforward manner. Some numerical experiments to test the properties of the block preconditioners
presented in this work are carried out in Section 5. Section 6 deals with some software design and implementation
aspects that are crucial to manage the block preconditioners recursion. Finally, some conclusions are drawn in Section
7.
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2. Continuous MHD problem

2.1. Inductionless MHD

The incompressible inductionless mangnetohydrodynamics (MHD) system of partial differential equations consists
of the incompressible Navier-Stokes problem coupled with Ohm’s law and the electric charge conservation equations
via the Lorentz force. It reads as: find a velocity field u(x, t), a pressure p(x, t), a current density field j(x, t) and an
electric potential φ(x, t) such that

∂tu+ (u · ∇)u− ν∆u+∇p− 1

ρ
(j ×B) = f, (1)

∇ · u = 0, (2)

j + σ∇φ− σ(u×B) = 0, (3)

∇ · j = 0, (4)

in (x, t) ∈ Ω × (0, T ), where Ω ⊂ Rd is the open bounded domain filled by the fluid and d is the spatial dimension.
The partial time derivative is denoted by ∂t and ν, ρ, σ stand for the viscosity, density and electric conductivity of the
fluid, respectively. Finally, f corresponds to the body forces of the flow motion and B to the external magnetic field.

Consider a partition of the domain boundary Γ = ∂Ω into two parts Γ = ΓE,u∪ΓN,u. The boundary conditions for
the velocity field are no-slip wall conditions, u = 0 on ΓE,u, and zero traction conditions, −pn+ νn · ∇u = 0 on ΓN,u.
Let us define a different partition of the domain boundary for imposing the electromagnetic boundary conditions,
Γ = ΓC,j ∪ ΓI,j , where ΓC,j corresponds to perfectly conducting walls and ΓI,j to perfectly insulating walls. Perfectly
conducting walls do not apply any resistance to the current which implies that the electric currents cross the wall
surface orthogonally. This condition is imposed by j × n = 0 on ΓC,j . Taking into account that u = 0 on ΓC,j , this
condition is equivalent to impose φ = 0 on ΓC,j . On the other hand, insulating walls do not allow the electric currents
to cross them, which means that the normal component of the current density field has to vanish, that is, j · n = 0 on
ΓI,j . Lastly, an initial condition for the velocity field has to be considered, i.e., u = u0 in Ω for t = 0.

It is convenient for solving real problems with extreme physical properties (as the test blanket module case in
Section 5.3) to work with the dimensionless form of the incompressible inductionless MHD system. Let us redefine
the problem in (1)-(4) by (see [29])

∂tu+ (u · ∇)u− 1

Re
∆u+∇p−N(j ×B) = f, (5)

∇ · u = 0, (6)

j +∇φ− (u×B) = 0, (7)

∇ · j = 0, (8)

where the variables and operators have been scaled as

u→ u 1
u0
, ∇ → ∇L,

t→ tu0

L , B → B 1
B0
,

p→ p 1
ρu2

0
, f → f L

u2
0
,

j → j 1
σu0B0

, φ→ φ 1
u0B0

.

Here, L is a characteristic length of the domain and u0, B0 are the characteristic scales for the velocity and the external
magnetic fields, respectively. Let us also introduce the adimensional numbers in system (5)-(8)

Reynolds number, Re =
u0L

ν
,

Interaction parameter, N =
σLB2

0

ρu0
.

There is also another adimensional number that governs system (5)-(8) behavior, the Hartmann number Ha =
√

ReN,
that gives the ratio between electromagnetic and viscous forces.

Let us introduce some standard notation here. We denote by L2
0(Ω) the set of functions in L2(Ω) with zero mean

value and by H1
0,Γ(Ω)d the functions belonging to H1(Ω) that vanish on Γ ⊂ ∂Ω. Let us now consider the following
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functional spaces: Vu = H1
0,ΓE,u

(Ω)d, Qu = L2
0(Ω), Vj = L2(Ω) and Qφ = H1

0,ΓC,j
(Ω). Assuming a smooth external

magnetic field B, the weak form of system (5)-(8) reads as follows: find (u, p, j, φ) ∈ Vu ×Qp × Vj ×Qφ such that

Fu(u)u+ Cuj +Gup = fu in V ′u, Duu = 0 in Q′p, (9)

Fjj + Cju+Gjφ = 0 in V ′j , Djj = 0 in Q′φ, (10)

for almost every t ∈ (0, T ). We omit the discussion about the regularity in time of the unknowns for simplicity. The
definition of these operators comes from system (5)-(8) and the notion of weak derivatives as follows.

The semi-linear fluid operator Fu : Vu × Vu → V ′u is defined as Fu(w)v := Mu∂tv + Ku(w)v. The fluid mass
matrix Mu : Vu → V ′u is defined as Muv := (v, ·). The semi-linear operator Ku : Vu × Vu → V ′u includes the viscous
and convective terms and reads as Ku(w)v := 1

Re (∇v,∇(·)) + 〈(w · ∇)v, ·〉. Gu : Qp → V ′u denotes the (integrated
by parts) pressure gradient, i.e., Guq := −(q,∇ · (·)), and Du = −GTu is the velocity divergence operator; the
superscript T indicates the transpose operator. The linear Lorentz force coupling operator Cu : Vj → V ′u is defined as
Cuk := −N 〈·, k ×B〉. With regard to the magnetic subproblem, we define the mass matrix operator Fj : Vj → V ′j as

Fjk := (k, ·), Cj := −CTu , the electric potential gradient operator Gjψ := (·,∇ψ) and the corresponding divergence
operator Dj = −GTj . We note that the conditions on ΓE,u and ΓC,j are strongly enforced whereas those on ΓN,u and
ΓI,j are weakly enforced (see [32] for a more detailed explanation).

2.2. Thermally coupled problem

The strong form of the thermally coupled incompressible inductionless MHD problem is obtained from equations
(5)-(8) and Boussinesq approximation for the thermal coupling. It reads as: find a velocity field u(x, t), a pressure
p(x, t), a current density field j(x, t), an electric potential φ(x, t) and a temperature θ(x, t) such that,

∂tu+ (u · ∇)u− 1

Re
∆u+∇p−N(j ×B) +

Gr

Re2 θ = f +
Gr

Re2 θref , (11)

∇ · u = 0, (12)

j +∇φ− (u×B) = 0, (13)

∇ · j = 0, (14)

∂tθ + (u · ∇)θ − 1

Pe
∆θ = Q, (15)

where the temperature has been scaled as θ → θ 1
∆θ . The additional adimensional numbers in (11)-(15) are defined as,

Grashof number, Gr =
gβ∆θL3

ν2
,

Péclet number, Pe =
ρcpu0L

kt
,

where g is the norm of the gravity field, β the thermal expansion coefficient, ∆θ a temperature increment, θref a
reference temperature, Q a heat source, cp the specific heat at constant pressure, kt the thermal conductivity and
κ = kt

ρcp
the thermal diffusivity. Moreover, the Prandtl number is an adimensional number that relates the viscous

and thermal diffusivities, Pr = ν
κ .

The boundary conditions to be imposed for problem (11)-(15) correspond to the conditions stated in Section 2.1
for the MHD variables plus boundary conditions for the temperature. Consider a partition of the domain boundary
such as Γ = ΓE,θ ∪ ΓN,θ. The Dirichlet condition on ΓE,θ implies a fixed temperature θ = θD whereas the condition
on ΓN,θ corresponds to imposing a heat flux on the boundary, i.e., kt

ρcp
n · ∇θ = q. Finally, an initial condition for the

temperature field, θ = θ0 in Ω for t = 0, has to be considered. We assume that Q = q = θD = 0 for simplicity.
We define the temperature functional space Vθ = H1

0,ΓE,θ
(Ω). The weak form of problem (11)-(15) can be stated

as: find (u, p, j, φ, θ) ∈ Vu ×Qp × Vj ×Qφ × Vθ such that

Fu(u)u+ Cuj +Gup+Huθ = fu in V ′u, Duu = 0 in Q′p, (16)

Fjj + Cju+Gjφ = 0 in V ′j , Djj = 0 in Q′φ, (17)

Fθ(u)θ = 0 in V ′θ . (18)

where the operators related to the inductionless MHD problem are defined in Section 2.1. The semi-linear thermal
problem operator Fθ : Vu × Vθ → V ′θ reads as Fθ(w)ϕ := (∂tϕ, ·) + 1

Pe (∇ϕ,∇·) + 〈(w · ∇)ϕ, ·〉, whereas the buoyancy

term operator Hu : Vθ → V ′u is Huθ := Gr
Re2

(θ, ·).
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3. Stabilized finite element formulation

3.1. Inductionless MHD

The variational problem (9)-(10) is linearized, discretized in time and spatially approximated following the same
procedure as in [32]. The linearization method chosen is Picard method, the time derivatives are discretized using the
θ-method and the spatial approximation is obtained with the standard Galerkin method. Given, e.g., the operator
Mu, we denote its finite element restriction as Muh : Vuh → V ′uh. This way, we define the FE restriction of all the
operators in Section 2.1. However, in order to simplify notation, we will omit the h subindex for the discrete operators.
Thus, the discrete and linearized form can be stated as

Fu(an+θ
h )un+θ

h + Cuj
n+1
h +Gup

n+1
h = fn+θ

u in V ′u,h, Duu
n+θ
h = 0 in Q′ph, (19)

Fjj
n+1
h + Cju

n+θ
h +Gjφ

n+1
h = 0 in V ′jh, Djj

n+1
h = 0 in Q′φh, (20)

where an+θ
h = un+θ,k

h being k the previous iteration of the nonlinear Picard iterative loop and the discrete FE spaces
Vuh, Qph, Vjh and Qφh are subspaces of their infinite dimensional counterparts Vu, Qp, Vj and Qφ. The right-hand-side
(RHS) term fn+θ

u includes the time derivative term 1
δtMuu

n
h.

The Galerkin approximation of this problem is known to have many drawbacks. First, the discrete problem is
well-posed only if the discrete inf-sup conditions for Vuh ×Qph and Vjh ×Qφh are satisfied:

inf
qh∈Qph

sup
vh∈Vuh

(qh,∇ · vh)

‖qh‖‖∇vh‖
≥ β∗ > 0, inf

ψh∈Qφh
sup

kh∈Vjh

(∇ψh, kh)

‖∇ψh‖‖kh‖
≥ γ∗ > 0,

where β∗ and γ∗ are positive constants independent of the mesh size h. Depending on how the finite element spaces
Vuh, Qph, Vjh and Qφh are chosen, these conditions might not be satisfied. For instance, equal order spaces do not
fulfill the discrete inf-sup conditions. Moreover, when solving problems where the first order derivatives dominate the
second order ones in the Navier-Stokes equations, that is, convection dominated cases, oscillations may appear in the
solution. Finally, a strong coupling between the hydrodynamic and electromagnetic problems may lead to numerical
instabilities.

The solution adopted in this work to avoid these drawbacks consists of stabilization methods. The basic idea under
a stabilization method is to add certain terms to the variational form of the problem that allow one to circumvent the
previously mentioned difficulties associated to the Galerkin approximation of the problem without spoiling accuracy.
Two different stabilization methods are used in this work.

The first one is the algebraic sub-grid scale method (ASGS) following the subgrid scale concept introduced in [24].
We can consider a variational multiscale formulation of the problem, by using the framework in [24, 23]. Let us denote
the finite element partition as Th; K ∈ Th is a FE. This way, we add a term of the type

∑
k∈Th

∫
K

(F−∂tM(U)−L(U))·
τLT (V )dx to the left-hand-side (LHS) of (19)-(20), where F is the forcing term, L the steady-state spatial differential
operator of the problem at hand and M the continuous mass operator. τ is the matrix of stabilization parameters.
Alternatively, when considering a Galerkin/Least-Squares (GLS) stabilization of the problem, we just replace LT (V )
by −L(V ) in the definition of the stabilization term. The application of this method to the incompressible inductionless
MHD problem is deeply explained in [32]. We include this method in Algorithm 1 for the sake of completeness. The
symbol ∆h stands for the broken Laplacian, i.e., (∆hvh, ·) =

∑
K∈Th

∫
K

∆vh(·)dx.
The second stabilization method developed for this work is the orthogonal sub-scale stabilization method (OSS)

introduced in [16, 17]. We consider a term-by-term formulation, where we only introduce as stabilization terms the
quantities we want to stabilize (first order derivative terms) scaled with properly chosen stabilization parameters. These
terms alone would destroy the convergence properties of the resulting method. In order to have optimal convergence,
we subtract to the quantities to be stabilized a proper projection onto the FE space. The OSS stabilization terms to
be added to the Galerkin formulation read as (before linearization)

(τ1π
⊥
hu((uh · ∇)uh), π⊥hu((uh · ∇)vh)) + (τ1π

⊥
hu(∇ph), π⊥hu(∇qh)) + (τ1π

⊥
hu(jh ×B), π⊥hu(kh ×B))

+ (τ2∇ · uh,∇ · vh) + (τ3π
⊥
hj(∇φ), π⊥hj(∇ψ)) + (τ3π

⊥
hj(uh ×B), π⊥hj(vh ×B)) + (τ4∇ · jh,∇ · kh),

where π⊥hu(·) = Id(·) − πhu(·); Id denotes the identity and πhu : L2(Ω) → Vuh corresponds to a projector onto the
FE space. π⊥hj(·) is defined analogously with respect to Vjh. We note that the projections are not required for the
divergence terms, since both u and j are solenoidal. Different choices for the projector have been proposed so far,
e.g., the orthogonal subscales (OSS) formulation considers the L2 projector and a local nodal Scott-Zhang projector
is used in [3]; other local projection stabilization methods can be found in [10, 27]. In this work, we consider the OSS
formulation. In practice, the projection in the OSS method is treated explicitly, e.g.,

(τ1π
⊥
hu(∇ph), π⊥hu(∇qh)) ≈ (τ1∇ph,∇qh)− (τ1πhu(∇ph),∇qh),
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Algorithm 1: ASGS stabilization for the inductionless MHD problem

Given unh at the previous time step value, find un+1
h , jn+1

h , pn+1
h and φn+1

h such that(
δtu

n+1,k+1
h , vh

)
+
〈

(un+1,k
h · ∇)un+1,k+1

h , vh
〉

+ 1
Re

(
∇un+1,k+1

h ,∇vh
)
−
(
pn+1,k+1
h ,∇ · vh

)
−N

〈
jn+1,k+1
h ×B, vh

〉
+
〈

(un+1,k
h · ∇)vh + 1

Re
∆hvh, τ

n+1,k
1 Rn+1,k+1

h,u

〉
+
(
∇ · vh, τn+1,k

2 Rn+1,k+1
h,p

)
−
〈

(vh ×B), τn+1,k
3 Rn+1,k+1

h,j

〉
=
(
fn+1, vh

)
,(

∇ · un+1,k+1
h , qh

)
+
〈
τn+1,k
1 Rn+1,k+1

h,u ,∇qh
〉

= 0,(
jn+1,k+1
h , kh

)
+
(
∇φn+1,k+1

h , kh
)
−
〈
un+1,k+1
h ×B, kh

〉
−N

〈
kh ×B, τn+1,k

1 Rn+1,k+1
h,u

〉
−
〈
kh, τ

n+1,k
3 Rn+1,k+1

h,j

〉
+
(
∇ · kh, τn+1,k

4 Rn+1,k+1
h,φ

)
= 0,

−
(
jn+1,k+1
h ,∇ψh

)
+
〈
∇ψh, τn+1,k

3 Rn+1,k+1
h,j

〉
= 0,

where the residuals are:

Rh,u := δtuh + (a · ∇)uh − 1
Re

∆huh +∇ph −N(jh ×B)− f,
Rh,p := ∇ · uh,
Rh,j := jh +∇φh − (uh ×B),
Rh,φ := ∇ · jh.

The stabilization parameters have the following expressions within each element K:

α := c1
a
h

+ c2
1

h2Re
, β := c3NB, γ := c4,

τ1 = α−1
(

1 + 1√
αγ
β
)−1

, τ2 = c5
h2

τ1
,

τ3 = γ−1
(

1 + 1√
αγ
β
)−1

, τ4 = c6
h2

τ3
,

where c1, . . . , c6 are algorithmic constants.

where the last term is treated explicitly, using the value from the previous nonlinear iteration (idem for the rest of
terms). We note that the approximation comes from the fact that τ1 is not constant in general (otherwise the previous
re-statement will be exact). In order to make this relation hold for non-constant τ , we can use a τ -weighted L2

projector (see [17]). With all these ingredients, we end up with the OSS formulation included in Algorithm 2.
Both ASGS and OSS methods can be stated as

Fu(an+θ
h )un+θ

h + Cuj
n+1
h +Gup

n+1
h + Tuφ

n+1
h = fn+θ

u , Duu
n+θ
h + Cpp

n+1
h + Tpj

n+1
h = fn+1

p , (21)

Fjj
n+1
h + Cju

n+θ
h +Gjφ

n+1
h + Tjp

n+1
h = fn+1

j , Djj
n+1
h + Cφφ

n+1
h + Tφu

n+1
h = fn+1

φ , (22)

where Fu, Cu, Fj and Cj have been properly modified (with respect to the original Galerkin formulation) in order to
include the corresponding stabilization terms in Algorithms 1 or 2. Note that for the ASGS formulation, the right-
hand-side terms fp, fj and fφ are zero (for OSS, they include the projection treated explicitly) whereas for the OSS
formulation, the operators Tu, Tp, Tj and Tφ are zero because there are no stabilization terms that couple u-φ and j-p.
The discrete and stabilized formulation (21)-(22) results in a linear system of equations to be solved. This system of
equations has a 4× 4 block structure, where we consider one block per unknown:

Fu Gu Cu Tu
Du Cp Tp 0
Cj Tj Fj Gj
Tφ 0 Dj Cφ



u
p
j
φ

 =


fu
fp
fj
fφ

 . (23)

We further note that the OSS algorithm does not modify the off-diagonal terms, i.e., Gu, Cu, Du, Gj , Cj , and Dj ,
keeping the block skew-symmetric nature of the Galerkin matrix. However, using ASGS these off-diagonal terms
are perturbed in such a way that this property is lost. It has important effects as segregated algorithms are not
unconditionally stable for non skew-symmetric matrices (see [9]). Finally, note that for the sake of conciseness,
Algorithms 1 and 2 have been written using the Backward Euler method (θ = 1) for time integration.
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Algorithm 2: OSS stabilization for the inductionless MHD problem

Given unh at the previous time step value, find un+1
h , jn+1

h , pn+1
h and φn+1

h such that(
δtu

n+1,k+1
h , vh

)
+
〈

(un+1,k
h · ∇)un+1,k+1

h , vh
〉

+ 1
Re

(
∇un+1,k+1

h ,∇vh
)
−
(
pn+1,k+1
h ,∇ · vh

)
−N

〈
jn+1,k+1
h ×B, vh

〉
+
〈

(un+1,k
h · ∇)un+1,k+1

h , τn+1,k
1 (un+1,k

h · ∇)vh
〉

+
〈
un+1,k+1
h ×B, τn+1,k

3 (vh ×B)
〉

+
(
∇ · un+1,k+1

h , τn+1,k
2 ∇ · vh

)
=
(
fn+1, vh

)
+
〈
xn+1,k
1,h , τn+1,k

1 (un+1,k
h · ∇)vh

〉
−
〈
yn+1,k
2,h , τn+1,k

3 (vh ×B)
〉
,(

∇ · un+1,k+1
h , qh

)
+
(
∇pn+1,k+1

h , τn+1,k
1 ∇qh

)
=
〈
xn+1,k
2,h , τn+1,k

1 ∇qh
〉
,(

jn+1,k+1
h , kh

)
+
(
∇φn+1,k+1

h , kh
)
−
〈
un+1,k+1
h ×B, kh

〉
+ N2

〈
jn+1,k+1
h ×B, τn+1,k

1 (kh ×B)
〉

+
(
∇ · jn+1,k+1

h , τn+1,k
4 ∇ · kh

)
= −N

〈
xn+1,k
3,h , τn+1,k

1 (kh ×B)
〉
,

−
(
jn+1,k+1
h ,∇ψh

)
+
(
∇φn+1,k+1

h , τn+1,k
3 ∇ψh

)
=
(
yn+1,k
1,h , τn+1,k

3 ∇ψh
)
,

where the projections are computed from:(
xn+1,k
1,h , vh

)
=
〈

(un+1,k
h · ∇)un+1,k

h , vh
〉
,(

xn+1,k
2,h , vh

)
=
(
∇pn+1,k

h , vh
)
,(

xn+1,k
3,h , vh

)
= −N

〈
jn+1,k
h ×B, vh

〉
,(

yn+1,k
1,h , kh

)
=
(
∇φn+1,k

h , kh
)
,(

yn+1,k
2,h , kh

)
= −

〈
un+1,k
h ×B, kh

〉
.

The stabilization parameters have the following expressions within each element K:

α := c1
a
h

+ c2
1

h2Re
, β := c3NB, γ := c4,

τ1 = α−1
(

1 + 1√
αγ
β
)−1

, τ2 = c5
h2

τ1
,

τ3 = γ−1
(

1 + 1√
αγ
β
)−1

, τ4 = c6
h2

τ3
,

where c1, . . . , c6 are algorithmic constants.

3.2. Thermally coupled problem

The weak form of the thermally coupled inductionless MHD problem (16)-(18) is linearized and discretized in both
time and space following the same ideas exposed in Section 3.1. The only additional nonlinear term corresponds to
the convective term in the temperature equation. This term is also linearized using Picard method, which leads to the
discrete and linearized form,

Fu(an+θ
h )un+θ

h + Cuj
n+1
h +Gup

n+1
h +Huθ

n+θ
h = fn+θ

u in V ′uh, Duu
n+θ
h = 0 in Q′ph, (24)

Fjj
n+1
h + Cju

n+θ
h +Gjφ

n+1
h = 0 in V ′jh, Djj

n+1
h = 0 in Q′φh, (25)

Fθ(a
n+θ
h )θn+θ

h = 0 in V ′θh, (26)

where the discrete FE space Vθh is a subspace of Vθ.
The Galerkin approximation (24)-(26) of the problem adds another source of instability, i.e., the presence of the

convective term in the temperature equation. This term may introduce oscillations in the solution for convection
dominated cases. Thus, we include a SUPG-type stabilization for the thermal problem in the ASGS formulation for
the thermally coupled MHD system, i.e.,

(τ5(uh · ∇)ϕh, δtθh + (a · ∇)θh −
1

Pe
∆hθh −Q).

The thermal coupling in system (24)-(26), after Picard’s linearization, is in one direction only; the thermal subproblem
is independent of the fluid subproblem. Using a full ASGS formulation, this very interesting property would be lost.
The final system with the definition of the stabilization parameters is included in Algorithm 3.
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Algorithm 3: ASGS stabilization for the thermally coupled inductionless MHD problem

Given unh at the previous time step value, find un+1
h , jn+1

h , pn+1
h and φn+1

h such that(
δtu

n+1,k+1
h , vh

)
+
〈

(un+1,k
h · ∇)un+1,k+1

h , vh
〉

+ 1
Re

(
∇un+1,k+1

h ,∇vh
)
−
(
pn+1,k+1
h ,∇ · vh

)
−N

〈
jn+1,k+1
h ×B, vh

〉
+ Gr

Re2

(
θn+1,k+1
h , vh

)
+
〈

(un+1,k
h · ∇)vh + 1

Re
∆hvh, τ

n+1,k
1 Rn+1,k+1

h,u

〉
+
(
∇ · vh, τn+1,k

2 Rn+1,k+1
h,p

)
−
〈

(vh ×B), τn+1,k
3 Rn+1,k+1

h,j

〉
=
(
fn+1, vh

)
+ Gr

Re2
(θref , vh) ,(

∇ · un+1,k+1
h , qh

)
+
〈
τn+1,k
1 Rn+1,k+1

h,u ,∇qh
〉

= 0,(
jn+1,k+1
h , kh

)
+
(
∇φn+1,k+1

h , kh
)
−
〈
un+1,k+1
h ×B, kh

〉
−N

〈
kh ×B, τn+1,k

1 Rn+1,k+1
h,u

〉
−
〈
kh, τ

n+1,k
3 Rn+1,k+1

h,j

〉
+
(
∇ · kh, τn+1,k

4 Rn+1,k+1
h,φ

)
= 0,

−
(
jn+1,k+1
h ,∇ψh

)
+
〈
∇ψh, τn+1,k

3 Rn+1,k+1
h,j

〉
= 0,(

δtθ
n+1,k+1
h , ϕh

)
+
〈

(un+1,k
h · ∇)θn+1,k+1

h , ϕh
〉

+ 1
Pe

(
∇θn+1,k+1

h ,∇ϕh
)

+
〈

(un+1,k
h · ∇)ϕh, τ

n+1,k
5 Rn+1,k+1

h,θ

〉
=
(
Qn+1, ϕh

)
.

where the residuals are:

Rh,u := δtuh + (a · ∇)uh − 1
Re

∆huh +∇ph −N(jh ×B) + Gr
Re2

θh − f,
Rh,p := ∇ · uh,
Rh,j := jh +∇φh − (uh ×B),
Rh,φ := ∇ · jh,
Rh,θ := δtθh + (a · ∇)θh − 1

Pe
∆hθh −Q.

The stabilization parameters have the following expressions within each element K:

α := c1
a
h

+ c2
1

h2Re
, β := c3NB, γ := c4,

τ1 = α−1
(

1 + 1√
αγ
β
)−1

, τ2 = c5
h2

τ1
,

τ3 = γ−1
(

1 + 1√
αγ
β
)−1

, τ4 = c6
h2

τ3
,

τ5 =
(
c7
a
h

+ c8
1

h2Pe

)−1
,

where c1, . . . , c8 are algorithmic constants.

On the other hand, we can also use the OSS technique explained in the previous section to the thermally coupled
system (24)-(26). In this case, we simply need to add the term

(τ5π
⊥
hθ((uh · ∇)φh), π⊥hθ((uh · ∇)ψh)),

where π⊥hθ is the L2-projection onto the FE space Vθh. The resulting OSS algorithm, after time integration and
linearization, is stated in Algorithm 4.

The addition of the new variational forms due to the thermal coupling and its associated stabilization terms can
be stated compactly as the following 5× 5 block linear system of equations,

Fu Gu Cu Tu Hu

Du Cp Tp 0 Hp

Cj Tj Fj Gj Hj

Tφ 0 Dj Cφ 0
0 0 0 0 Fθ



u
p
j
φ
θ

 =


fu
fp
fj
fφ
fθ

 , (27)

where the matrices have been modified accordingly to include the stabilization terms. Note that the operators Hp and
Hj are zero for the OSS stabilized formulation because there are not coupling terms between p-θ and j-θ.

4. Definition of block recursive preconditioners for the (thermally coupled) inductionless MHD problem

In this section, we design block preconditioners for multiphysics problems based on a recursive use of inexact
block LU factorization. This strategy is first presented in a general (abstract) form. The key ingredient of this
formulation is the approximation of the Schur complements. Next, we list typical Schur complement approximations
for the Navier-Stokes equations. Finally, we apply the abstract setting for the (thermally coupled) inductionless MHD
problem.
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Algorithm 4: OSS stabilization for the thermally coupled inductionless MHD problem

Given unh at the previous time step value, find un+1
h , jn+1

h , pn+1
h and φn+1

h such that(
δtu

n+1,k+1
h , vh

)
+
〈

(un+1,k
h · ∇)un+1,k+1

h , vh
〉

+ 1
Re

(
∇un+1,k+1

h ,∇vh
)
−
(
pn+1,k+1
h ,∇ · vh

)
−N

〈
jn+1,k+1
h ×B, vh

〉
+ Gr

Re2

(
θn+1,k+1
h , vh

)
+
〈

(un+1,k
h · ∇)uh, τ

n+1,k
1 (un+1,k

h · ∇)vh
〉

+
〈
un+1,k+1
h ×B, τn+1,k

3 (vh ×B)
〉

+
(
∇ · un+1,k+1

h , τn+1,k
2 ∇ · vh

)
=
(
fn+1, vh

)
+
〈
xn+1,k
1,h , τn+1,k

1 (un+1,k
h · ∇)vh

〉
−
〈
yn+1,k
2,h , τn+1,k

3 (vh ×B)
〉
,(

∇ · un+1,k+1
h , qh

)
+
(
∇pn+1,k+1

h , τn+1,k
1 ∇qh

)
=
(
xn+1,k
2,h , τn+1,k

1 ∇qh
)
,(

jn+1,k+1
h , kh

)
+
(
∇φn+1,k+1

h , kh
)
−
〈
un+1,k+1
h ×B, kh

〉
+ N2

〈
jn+1,k+1
h ×B, τn+1,k

1 (kh ×B)
〉

+
(
∇ · jn+1,k+1

h , τn+1,k
4 ∇ · kh

)
= −N

〈
xn+1,k
3,h , τn+1,k

1 (kh ×B)
〉
,

−
(
jn+1,k+1
h ,∇ψh

)
+
(
∇φn+1,k+1

h , τn+1,k
3 ∇ψh

)
=
(
yn+1,k
1,h , τn+1,k

3 ∇ψh
)
,(

δtθ
n+1,k+1
h , ϕh

)
+
〈

(un+1,k
h · ∇)θn+1,k+1

h , ϕh
〉

+ 1
Pe

(
∇θn+1,k+1

h ,∇ϕh
)

+
〈

(un+1,k
h · ∇)θh, τ

n+1,k
5 (un+1,k

h · ∇)ϕh
〉

=
(
Qn+1, ϕh

)
+
〈
zn+1,k
1,h , τn+1,k

5 (un+1,k
h · ∇)ϕh

〉
,

where the projections are computed from:(
xn+1,k
1,h , vh

)
=
〈

(un+1,k
h · ∇)un+1,k

h , vh
〉
,(

xn+1,k
2,h , vh

)
=
(
∇pn+1,k

h , vh
)
,(

xn+1,k
3,h , vh

)
= −N

〈
jn+1,k
h ×B, vh

〉
,(

yn+1,k
1,h , kh

)
=
(
∇φn+1,k

h , kh
)
,(

yn+1,k
2,h , kh

)
= −

〈
un+1,k
h ×B, kh

〉
,(

zn+1,k
1,h , ϕh

)
=
〈

(un+1,k
h · ∇)θn+1,k

h , ϕh
〉
.

The stabilization parameters have the following expressions within each element K:

α := c1
a
h

+ c2
1

h2Re
, β := c3NB, γ := c4,

τ1 = α−1
(

1 + 1√
αγ
β
)−1

, τ2 = c5
h2

τ1
,

τ3 = γ−1
(

1 + 1√
αγ
β
)−1

, τ4 = c6
h2

τ3
,

τ5 =
(
c7
a
h

+ c8
1

h2Pe

)−1
,

where c1, . . . , c8 are algorithmic constants.

4.1. Abstract block recursive factorization

Let us consider a generic system A11 · · · A1nunk

...
. . .

...
Anunk1 · · · Anunknunk


 x1

...
xnunk

 =

 b1
...

bnunk


arising from the discretization of a multiphysics problem that involves nunk physical variables. Our target is to design
an efficient preconditioner for the system matrix A such that it only involves the solution of one-variable (one-physics)
problems, for which we can find efficient preconditioners of domain decomposition or algebraic multigrid type. In order
to do this, we rely on the incomplete block factorization of a 2× 2 block matrix. Obviously, the original multiphysics
problem can be arranged as a 2× 2 system matrix by splitting (and reordering) the nunk variables into two different
ordered sets. After this, the original problem is denoted as:[

F G
D C

] [
x
y

]
=

[
f
g

]
.
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We have denoted the block matrices and vectors in the arranged 2× 2 block system using the typical notation for the
incompressible Navier-Stokes equations. (We do not assume that D = −GT since it is not true in general, e.g., when
solving transient incompressible flows with SUPG-type stabilization techniques.) For saddle-point problems, y usually
is a Lagrange multiplier, e.g., the pressure. At this point, we can consider an exact block LU factorization of the 2×2
block matrix:

A =

[
F G
D C

]
=

[
F 0
D S

] [
I F−1G
0 I

]
,

where S = C −DF−1G is the Schur complement matrix with respect to y. This matrix cannot be easily handled. In
order to obtain an inexact factorization, the key aspect is the design of a good approximation for the Schur complement
matrix. We denote this approximation by S]. We can further consider an approximation of F , which we denote by F],
even though it is not essential in many cases. With these two ingredients, namely S] and F], we can consider different
preconditioners P (A) for A:

D − preconditioner : P (A) =

[
F] 0
0 S]

]−1

=

[
F−1
] 0

0 S−1
]

]
, (28)

U − preconditioner : P (A) =

[
F] G
0 S]

]−1

=

[
F−1
] −F−1

] GS−1
]

0 S−1
]

]
, (29)

LU − preconditioner : P (A) =

[
I F−1

] G

0 I

]−1 [
F 0
D S]

]−1

=

[
I −F−1

] G

0 I

] [
F−1 0

−S−1
] DF−1 S−1

]

]
. (30)

Since we aim at solving the global problem using a preconditioned Krylov iterative solver, we only require to per-
form matrix-vector multiplications for both A and the preconditioner P (A). The preconditioner P (A) is defined by
the inverses of the matrices on the diagonal, i.e., F−1

] , S−1
] , and possibly F−1. For practical problems, the com-

putation of the action of F−1
] or S−1

] on a vector is not viable via sparse direct solvers, specially in 3D, due to
their high memory and computational demands. We use the following notation: given a matrix H, the approxi-
mate action of H−1 over a vector computed by a Krylov iterative solver preconditioned with P (H) up to a given
tolerance tolH is denoted by precond Krylov(H,P (H), tolH). Thus, in practical implementations, we replace F−1

]

by precond Krylov(F], P (F]), tol) in the definition (28),(29) or (30) of the preconditioner (analogously for S−1
] and

possibly F−1).
In this setting, with a particular definition of the block matrix and its approximations, we can recover most of the

Schur complement preconditioners in the literature (see Section 4.2). For one-physics problems with a saddle-point
structure (e.g., the incompressible (Navier)-Stokes equations, electromagnetics with Lorentz gauge, mixed form of
Laplacian-type problems, Darcy’s law for flow in porous media) matrices F] and S] involve one-variable problems (for
the field and the Lagrange multiplier respectively) but this is not the general case for multiphysics problems. However,
if, e.g., F] involves two or more variables, we can perform again an incomplete block factorization of this matrix, i.e.,
approximate F−1

] by P (F]) with one of the definitions in (28),(29) or (30) (analogously for S−1
] and F−1). This

process can be applied recursively till all diagonal block matrices (to be inverted) only involve one variable. We state
in Algorithm 5 the definition of the recursive block LU preconditioner. (We have assumed in this algorithm that the
system has been ordered in such a way that the Schur complement is always defined for the second block unknown.)
Let us note that it is not required to end the process when the diagonal system matrices are one-variable matrices, as
soon as we have at our disposal an efficient preconditioner for a particular multi-variable matrix.

As an alternative, we can also consider only the LU factorization at the first level, and solve every multi-variable
diagonal block using a Krylov iterative solver preconditioned with an incomplete inexact LU factorization. Again,
we can proceed in a recursive way. As a result, this procedure will involve as many nested iterative loops as levels of
recursion. The resulting algorithm is presented in Algorithm 6. Both approaches will be considered in the numerical
experiments section.

For a particular multiphysics problem the key ingredient to be defined is an efficient and robust approximation of
S] for every incomplete LU factorization.

4.2. Incompressible Navier-Stokes preconditioners

Let us review some of the classical block preconditioners for solving the incompressible Navier-Stokes problem.
Consider that the linear system of equations to be solved after discretization and stabilization of the Navier-Stokes
equations is written as [

F G
D C

] [
u
p

]
=

[
f
g

]
.
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Algorithm 5: P = LU block precond(A)

Define a 2× 2 block partition of the system matrix (into subsets of physical variables):1:

A =

[
F G
D C

]
Define the approximations S] ≈ C −DF−1G and F] ≈ F2:

for H = {S], F] (and possibly F ) } do3:

if H involves more than one physical variable then4:

Replace H−1 by its LU approximation, i.e., H−1 ← LU block precond(H)5:

else6:

Define an effective preconditioner P (H) (e.g., using DDM, multigrid...)7:

Define the tolerance tolH and replace H−1 ← precond Krylov(H,P (H), tolH)8:

Define P (A) as in (28), (29) or (30)9:

Algorithm 6: P = LU approximation(A)

Define a 2× 2 block partition of the system matrix (into subsets of physical variables):1:

A =

[
F G
D C

]
Define the approximations S] ≈ C −DF−1G and F] ≈ F2:

for H = {S], F] (and possibly F ) } do3:

if H involves more than one variable then4:

Define the LU factorization of H: P (H)← LU approximation(H)5:

Define the tolerance tolH and replace H−1 ← precond Krylov(H,P (H), tolH)6:

else7:

Define an effective preconditioner P (H) (e.g., using DDM, multigrid...)8:

Define the tolerance tolH and replace H−1 ← precond Krylov(H,P (H), tolH)9:

Define P (A) as in (28), (29) or (30)10:

First, let us state the Uzawa method as a U -preconditioner (29) for solving the stationary Stokes problem. Considering
that the block matrix F = K, i.e., it only contains diffusive terms, the exact Schur complement for the pressure is
S = C − DK−1G. However, at the continuous level, DK−1G = ∇T∆−1

0 ∇, where ∆−1
0 denotes the inverse of the

Laplace problem with homogeneous Dirichlet boundary conditions on ΓE,u. If we replace ∆−1
0 by ∆−1 (without

boundary conditions), the following commutation of operators holds: ∇T (∇2)−1∇ = (∇2)−1∇T∇ = 1. Now, we
consider the approximation ∇T∆−1

0 ∇ ≈ 1; it is exact for periodic boundary conditions or Ω = Rd. As a result, we
approximate DK−1G ≈ ReMp, where Mp is a mass matrix for the pressure. This way, we can write the Uzawa block
preconditioner as,

PUzw(A) =

[
F] G
0 S]

]−1

, where
F−1
] = F−1

S−1
] = C−1 + 1

Re M
−1
p

. (31)

Note that the expression of the Schur complement approximation also involves the stabilization matrix inverse.
Cahouet and Chabard extended these ideas to the transient Stokes problem in [13]. In this case, the block matrix

F = 1
δtM + K contains the temporal and diffusive terms. If we take into account that −D( 1

δtM)−1G is spectrally
equivalent to a Laplacian matrix, i.e., −D( 1

δtM)−1G ≈ δt L (L denotes the typical FE discretization for −∆), the
Cahouet-Chabard (CC) block preconditioner is written as,

PCC(A) =

[
F] G
0 S]

]−1

, where
F−1
] = F−1

S−1
] = (C + δtL)−1 + 1

Re M
−1
p

. (32)

In order to introduce the convective term into the preconditioner, the pressure convection-diffusion (PCD) pre-
conditioner was developed in [22, 21]. This preconditioner is based on approximating the original Schur comple-
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ment by a commutation of operators, viz. ∇TL−1∇ ≈ ∇T∇L−1
p , where L(·) = 1

δt (·) + a · ∇(·) − 1
Re∆(·) is a

CDR operator and Lp a pressure CDR operator. If we apply this approximation to the discrete level, it leads to
DF−1G ≈ D(M−1F )−1M−1G ≈ DM−1G(M−1

p Fp)
−1 ≈ LpF−1

p Mp, where Fp is the matrix obtained after discretiza-
tion of the pressure CDR operator Lp. Therefore, the expression of the PCD preconditioner is,

PPCD(A) =

[
F] G
0 S]

]−1

, where
F−1
] = F−1

S−1
] = M−1

p FpL
−1
p

. (33)

Finally, other classical and well-known algorithms for solving the transient Navier-Stokes equations are the pressure
segregation (PC) methods, also known as fractional step schemes. They were first developed independently by Chorin
[14, 15] and Temam [35]. Basically, they consist of two steps. First, an intermediate velocity that does not verify the
incompressibility condition is obtained from the momentum equation. Then, an end-of-step velocity is computed taking
into account the pressure gradient and the velocity divergence terms. These schemes assume that the convective and
diffusive terms are negligible with respect to the temporal evolutionary term and therefore F ≈ 1

δtM and −DF−1G ≈
−D( 1

δtM)−1G ≈ δtL, which is a reasonable assumption for δt small. They can be implemented as a LU -preconditioner

PPC(A) =

[
I F−1

] G

0 I

]−1 [
F 0
D S]

]−1

, where
F−1
] = δtM−1

S−1
] = (C + δtL)−1 . (34)

4.3. Incompressible inductionless MHD preconditioners

In this section, we consider two different preconditioners for the inductionless MHD problem, based on the recursive
block LU factorization introduced above. The first preconditioner is based on an initial factorization of the system
matrix into fluid and magnetic subproblems. The second preconditioner segregates at the first level field variables
(velocity and current) from Lagrange multiplier-type variables (pressure and electric potential).

4.3.1. Fluid-magnetic subproblem factorization (FMS preconditioner)

Let us consider the 4 × 4 block system (23) and reorder it in such a way that the electromagnetic variables are
written first and then the fluid unknowns:

A =


Fj Gj Cj Tj
Dj Cφ Tφ 0
Cu Tu Fu Gu
Tp 0 Du Cp



j
φ
u
p

 =


fj
fφ
fu
fp

 . (35)

Following Algorithms 5 and 6, we arrange the 4×4 block matrix A from (35) as a 2×2 block system grouping together
the electromagnetic unknowns, j-φ, on one hand and the fluid unknowns, u-p, on the other hand. Moreover, we choose
the preconditioner PFMS as a U -preconditioner (29),[

Fjφ Cjφ
Cup Fup

] [
x
y

]
=

[
f
g

]
, PFMS(A) =

[
Fjφ Cjφ
0 Sup]

]−1

, (36)

where x = [j, φ]T , y = [u, p]T , f = [fj , fφ]T , g = [fu, fp]
T and matrices Fjφ, Fup, Cjφ and Cup are the corresponding

2 × 2 block matrices. The key aspect to derive the preconditioner is the definition of the approximation for Sup] =
Fup − CupF

−1
jφ Cjφ. We have chosen Sup] = Fuj . Let us justify this (simple) choice for the Schur complement

approximation. It comes from the analysis of the continuous problem (5)-(8). We consider the electromagnetic
subproblem (7)-(8). From (8), we have that φ = ∆−1

0 (∇ · (u × B)), where ∆−1
0 is the inverse of the Laplacian with

homogeneous boundary conditions on ΓC,j . Invoking this expression of φ in (7) we obtain:

j = −∇∆−1
0 (∇ · (u×B)) + (u×B).

Using this expression in the momentum equation (5), we get

∂tu+ (u · ∇)u− 1

Re
∆u+∇p+ N((∇∆−1∇ · (u×B)− (u×B))×B) = f.

Now, we note that the coupling term from the magnetic problem to the fluid problem, i.e., ((∇∆−1∇·(u×B))−(u×B)),
vanishes when we consider the same approximation as for the Uzawa algorithm, ∇∆−1∇· ≈ I. This derivation suggests
that the subproblems for the Navier-Stokes (NSI) and Darcy-type (DCY) equations can be solved uncoupled at the
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preconditioner level. This is certainly an approximation, but this kind of approximation has been proved to be optimal
for the Stokes problem [22], leading to robust preconditioners. No approximation of Fjφ is taken at this level.

The following step in the preconditioner definition consists of adding a second level of recursion with the ap-
proximation of the inverses of block matrices Fjφ and Fup. For instance, let us replace them by a U -preconditioner,
F−1
jφ ← LU block precond(Fjφ) and F−1

up ← LU block precond(Fup),

P (Fjφ) =

[
Fj Gj
0 Sφ]

]−1

, P (Fup) =

[
Fu Gu
0 Sp]

]−1

.

The last missing ingredient is to define the approximation of Sφ] and Sp]. For Sp], we can consider any of the methods
in Section 4.2. On the other hand, since Sφ = Cφ−DφF

−1
j Gj and Fj is a mass matrix for the Galerkin approximation,

we can naturally use the same approximation as for PC or PCD problems, i.e., S−1
φ] ≈ (Cφ +Lφ)−1. Summarizing, we

consider the following options:

Uzawa :

{
S−1
p] = C−1

p + 1
ReM

−1
p

S−1
φ] = (Cφ + Lφ)−1 , (37)

CC :

{
S−1
p] = (Cp + δtLp)

−1 + 1
ReM

−1
p

S−1
φ] = (Cφ + Lφ)−1 , (38)

PCD :

{
S−1
p] = M−1

p FpL
−1
p

S−1
φ] = M−1

φ FφL
−1
φ

where
Fp(p, q) = 1

δt (p, q) + ((u · ∇)p, q) + 1
Re (∇p,∇q)

Fφ(φ, ψ) = (φ, ψ)
, (39)

PC :

{
S−1
p] = (Cp + δtLp)

−1

S−1
φ] = (Cφ + Lφ)−1 . (40)

Note that for using the PC method, we have to define PFMS(A) in (36) as a LU -preconditioner (30). We do not write
the details here for the sake of conciseness. Finally, we can write the 4× 4 block preconditioner PFMS(A) for (35) as

PFMS(A) =


Fj Gj Cj Tj
0 Sφ Tφ 0
0 0 Fu Gu
0 0 0 Sp


−1

. (41)

Summarizing, we have defined a recursive block preconditioner PFMS that allows us to decouple the computation
of a multiphysics problem such as the inductionless MHD problem into one-physics problems for every physical variable
(velocity, pressure, current density and electric potential) at the preconditioner level. Figure 1 displays a tree diagram
to highlight how the coupled problem is uncoupled into one-physics problems along the two levels of recursion. First,
the preconditioner splits the magnetic unknowns from the fluid ones whereas the second level allows us to decouple
the computation of j and φ on one hand, and the computation of u and p on the other hand. At every splitting, we
create two new problems, namely the F and S problems, and we have defined how to approximate every one of these
matrices.

[j, φ,u, p]

[j, φ] [u, p]

[j] [φ] [u] [p]

F

F F

S

S S

Figure 1: Schematic representation of the tree-like structure of the FMS block preconditioner.
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4.3.2. Field-Lagrange multiplier factorization (FLM preconditioner)

Let us consider now a different reordering of system (23) where the vectorial fields u and j are written first and
the Lagrange multipliers p and φ next,

Fu Cu Gu Tu
Cj Fj Tj Gj
Du Tp Cp 0
Tφ Dj 0 Cφ



u
j
p
φ

 =


fu
fj
fp
fφ

 . (42)

Let us write the 4×4 block matrix A from (42) as a 2×2 block system splitting the vectorial fields from the Lagrange
multipliers, that is, grouping together u-j and p-φ,[

Fuj Guj
Duj Cpφ

] [
x
y

]
=

[
f
g

]
, (43)

where now x = [u, j]T , y = [p, φ]T , f = [fu, fj ]
T , g = [fp, fφ]T and matrices Fuj , Guj , Duj and Cpφ are the

corresponding 2 × 2 block matrices. Let us now define a U -preconditioner for the 2 × 2 block system (43). The
required ingredients are a good approximation for the Schur complement Spφ = Cpφ −DpφF

−1
uj Guj and possibly for

F−1
uj . For the Schur complement matrix, we consider the following approximations. First, we neglect the off-diagonal

(coupling) blocks in F−1
uj , Dpφ and Guj (we note that for Dpφ and Guj the off-diagonal blocks are zero for Galerkin

and OSS approximations). This way, we only need to approximate the fluid Schur complement Sp = Cp −DpF
−1
u Gu

and the magnetic Schur complement Sφ = Cφ − DφF
−1
j Gj . As approximation of Sp and Sφ, we can use any of the

preconditioners presented in (37)-(40).
However, the 2× 2 block matrix Fuj still couples the computation of u and j. At this point, we can add a second

level of recursion and approximate the inverse of Fuj by, e.g., its U -factorization, F−1
uj ← LU block precond(Fuj).

Following the same ideas presented in [9] where the matrix Fu is approximated by δt−1Mu, the Schur complement
Sj = Fj − δtCjF−1

u Cu can be approximated by the term

Sj ≈ Fj − δtCjM−1
u Cu ≈ Fj +Rj , where Rj = δtN2(j ×B, k ×B).

Finally, let us write the PFLM preconditioner expression,

PFLM (A) =


Fu Cu Gu Tu
0 Sj Tj Gj
0 0 Sp 0
0 0 0 Sφ


−1

. (44)

This preconditioner decouples the computation of the four physical variables into one-physics problems in a recursive
way. The first level of recursion decouples the vectorial fields, velocity and current density, from the Lagrange
multipliers, pressure and electric potential. In the second recursive level, the computation of u and j is also decoupled.
Note that the Lagrange multipliers p and φ are decoupled because of the diagonal structure of the Schur complement
approximation for Spφ considered above. Figure 2 shows these two levels of recursive uncoupling in a tree structure.

[u, j, p, φ]

[u, j] [p, φ]

[u] [j] [p] [φ]

F

F F

S

S S

Figure 2: Schematic representation of the tree-like structure of FLM block preconditioner.
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Note that the same derivation can be made for system (42) if the position of u and j is interchanged. We do not
write the details for the sake of conciseness but it is important to highlight that the approximation of Fuj implies in
this case the approximation of the Schur complement with respect to u instead of j, i.e.,

P (Fuj) =

[
Fj Cj
0 Su

]−1

where Su ≈ Fu − CuM−1
j Cj ≈ Fu +Ru and Ru = (u×B, v ×B).

4.4. New stabilized PCD preconditioners for inductionless MHD

In this section, we motivate the FLM preconditioner, via some numerical experiments. Let us consider system (42)
preconditioned with the U -preconditioner with no approximations, i.e., using the exact Schur complement Spφ and
Fuj . Note that this is not affordable for a real simulation but for a very small problem, it will give us an insight on the
importance of every term that is included in the Schur complement. The exact expression of the Schur complement
for the OSS formulation presented in Algorithm 2 is, (recall that blocks T∗ in (42) are zero for OSS stabilization),

S] = Cpφ −DujF
−1
uj Guj =

[
Cp 0
0 Cφ

]
−
[
Du 0
0 Dj

] [
Fu Cu
Cj Fj

]−1 [
Gu 0
0 Gj

]
. (45)

Table 1 presents the number of iterations needed for solving the inductionless MHD problem using an iterative
solver like GMRES. We have solved the test problem for two Hartmann numbers, Ha = 10, 1000. To assess the
importance of the terms in F−1

uj in the Schur complement, two different versions of F−1
uj in (45) have been tested.

First, we want to evaluate the importance of the stabilization terms at the preconditioner. In order to do so, we have
considered the exact Schur complement, denoted as “Stabilized Coupled” in Table 1 and the case in which we do
eliminate the stabilization terms at the preconditioner, denoted as “Galerkin Coupled.” Next, we want to evaluate
the importance of the coupling terms, eliminating at the preconditioner the coupling terms; this case is denoted as
“Stabilized Uncoupled”. Finally, we consider the case without stabilization and coupling terms, denoted as “Galerkin
Uncoupled”.

We have solved the 3D inductionless MHD cavity flow problem (see Section 5.2 for a detailed description) using a
very coarse mesh of 8× 8× 8 linear hexahedral elements and the numerical method with OSS stabilization presented
in Algorithm 2. The results obtained when solving the linear system of equations from the first nonlinear iteration
for the four possible combinations are reported in Table 1. These results indicate that the coupling blocks Cu and
Cj do not have an important effect on the Schur complement definition. This fact is the numerical evidence that has
motivated the FLM preconditioners above.

Stabilized Coupled Galerkin Coupled Stabilized Uncoupled Galerkin Uncoupled

Ha=10 2 5 7 7

Ha=1000 2 31 8 36

Table 1: Number of iterations when solving the exact Schur complement.

On the other hand, the results in Table 1 suggest that the stabilization terms are crucial for a robust Schur
complement, especially when the Hartmann number increases. It has motivated us to introduce the stabilization
terms in the pressure operator for the Schur complement approximation defined in (41) for the PCD preconditioner
in order to improve its efficiency. Therefore, we propose the following stabilized pressure CDR operators

F̂p(p, q) =
1

δt
(p, q) + ((u · ∇)p, q) +

1

Re
(∇p,∇q) + (τ1(u · ∇)p, (u · ∇)q) + (τ3p|B|, q|B|), (46)

F̂φ(φ, ψ) = (φ, ψ) + N2(τ1φ|B|, ψ|B|), (47)

instead of (39). It is important to note that the stabilization terms with vectorial products for u and j have been
approximated by scalar multiplications for the scalar variables p and φ where |B| is the norm of the external magnetic
field B. The improvement associated to this modification will be shown with numerical tests in Section 5.2.3. Note
also that this new definition of the Schur complement approximation for the Lagrange multipliers p and φ can be used
to improve the FMS block preconditioner in (41).
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4.5. Thermally coupled inductionless MHD preconditioners

The design of recursive block preconditioners for solving the thermally coupled inductionless MHD equations follows
the ideas presented in Section 4.1, since the system matrix (27) already has a U structure; the coupling between θ
and the rest of MHD unknowns is in one direction only. Therefore, the definition of, e.g., a U -preconditioner for (27)
reads as

P (A) =

[
F−1
upjφ] −F

−1
upjφ]CupjφF

−1
θ

0 F−1
θ

]
, (48)

where F−1
upjφ] can be the FMS preconditioner (41) or the FLM preconditioner (44).

5. Numerical experiments

This section is devoted to numerically test the behavior of the block preconditioners exposed in previous sections.
On one hand, the 3D lid-driven magnetohydrodynamic cavity flow has been used to test and evaluate the properties
of the several block preconditioners designed previously. On the other hand, a simulation of a real application such as
a Test Blanket Module (TBM) for nuclear fusion reactors has been carried out in order to check the preconditioner
behavior when solving a very challenging problem due to its extreme physical working conditions, i.e., a very high
Hartmann number. Finally, a flow into a vertical enclosure subject to a temperature gradient has been simulated to
test the block preconditioners derived for the thermally coupled inductionless MHD equations.

5.1. Experimental framework

The block recursive LU preconditioners subject of study were implemented and tested within FEMPAR. FEMPAR
is an in-house, parallel hybrid OpenMP/MPI, object-oriented (OO) framework, developed in Fortran90/95, for the
massively parallel stabilized FE simulation of multiphysics problems governed by systems of PDEs. FEMPAR provides
the tools to drive all the steps required in a typical massively parallel FE multiphysics simulation. These steps comprise
the partition (via multilevel graph partitioning) of the underlying unstructured computational mesh into submeshes
for distributed-memory computation, the definition of a multi-physics coupled problem and its FE time and space
discretization, the nonlinear solution of the problem, the parallel assembly of the underlying blocked large and sparse
linear system, the definition of block preconditioners for its preconditioned Krylov subspace solution, and the use
of optimal parallel solvers for each block problem at hand. As an optimal parallel solver, among others, FEMPAR
provides highly scalable distributed-memory implementations of the Balancing Domain Decomposition by Constraints
(BDDC) preconditioner [8, 7, 20].

All experiments reported in the sequel were obtained on a large-scale multicore-based distributed-memory machine,
Marenostrum III, located at the Barcelona Supercomputing Center. The Marenostrum III is a FDR10 Infiniband
interconnected cluster with 36 IBM System x iDataPlex racks devoted to computations. Each rack is composed of 84
IBM dx360 M4 compute nodes, each equipped with two Intel Xeon E5-2670 EightCore processors running at 2.6 GHz
(16 computational cores in total) and 32 GBytes of DDR3 memory (2 GBytes per core), and runs a full-featured Linux
OS (SuSe distribution 11 SP2). The codes were compiled using Intel Fortran compiler (13.0.1) with recommended
optimization flags and we used OpenMPI (1.5.4) tools and libraries for message-passing. The codes were linked against
the BLAS/LAPACK and PARDISO available on the Intel MKL library (version 11.0, update 1). All floating-point
calculations were performed in IEEE double precision.

5.2. Three-dimensional (3D) MHD cavity flow

The experiments in this subsection deal with the three-dimensional (3D) lid-driven magnetohydrodynamic cavity
flow. The computational domain is a unit cube [0, 1]3 discretized by a series of uniform meshes composed of linear
hexahedral elements with 2n elements by dimension, where n = 3, ..., 7. These meshes were uniformly partitioned
into/distributed over (proportionally) increasing number of subdomains/computational cores.

The velocity boundary conditions for this problem consist of a moving upper lid in x-direction, u = (1, 0, 0) on
(0, 1) × (0, 1) × {1}, and a no-slip condition u = (0, 0, 0) elsewhere on the boundary. The pressure is fixed to zero
in one point, in order to fix the mean value. The boundary condition for the current density is j · n = 0 on the
whole boundary. The external magnetic field B is chosen to be orthogonal to the moving lid and therefore, only its
z-component is nonzero. Note that it can be written in terms of the Reynolds and Hartmann numbers as

B = (0, 0, Bz) withBz =
Ha√
Re
.
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For the underlying preconditioned iterative solvers, the iteration is stopped whenever the residual rk at a given
iteration k satisfies ‖rk‖2 ≤ atol + rtol‖r0‖2, with atol and rtol being, respectively, the absolute and relative residual
tolerances. Unless specified, atol = 0.0 and rtol = 10−8 for both the external and internal iterative solution processes
in block recursive preconditioners, i.e., we use Algorithm 6. In particular, FGMRES will be used as the iterative solver
for the topmost and intermediate levels, and BDDC preconditioning for the bottommost level (one-physics problems).

The following subsections 5.2.1 and 5.2.2 will compare the behavior of the FLM preconditioner (44) depending
on the approximation of the Schur complement with respect to the Lagrange multipliers, p and φ, defined in (37)-
(40). Therefore, the several versions of the FLM preconditioner tested in the following subsections will be called after
the approximation of the Schur complement for p and φ, i.e., Uzawa, Cahouet-Chabard (CC), Pressure Convection-
Diffusion (PCD) and Pressure Correction (PC).

The following numerical experiments will also study the effect of the stabilization technique, ASGS or OSS, in the
system matrix. It is important to stress that, for the following tests, we have only included the terms that are strictly
needed for stabilization purposes in the OSS formulation. Therefore, terms (τ2∇·uh,∇· vh) and (τ4∇· jh,∇·kh) have
not been used in Algorithm 2.

5.2.1. Comparison between Schur complement approximations for the FLM preconditioner (stationary case)

This subsection compares the efficiency of two block preconditioners for the stationary problem. Moreover, another
goal of this study is to assess the stabilization method influence in the preconditioner behavior. The block precon-
ditioners used are Pressure Convection-Diffusion (PCD) and Uzawa, together with the two stabilization techniques,
ASGS and OSS, see Algorithms 1 and 2.

The 3D cavity problem has been solved with a Reynolds number Re = 10 and for three Hartmann numbers
Ha = 10, 100, 1000. Figure 3 shows the number of iterations needed for the linear solver to converge. In the top row,
the number of iterations corresponds to the external solver whereas the bottom row displays the iterations to converge
the inner block u-j. On one hand, the Uzawa preconditioner does not optimally converge with h; the number of
external iterations increases when the mesh is refined for every Hartmann number and for both stabilization methods.
On the other hand, the PCD preconditioner has a much better behavior for small Hartmann numbers, Ha=10. For
Larger Hartmann numbers, such as Ha = 100, 1000, the external solver requires more iterations to converge. However,
as the mesh is refined, the number of iterations is reduced because for smaller h the diffusive term is more important
than the convective one. Moreover, the plots in the bottom row in Figure 3 show that the inner solver for the coupling
u-j has a much better behavior. The iterations do not increase when reducing h, or even they are reduced for the PCD
preconditioner. There exists a slight increase when increasing the Hartmann number because the coupling between
the fluid and magnetic subproblems becomes stronger.

5.2.2. Comparison between Schur complement approximations for the FLM preconditioner (transient case)

This subsection compares the number of iterations needed to solve the transient magnetohydrodynamic cavity
problem in three dimensions (3D) using different block preconditioners for the inductionless MHD equations. Three
block preconditioners have been used, namely Pressure Convection-Diffusion (PCD), Cahouet-Chabard (CC), and
Pressure Correction (PC). Similarly to the previous subsection, two different stabilization formulations have been
solved, ASGS and OSS methods.

Figures 4 and 5 display the results obtained for two time step sizes δt = 1.0s and δt = 0.01s, respectively. The
top row shows the plots for the number of external iterations needed to solve the linear system for three Hartmann
numbers, Ha = 10, 100, 1000 from left to right. Similarly, the bottom row contains the results for the internal block
u-j solver, also for Ha = 10, 100, 1000 from left to right.

In general, the number of external iterations required to solve OSS linear systems is smaller than that required
for ASGS ones for both choices of δt, especially for the highest Hartmann number, i.e., Ha = 1000. Regarding
preconditioner efficiency, the PCD and CC preconditioners have a very similar good behavior, both for the number
of iterations and the convergence with h, except for the highest Hartmann number Ha = 1000 where the number of
iterations increases when reducing h. The PC preconditioner only works reasonably well for small δt but it shows a
degradation with h.

On the other hand, the internal block u-j has a better behavior when reducing h, independently of δt. However,
there is a mild increase in the number of iterations for larger Hartmann numbers.

5.2.3. Improved PCD Schur complement approximation for the FLM preconditioner

In Section 4.4 we have proposed an improvement of the original PCD preconditioner by introducing some stabiliza-
tion terms in the Schur complement approximation for both the pressure and the electric potential. This subsection
studies its properties solving the transient 3D magnetohydrodynamic cavity flow problem with δt = 0.1, 0.01, 0.001s
for the FLM preconditioner version.
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(a) External iterations (FLM preconditioner). Left: Ha=10, Center: Ha=100, Right: Ha=1000.

0 50 100 150 200
0

5

10

15

20

25

30

35

elements/dimension

ite
ra

tio
ns

3D INDMHD dt=0; Ha=10

 

 

Pcd−oss
Pcd−asgs
Uzawa−oss
Uzawa−asgs

0 50 100 150 200
0

5

10

15

20

25

30

35

elements/dimension

ite
ra

tio
ns

3D INDMHD dt=0; Ha=100

 

 

Pcd−oss
Pcd−asgs
Uzawa−oss
Uzawa−asgs

0 50 100 150 200
0

5

10

15

20

25

30

35

elements/dimension

ite
ra

tio
ns

3D INDMHD dt=0; Ha=1000

 

 

Pcd−oss
Pcd−asgs
Uzawa−oss
Uzawa−asgs

(b) Internal iterations u-j (FLM preconditioner). Left: Ha=10, Center: Ha=100, Right: Ha=1000.

Figure 3: 3D stationary magnetohydrodynamic cavity problem.

Figure 6 shows the number of external iterations for solving the linear system of equations using the stabilized
PCD preconditioner. It is clear that the preconditioner behavior with respect to h improves when the time step size is
reduced. However, although the number of iterations is also reduced when reducing the time step size δt for Ha = 100,
the behavior with respect to h is not as good as the rest of Hartmann numbers tested. This behavior is similar to the
original PCD preconditioner, as shown in the previous subsection. However, the addition of the stabilization terms into
the Schur complement approximation is crucial for improving the preconditioner efficiency and reducing the number
of iterations needed to solve the system. Figure 7 shows the number of iterations versus the elements per dimension
for both the original PCD and the stabilized PCD preconditioners for 3D uniform meshes with number of elements
per dimension from 23 to 28. The subplot in the left displays the results for a small Hartmann number Ha = 10
where both preconditioners have almost the same behavior. However, for larger Hartmann numbers Ha = 100, 1000,
the center and right subplots show that the stabilized PCD preconditioner reduces the number of iterations needed to
solve the problem and also speeds up the convergence to an asymptotic state. Although the behavior of the stabilized
PCD is better than the original PCD, for a Hartmann number of Ha=1000 and δt = 0.01s the number of iterations
increases when reducing h in meshes composed by up to 28 elements per dimension.

5.2.4. Improved PCD Schur complement approximation for the FMS preconditioner

The improvement of the Schur complement approximation for the Lagrange multipliers for the PCD block precon-
ditioner proposed in Section 4.4 has also been applied together with the FMS preconditioner defined in Section 4.3.1.
It involves the internal blocks splitting between subproblems, that is, between the fluid (NSI) and magnetic (DCY)
subproblems. This section deals with the numerical tests done using this approach.

Figure 8 shows the number of external iterations needed to solve the linear system of equations for three different
time step sizes, namely δt = 0.1, 0.01, 0.001s. The plots display the results obtained for four Hartmann numbers
Ha = 1, 10, 100, 1000. It is clear that this preconditioner has a very good behavior and it is optimally convergent with
the mesh size h. Further, the results are quite insensitive to δt and the Hartmann number.
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(a) External iterations. Left: Ha=10, Center: Ha=100, Right: Ha=1000.
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(b) Internal iterations u-j. Left: Ha=10, Center: Ha=100, Right: Ha=1000.

Figure 4: 3D transient magnetohydrodynamic cavity problem with δt = 1.0s (FLM preconditioner).

5.2.5. Effect of the internal blocks precision over the external solver

This study aims to understand which is the effect of the precision when solving the internal blocks, u-j (FLM) or
by subproblems (FMS), over the external iterations for the stabilized PCD block preconditioners. We seek a reduction
of the total computation time by relaxing the internal tolerance (and, consequently, the time spent by the internal
solver), despite the potential increase in the number of external iterations.

On one hand, Figure 9 shows the results obtained using the PCD FLM preconditioner for δt = 0.1, 0.01, 0.001s
and Hartmann numbers Ha = 1, 10, 100, 1000. Each combination has been solved with three different internal block
approaches, just applying once the internal preconditioner, i.e., using the block recursive preconditioner as stated in
Algorithm 5, or iterating (Algorithm 6) with rtol = 10−2, 10−4. The results indicate that for small Hartmann numbers,
the number of external iterations is insensitive to the internal blocks precision. However, when the Hartmann number
is larger, just applying the internal preconditioner leads to an important increase in the number of iterations, although
they are reduced when reducing the mesh size h. Therefore, these results allow a relaxation in the solution of the
internal blocks which greatly reduces the total computation time, as it will be shown later on this subsection.

On the other hand, the same study has been done for the PCD FMS preconditioner. The results are presented
in Figure 10. In this case, the number of external iterations is much more sensitive to just applying the internal
preconditioner or iterating until convergence of the internal blocks (NSI and DCY). It is very clear that iterating the
internal blocks reduces drastically the number of external iterations for every combination of time step size δt and
Hartmann number Ha.

However, the number of external iterations is not conclusive when deciding which is the best option to solve the
problem. This study has to be completed with time measurements of the external iterative solver (FGMRES) for both
preconditioners. It has been done for the finest mesh composed by 128 × 128 × 128 elements, uniformly partitioned
into/distributed over 8× 8× 8 = 512 subdomains/cores. The computational times for the PCD FLM preconditioner
are shown in Table 2 whereas the results for the PCD FMS version are presented in Table 3.

The results for the PCD FLM indicate that the fastest option is to iterate the internal blocks with a relative
tolerance of 10−2, even though the number of external iterations is very similar for just applying once the internal
preconditioner. The internal solver for the u-j block requires very few iterations to converge. Despite this moderate
additional internal solver cost (compared to a single application of the internal preconditioner), the (slight) reduction
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(a) External iterations. Left: Ha=10, Center: Ha=100, Right: Ha=1000.
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(b) Internal iterations u-j. Left: Ha=10, Center: Ha=100, Right: Ha=1000.

Figure 5: 3D transient magnetohydrodynamic cavity problem with δt = 0.01s (FLM preconditioner).
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Figure 6: Stabilized PCD FLM iterations. Left: δt = 0.1s, Center: δt = 0.01s, Right: δt = 0.001s.

of the number of external iterations pays off for reducing the total computation time. Note that the block of the
Lagrange multipliers p and φ is block diagonal and therefore there is no need to iterate it.

On the other hand, the best option for solving the magnetohydrodynamic cavity flow problem using as precondi-
tioner the PCD FMS is just applying once the internal preconditioners, for both subproblems NSI and DCY. In this
case, the internal solver for both subproblems requires a high number of iterations to converge, so that it more than
pays off a single application of the internal preconditioner (despite the significant increase in the number of external
iterations). However, for the largest Hartmann number considered in this study, Ha = 1000, we expect iterating the
internal subproblems to be the method of choice for finer meshes, given the dramatic increase of the number of external
iterations with h for a single application of the internal preconditioner.

5.3. Simulation of a Test Blanket Module (TBM) for nuclear fusion reactors

In recent years, a great worldwide effort has been put on the design and development of new nuclear fusion reactors,
materializing in ITER, the International Thermonuclear Experimental Reactor, that is currently being constructed in
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h = 1
128 Apply M−1 Iter. tol=10−2 Iter. tol=10−4

δt=0.001

Ha=1 38.04 25.81 55.83

Ha=10 40.99 31.13 68.61

Ha=100 53.16 58.12 77.66

Ha=1000 78.34 55.07 69.16

δt=0.01

Ha=1 51.43 34.28 81.57

Ha=10 53.37 39.52 86.87

Ha=100 81.91 81.25 123.16

Ha=1000 206.99 153.72 202.35

δt=0.1

Ha=1 67.77 47.20 109.38

Ha=10 73.05 59.59 116.42

Ha=100 103.33 91.44 141.97

Ha=1000 357.03 257.45 377.55

Table 2: Computational time (s) for the PCD FLM preconditioner.

h = 1
128 Apply M−1 Iter. tol=10−3 Iter. tol=10−4

δt=0.001

Ha=1 44.45 27.04 44.66

Ha=10 50.72 36.21 61.80

Ha=100 60.01 74.52 110.64

Ha=1000 63.75 281.99 361.56

δt=0.01

Ha=1 60.05 41.80 85.82

Ha=10 63.92 72.76 124.58

Ha=100 81.46 159.81 268.28

Ha=1000 134.11 384.04 613.33

δt=0.1

Ha=1 76.44 97.88 114.23

Ha=10 87.56 104.86 184.19

Ha=100 99.93 273.65 366.13

Ha=1000 228.79 632.55 1057.98

Table 3: Computational time (s) for the PCD FMS preconditioner.

21



0 50 100 150 200 250 300
20

30

40

50

60

70

80

elements/dimension

ite
ra

tio
ns

3D INDMHD; Ha=10; dt=0.01

 

 

PCD
PCD stab

0 50 100 150 200 250 300
20

30

40

50

60

70

80

elements/dimension

ite
ra

tio
ns

3D INDMHD; Ha=100; dt=0.01

 

 

PCD
PCD stab

0 50 100 150 200 250 300
20

40

60

80

100

120

140

160

180

elements/dimension

ite
ra

tio
ns

3D INDMHD; Ha=1000; dt=0.01

 

 

PCD
PCD stab

Figure 7: Comparison between PCD and stab. PCD FLM. Left: Ha=10, Center: Ha=100, Right: Ha=1000.
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Figure 8: Stabilized PCD FMS iterations. Left: δt = 0.1s, Center: δt = 0.01s, Right: δt = 0.001s.

Cadarache (France).1 ITER is thought to be an experimental laboratory to test the very complex and new technology
needed for energy generation of future plants like DEMO. One of the main components to be studied in ITER are the
Breeding Blankets (BB). These devices have crucial functions for the fusion reactor to work properly, i.e., heat power
extraction from the plasma, tritium generation and shielding of the magnets from neutron and gamma radiation. In the
frame of the Spanish Breeding Blanket Technology Programme TECNOFUS (see www.tecnofus.net), a dual-coolant
liquid metal blanket has been designed. The liquid metal flow inside the blanket channels can be modelled through
the incompressible inductionless MHD equations because its magnetic Reynolds number is very low (see [29]).

The simulation of the Tecnofus TBM is a very challenging task due to its extreme physical conditions. The fluid
is a liquid metal, the alloy Pb-15.7Li, which has a density of ρ = 9660 kg/m3, a viscosity of ν = 1.3 · 10−7 m2/s
and an electric conductivity of σ = 751280 (Ohm ·m)−1. The adimensional numbers corresponding to these physical
properties are a Reynolds number of Re = 4.55 ·106 and a Hartmann number of Ha = 5.14 ·104. Note that the external
magnetic field magnitude is B = 10 T, the velocity magnitude at the channel core is designed as U = 0.2 m/s and the
characteristic length of the channel section is L = 0.305 m.

Two meshes have been used to solve this problem. The first one, MESH-12.5M, is composed by 2,509,705 nodes
and 12,395,008 linear tetrahedral elements. The second mesh, MESH-100M, is obtained after an uniform refinement
of the first one where every tetrahedra is divided into 8 smaller tetrahedral elements. This way, the second mesh has
20,017,537 nodes and 99,160,064 elements. Using an automatic mesh partitioner [25], MESH-12.5M and MESH-100M
were partitioned into/distributed over 512 and 4096 subdomains/cores, respectively. The boundary conditions have
been set to no-slip conditions at the walls (u = 0) and a fixed velocity at the inlet (u = (0, 0,−4.0) m/s) for the
velocity field and perfectly conducting walls (φ = 0) for the electromagnetic variables. Furthermore, the tolerance
for the nonlinear iterations has been set to nltol = 10−3. The iterative solver (FGMRES) tolerances are rtol = 10−6

for the relative part and the absolute one is chosen as atol = nlres · nltol/10, where nlres is the norm of the system
residual and nltol is the tolerance of the nonlinear iterative loop. This way, the iterative solver converges to a residual
an order of magnitude lower than what is imposed for the nonlinear iterations to converge.

1See http://www.iter.org for details.
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(a) Ha=1, 10. Left: δt = 0.1s, Center: δt = 0.01s, Right: δt = 0.001s.
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(b) Ha=100, 1000. Left: δt = 0.1s, Center: δt = 0.01s, Right: δt = 0.001s.

Figure 9: External iterations for the PCD FLM block preconditioner.

The computation has been carried out using the block recursive preconditioner PCD FMS explained in Section
4.3.1 with just applying once the internal recursive preconditioners for the subproblems, Navier-Stokes (NSI) and
electromagnetic problem (DCY), which has proven to be the fastest preconditioner for high Hartmann numbers, see
Section 5.2.5. The time step size has been chosen to δt = 0.1 s for MESH-12.5M and δt = 0.025 s for MESH-100M.
This way, the Courant-Friedrichs-Lewy (CFL) number for MESH-100M is twice the CFL number of MESH-12.5M
because the mesh size h is reduced by a factor 8 from MESH-12.5M to MESH-100M. Let us recall that the CFL
number is defined as CFL = U δt

h where U is a characteristic velocity of the problem. Table 4 shows the number of
solver iterations needed in every nonlinear iteration for the first three time steps of the simulation for both meshes.
The results show that, even for a CFL number twice larger, the number of solver iterations does not increase, actually
they slightly decrease, when refining the mesh and reducing the mesh size h by a factor of 8.

Finally, the transient computation converges to a stationary solution that is shown in Figure 11 for MESH-12.5M.
In the top row, Figure 11(a) displays the pressure field in a vertical section and the velocity field at several cross
sections of the channels whereas Figure 11(b) shows the electric potential field in the same vertical section as the
previous plot and the current density field in cross sections of the channels. Figure 11(c) plots the velocity streamlines
along the TBM with a zoom of such streamlines around the turn in Figure 11(d).

5.4. Thermally coupled inductionless MHD flow in a vertical enclosure

This subsection deals with the simulation of the thermally coupled inductionless MHD problem in a vertical
enclosure with square section. The computational domain is the volume [0, 1]×[0, 1]×[0, 7.5] and it has been discretized
with a structured uniform mesh of lineal hexahedral elements containing 48, 48 and 360 elements in x, y and z direction,
respectively. This mesh was uniformly partitioned into/distributed over 4×4×10 = 160 subdomains/cores. Following
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(a) Ha=1, 10. Left: δt = 0.1s, Center: δt = 0.01s, Right: δt = 0.001s.
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(b) Ha=100, 1000. Left: δt = 0.1s, Center: δt = 0.01s, Right: δt = 0.001s.

Figure 10: External iterations for the PCD FMS block preconditioner.

the indications in [2], the boundary conditions have been set as,

ux = uy = uz = 0 at x = 0, 1 and z = 0, 1,

uy = 0 at y = 0, 1,

jx = 0 at x = 0, 1,

jy =
Ω

Ha
at y = 0,

jy = − Ω

Ha
at y = 1,

jz = 0 at z = 0, 1,

θ = 0.5 at x = 0 and θ = −0.5 at x = 1.

The gravity field is applied in the z direction and the external magnetic field is horizontal and perpendicular to the
temperature gradient B = (0, B, 0) where the magnitude B is computed from the Hartmann number. The adimensional
numbers that govern the flow are taken as a Grashof number of Gr = 4 · 106, a Prandtl number of Pr = 0.025 and two
different Hartmann numbers of Ha = 100, 500.

The linear systems of equations to be solved for every time step and nonlinear iteration have been approximately
solved with the preconditioned FGMRES iterative scheme using as preconditioner the recursive block preconditioner
P (A) defined in (48) using the block preconditioner PFMS from Section 4.3.1 to approximate the inductionless MHD
block. Figure 12 shows the results for a Hartmann number of Ha = 100. Figure 12(a) displays the velocity field
whereas the electric potential and the temperature fields are shown in Figures 12(b) and 12(c), respectively. Similarly,
the results for the simulation with a Hartmann number of Ha = 500 are plotted in Figures 13(a), 13(b) and 13(c) for
the velocity, the electric potential and the temperature fields. In Figure 13 we observe that three vortices appear for
low Hartmann numbers, whereas for larger Hartmann numbers the solution presents only one vortex.
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MESH-12.5M MESH-100M

1st time step

404 366

304 229

205 147

121 111

74 75

39 41

2nd time step

248 239

196 156

85 70

3rd time step

189 185

169 123

53 50

Table 4: Number of solver iterations for the Tecnofus TBM.

6. Software design and implementation

In this section we describe key design guidelines of the software that provides the tools for the code implementation
of block recursive preconditioners within FEMPAR. While being applied to the particular context of our simulation
software, we expect these guidelines to be very useful for practitioners willing to implement block recursive precondi-
tioning within their computer simulation codes. Some requirements for this software are:

1. It must be abstract and flexible enough so that it accommodates a large bunch of different block preconditioning
strategies in a unified framework, while it is easy to extend with new functionalities without the need of modifying
existing code.

2. It must support recursion so that the action of the inverses of the diagonals blocks in an approximate block
factorization (as might be required e.g., for step 5 of Algorithm 5 at any inner level of the preconditioner
hierarchy) can be in turn computed recursively using an approximate block factorization.

3. It must be built on top of the preconditioned iterative solvers available in FEMPAR [8, 6, 7] for the computation
of the action of the inverse of a matrix into a vector (as required, e.g., for step 5 of Algorithm 5 in the bottommost
level of the preconditioner hierarchy), so that the large bunch code available in FEMPAR for such purpose can
be reused.

We found the abstractions, design principles and mechanisms provided by the Object-Oriented (OO) software de-
velopment approach [33] to be particularly useful (if not essential) to meet the aforementioned requirements. Figure 14
illustrates the OO design of the software for block recursive preconditioning as a standard Unified Modeling Language
(UML) class diagram. This diagram shows a static, structural view of the software being designed, focusing on its
main elements: classes and their relationship. A class is represented as a rectangle containing two compartments, with
the top and bottom ones showing the class’s name and its methods (also called operations), respectively. Two types of
relationships are depicted in Figure 14: realization and aggregation.2 We refer the reader to [11] for a comprehensive
treatment of UML class diagrams.

To keep the presentation simple, we omitted from Figure 14 the definition of classes (and their relationship) for
vectors and sparse matrices. In particular, the Vector class represents a single (discrete) scalar or vector field, e.g., u
or p, while Blk vector represents a block aggregation of several (discrete) scalar or vectorial fields, e.g., [u, p], [j, φ],
or [j, φ, u, p]. In UML terminology, an instance of the Blk vector class is composed of several instances of the Vector
class [11]. For reasons made clear below, it is essential for the overall framework that an instance of the Vector class

2A realization is a relationship among an abstract class and a class (an implementor) that realizes (i.e., implements) the abstract
methods provided by the abstract class. Realizations are represented as a solid line among the abstract class and its implementor, with
an unfilled triangle pointing to the abstract class; abstract classes and methods have their name depicted in italics. On the other hand,
in an aggregation, one class (the whole) is a collection or container of another class (the part). An aggregation is depicted as a solid line
connecting the whole and the part, with an unfilled diamond on the whole side, and the multiplicity of the aggregation in the part side,
i.e., how many instances of the part class are contained in one instance of the whole class.
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(a) Velocity and Pressure fields (b) Current Density and Electric Potential fields

(c) Velocity streamlines (d) Zoom of velocity streamlines around the turn

Figure 11: Simulation results for the Tecnofus TBM.

can be either created from scratch or from another already created instance. In the former case, new storage space
is allocated for the new instance, while in the latter case the new instance shares the storage space with the instance
from which it is created. In other words, the former instance is a view of the latter instance. A Blk vector instance can
be therefore composed of instances of the Vector class which are views of instances previously created. On the other
hand, the Matrix class encapsulates a single sparse matrix. The set of methods of these three classes (i.e., Vector,
Blk vector, and Matrix) provide the basic functionality for the implementation of Krylov subspace methods, no matter
e.g., how they are stored, nor laid out in a distributed-memory environment.

Central to the design depicted in Figure 14 is the Operator abstract class, which represents any linear mapping
among vector spaces in its strict mathematical sense. Its application to an instance x of the Vector or Blk vector classes
is returned as an instance y by the apply vector or apply blk vector abstract methods, respectively. This is the minimal
functionality that implementor classes have to realize (i.e., implement) to act as a coefficient matrix or preconditioner
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(a) Velocity (b) Electric Potential (c) Temperature

Figure 12: Simulation results for Ha=100.

in preconditioned iterative solvers. The rest of abstract methods of Operator are required by implementor classes
to implement the apply vector and apply blk vector abstract methods. The former methods are better grasped by
sketching the realization of the latter ones in the implementor classes, which is considered next.

The most basic form of an Operator is a matrix, represented by the MatOp implementor class. An instance of the
MatOp class is created from an instance of the Matrix class, so that the realization of the Operator abstract methods
apply vector or apply blk vector is naively performed as an invocation of the corresponding methods in the Matrix class.
A more involved realization of an Operator is the InvMatOp class, which represents the (possible approximate) action
of the inverse of a matrix computed by means of a preconditioned iterative solver. This class is the common entry point
to all preconditioners and iterative solvers available in FEMPAR (see requirement #3 at the beginning of the section).
An InvMatOp instance is created from an instance of the Matrix class, and a set of preconditioner and iterative
solver parameters. In this work, we make intensive use of the BDDC preconditioner, for which FEMPAR provides
highly efficient distributed-memory implementations [8, 7]. Preconditioner parameters for the BDDC method are e.g.,
the type of continuity constraints enforced, the corner-detection mechanism that ensures the invertibility of the local
Neumann and global coarse-grid problems, or the strategy used to deal with the coarse-grid problem (e.g., serialized or
overlapped with fine-grid duties [7]). On the other hand, FEMPAR provides templated implementations of fixed-point
(e.g., the Richardson method) and Krylov subspace methods (e.g., PCG and GMRES for symmetric positive definite
and general unsymmetric linear systems, respectively, and FGMRES to support variable preconditioning). The former
methods are used for the computation of rough approximations of the action of the inverse of a matrix into a vector,
which will be shown to be useful for some block recursive preconditioners in Section 5. Iterative solver parameters
are essentially those that control the convergence criteria (e.g., absolute and relative residual tolerance, maximum
number of iterations, etc.), although there are solver-specific parameters, such as the orthogonalization method and
the number of iterations for each restart of GMRES.
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(a) Velocity (b) Electric Potential (c) Temperature

Figure 13: Simulation results for Ha=500.

The implementor classes SumOp, MulOp, and ScalOp provide the basic building blocks to construct new linear
mappings from existing ones as follows: Given two linear mappings A and B, the SumOp and MulOp classes represent
the A+B and AB linear mappings, respectively, while given A and a scalar α, the ScalOp represents αA. An instance
of each of these classes is built from its Operators, as represented by the aggregation relationship among these three
classes and the Operator abstract class. The reader should now notice that any implementor class (e.g., MatOp or
InvMatOp) can appear in place of an Operator (this is precisely the potential behind the realization relationship), so
that by means of the SumOp, MulOp and ScalOp implementor classes one may build any linear mapping that involves
a combination of these three operations. For example, to build M−1

p FpL
−1
p in (33) using our software design, one first

construct two instances of InvMatOp for M−1
p and L−1

p , respectively, and one instance of MatOp for Fp. Then, an
instance of the MulOp class is created from Fp and L−1

p to build FpL
−1
p , and finally, another MulOp instance is created

to build M−1
p FpL

−1
p from a InvMatOp instance (i.e., M−1

p ) and a MulOp instance (i.e., FpL
−1
p ).

The create domain vector (create domain blk vector) and create range vector (create range blk vector) abstract meth-
ods play a major role for the realization of the apply vector (apply blk vector) by the SumOp, MulOp and ScalOp classes.
Let us consider for e.g., the implementation of y := ABx, where x and y are instances of the Vector class (this is
performed by the apply vector method realized by the MulOp class). This operation can in turn be decomposed into
w := Bx, and y := Aw, where w is a workspace instance of the Vector class. For the product to be well-defined, w must
be compatible with the range space of B, or equivalently, with the domain space of A. For example, low-level details
such as the size, storage or distributed-memory layout must match. The create range vector and create domain vector
abstract methods provide a new Vector instance w compatible with the range and domain spaces of the Operator,
respectively. The implementation of these abstract methods for the MatOp, and InvMatOp classes is the one that
ultimately determines the size, storage or distributed-memory layout for w (that in turn are extracted from the Matrix
class, that internally encapsulates all these low-level details). The rest of implementor classes, such as SumOp, Mu-
lOp, and ScalOp, just implement create range vector and create domain vector by means of a call to the corresponding
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+get_blk_layout(out mblk_c,nblk_c, 
                                 mblk_f,nblk_f:Integer)
+apply_vector(in x, inout y: Vector)
+create_domain_vector() : Vector
+create_range_vector(): Vector
+apply_blk_vector(in x, inout y: Blk_vector)
+create_domain_blk_vector() : Blk_vector 
+create_range_blk_vector(): Blk_vector

Operator<<constructor>>
+sumop(in op1,in op2: Operator): SumOp

SumOp

<<constructor>>
+mulop(in op1,in op2: Operator): MulOp

MulOp

<<constructor>>
+scalop(in α: Real, in op: Operator): ScalOp

ScalOp

<<constructor>>
+matop(in mat: Matrix): MatOp

MatOp

<<constructor>>
+invop(in op: Operator,
            in precond: Operator,
            in spars: SolverParams): InvOp

InvOp

<<constructor>>
+invmatop(in mat: Matrix, 
                  in ppars: PrecondParams, 
                  in spars: SolverParams): InvMatOp
+computeprecond()

InvMatOp

<<constructor>>
+blkprecondLU(in nblk: Integer): BlkPrecondLU
+setblk(in iblk, jblk, factor: Integer, 
             in op: Operator)

BlkPrecondLU

<<constructor>>
+blkop(in mblk,nblk: Integer): BlkOp
+setblk(in i,j: Integer, in op: Operator)

BlkOp

2

2

1

2

nblk2

mblk x nblk

Figure 14: UML class diagram representing the OO design of the software that accommodates block recursive preconditioning within
FEMPAR.

method on its leftmost and rightmost Operator, respectively.
The BlkOp, BlkPrecondLU, and InvOP classes are the ones that provide our software design with the ability to

construct block recursive preconditioners (see requirement #2 at the beginning of the section). The BlkOp implementor
class represents a linear mapping which is blocked into mblk × nblk blocks. A BlkOp instance is built from as many
Operators as blocks, as represented by the aggregation relationship among BlkOp and the Operator abstract method.
For example, the coefficient matrix in (23) can be built as a single 4 × 4 BlkOp instance, with each block being a
MatOp. However, as the BlkOp instance in turn realizes the Operator abstract class, this coefficient matrix can be
alternatively built with a three-level tree-like structure. In the bottommost level, one first builds a MatOp per each
of the 4 × 4 blocks. In an intermediate level, four 2 × 2 BlkOp instances are then built, each of them corresponding
to the four 2× 2 blocks delimited by the partitioning lines in (23). Finally, at the topmost level, another 2× 2 BlkOp
instance is built from the four BlkOp instances in the intermediate level. The realization of the apply blk vector by
the BlkOp class just performs the operation y := Ax, where x, y are instances of the Blk vector class. On the other
hand, the BlkPrecondLU represents an approximate block LU factorization (see P (A) in (30)).3 Its realization of
the apply blk vector performs the operation “Solve (LU)y = r”, where L and U are lower and upper block triangular
factors, respectively, built from nblk × nblk Operators each, and r, y are Blk vector instances. Finally, the InvOP
class realizes apply blk vector as the action of the (possible approximate) inverse of an Operator on a vector, using a
preconditioned iterative method with a prescribed preconditioner provided as an Operator.

The get blk layout abstract method is essential for the realization of the apply blk vector by the BlkOp and BlkPre-
condLU classes. Given an Operator, this abstract method returns in mblkc and nblkc the number of row and column
blocks in the coarsest-grain block partitioning of the Operator, while mblkf and nblkf provide those in the finest-grain
one. For instance, in the example of the previous paragraph, it returns mblkc = nblkc = 2 and mlbkf = nblkf = 4
for the BlkOp instance in the topmost level of the hierarchy, mblkc = nblkc = mblkf = nblkf = 2 for any of the four
BlkOp instances in the intermediate level, and mblkc = nblkc = mblkf = nblkf = 1 for any of the MatOp instances
in the bottommost level of the hierarchy. Let us now consider the apply blk vector in the topmost BlkOp instance,
let us call it A. On entry, this method expects x and y to be partitioned into as many blocks as those present in the
finest-grain partitioning of the Operator, i.e., nblkf = 4 and mblkf = 4, respectively, in this case. In preparation to the
call of the apply blk vector on a given intermediate BlkOp instance, say Aij , the apply blk vector in A creates a pair of

3One can similarly define BlkPrecondD and BlkPrecondU in Figure 14 in order to represent the D-preconditioner and U -preconditioner,
respectively, in (28) and (29), although they are omitted from the figure for simplicity.
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temporary Blk vector instances, say xj and yi, that are built from those blocks of x and y corresponding to Aij . In
other words, the number of blocks of xj and yi is given by nblkf and mblkf resulting from a call to get blk layout on
Aij , while, xj (yi) starts from the block of x (y) with identifier given by the sum of those nblkf ’s (mblkf ’s) resulting
from j − 1 (i − 1) calls to get blk layout on Aik (Akj), with k = 1, 2, . . . , j − 1 (k = 1, 2, . . . , i − 1). Notice that the
blocks of xj and yi are created as views (see above for the notion of a view) of the corresponding blocks in x and j,
so that this mechanism allows the blocks of x and y received on entry to the root of the hierarchy to flow top-bottom
thorough the hierarchic deployment of the apply blk vector method.

The reader might have already observed that this software design accommodates, e.g., the two approximate block
recursive preconditioners discussed in Section 4.3. In the topmost level, one creates a 2 × 2 BlkPrecondU instance,
with the two leading diagonal blocks F−1

] and S−1
] defined as InvOp instances, and the upper off-diagonal block G as a

BlockOp instance. In the intermediate level, F−1
] is in turn built as an InvOp instance from a 2× 2 BlockOp instance

(i.e., built from the blocks of F] as MatOp instances), and a further 2× 2 BlkPrecondU to be used as a preconditioner
for the preconditioned iterative computation of the action of F−1

] on a vector (see step 6 of Algorithm 6).
Finally, for those developers reluctant to pure OO languages, such as C++ or Fortran2003, let us stress that

FEMPAR is a Fortran90/95 code. We were able to implement the design in Figure 14 within FEMPAR, with no loss
of functionality, using the techniques discussed in [1] for generic programming and run-time polymorphism emulation
in Fortran90/95.

7. Conclusions

In this article we have extended block preconditioning techniques used in computational fluid dynamics to the
(thermally coupled) incompressible inductionless magnetohydrodynamics problem. Our approach considers the explicit
introduction of the current density as an additional unknown of the problem, in order to end up with a formulation
that will be suitable for problems involving large Hartmann numbers, e.g., breeding blanket simulations.

We propose an abstract setting to design preconditioners for multiphysics problems, based on a recursive use of
block factorization, that allows us to decouple the computation of every physical variable in a multiphysics problem
at the preconditioner level. This idea has been applied to our target problem, (thermally coupled) inductionless MHD
problem, (where the unknowns are the velocity, pressure, current density and electric potential) but can also be applied
to other problems like resistive MHD [4] or liquid crystal problems [5]. We consider different preconditioners based
on approximations of the resulting Schur complement matrices. The robustness of these preconditioners relies on
good approximations of the Schur complement matrices that appear in the recursive factorization process. An study
of the inductionless MHD system has motivated a first preconditioner that initially decouples fluid and magnetic
problems. Next, we propose a method that instead decouples vector fields and Lagrange multipliers at the first level.
The assumptions undertaken in this last case have been justified via numerical evidences. As a result of this work,
we have also observed the importance to consider stabilization terms in the PCD preconditioners. The recursive
preconditioners for both subproblems allow us to obtain block preconditioners with good properties with respect to
the mesh size h and the Hartmann number. We give details about an abstract and flexible implementation of block
recursive preconditioning.

A detailed set of numerical tests has been performed to assess the properties of the different methods proposed
herein. The combination of our FE formulations, with an explicit treatment of the current density, and the recursive
LU preconditioners we propose, finally allow us to solve realistic breeding blanket simulations with very high Hartmann
numbers.
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[35] R. Temam. Sur la stabilité et la convergence de la méthode des pas fractionnaires. Annali di Matematica Pura
ed Applicata, 79(1):191–379, 1968.

32


	Introduction
	Continuous MHD problem
	Inductionless MHD
	Thermally coupled problem

	Stabilized finite element formulation
	Inductionless MHD
	Thermally coupled problem

	Definition of block recursive preconditioners for the (thermally coupled) inductionless MHD problem
	Abstract block recursive factorization
	Incompressible Navier-Stokes preconditioners
	Incompressible inductionless MHD preconditioners
	Fluid-magnetic subproblem factorization (FMS preconditioner)
	Field-Lagrange multiplier factorization (FLM preconditioner)

	New stabilized PCD preconditioners for inductionless MHD
	Thermally coupled inductionless MHD preconditioners

	Numerical experiments
	Experimental framework
	Three-dimensional (3D) MHD cavity flow
	Comparison between Schur complement approximations for the FLM preconditioner (stationary case)
	Comparison between Schur complement approximations for the FLM preconditioner (transient case)
	Improved PCD Schur complement approximation for the FLM preconditioner
	Improved PCD Schur complement approximation for the FMS preconditioner
	Effect of the internal blocks precision over the external solver

	Simulation of a Test Blanket Module (TBM) for nuclear fusion reactors
	Thermally coupled inductionless MHD flow in a vertical enclosure

	Software design and implementation
	Conclusions

