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1 Introduction

The goal of this paper is the formal study of the performance of lexicographic heuristics in multi-
attribute decision making. Lexicographic heuristics are psychologically appealing because in com-
plex multi-attribute choices provide a decision rule that avoids explicit trade-offs. We have in mind
a standard multi-attribute decision problem (Keeney and Raiffa 1993), with an additive, separable
utility function and m alternatives characterized by k attributes xi,r, 1 ≤ i ≤ m, 1 ≤ r ≤ k. The
utility of the alternative i, characterized by the profile xi = (xi,1, xi,2, . . . , xi,k), is defined as

Ui = w1xi,1 + w2xi,2 + · · ·+ wkxi,k ,

where the wr are non-negative weights subject to the constraint w1 +w2 + · · ·+wk = 1. Cognitive
limitations are introduced by assuming that the decision maker can order the weights by size, but
that the exact values of the weights are unknown. Therefore, without loss of generality, we assume
w1 ≥ w2 ≥ · · · ≥ wk ≥ 0. The problem is to identify which of the m alternatives is “best” (has the
largest value of Ui) under this cognitive limitation. To resolve this problem, we consider a decision
maker that follows a lexicographic heuristic that relies on the ordering, but not on the magnitude, of
the weights.

The specific lexicographic heuristic that we will examine is DEBA, the deterministic version
of the elimination-by-aspects model proposed by Tversky (1972). DEBA considers the attributes in
decreasing weight ordering. In the first step, DEBA eliminates all the alternatives without the maxi-
mum values in the first attribute. If a single alternative remains, it is chosen. Otherwise, the values
of the second attribute are examined. This procedure continues until only one alternative remains
or all attributes have been examined. If, after examining the last attribute, two or more alternatives
remain, then the choice between them is made at random. As a procedure, DEBA generalizes —to
more than two alternatives— the lexicographic binary-choice model Take-The-Best (TTB) proposed
by Gigerenzer and Goldstein (1996). There is a small difference, however: in TTB, the attributes
are ordered by their validities, which are computed using a database of previous instances of al-
ternatives, while in DEBA the ordering of the attributes by decreasing weights is assumed known.
Abstracting in TTB the first step, TTB can be truly considered a particular instance of DEBA with
just two alternatives.

In this paper, we make the additional assumption that the xi,r are binary, i.e., their value is
either 0 or 1. This will be always the case for attributes features that are either present or absent,
or that take two values. Besides mathematical tractability, the binary setup has another important
advantage. In a binary setup, DEBA agrees with other lexicographic heuristics that differ on the
cut-off used to encode the attribute values as high (xi,r = 1) or low (xi,r = 0). This binary encoding
phase, together with the rule to order the attributes, precedes the use of the common lexicographic
selection rule. For example, one could assign a value 1 only to those attribute values with the best
level on that attribute; or use instead a low cutoff representing a minimum acceptable level. Those
two choices yield, respectively, the EBA and the LEX heuristics discussed by Payne et al. (1993).
The binary encoding is also a way to incorporate the bounded rationality of decision-makers that
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easily distinguish between zero (absence) and non-zero (presence) values, but are quite insensitive
to the actual magnitude of the attributes (Hsee and Rottenstreich 2004).

The DEBA heuristic is easy to use and popular (Bröder 2000; Newell and Shanks 2003; Newell
et al. 2003). In many situations, for example, there is no need to look beyond the first one or two
attributes to make a decision. Several studies have shown DEBA to be effective in relation to alter-
native simple decision heuristics (Gigerenzer and Goldstein 1996; Czerlinski et al. 1999; Martignon
and Hoffrage 1999, 2002) as well as having desirable properties for both binary and multivariate
choice (Hogarth and Karelaia 2006; Katsikopoulos and Fasolo, 2006). Even when attributes are
continuous variables, the model can be quite effective under some circumstances (Gigerenzer et al.
1999; Hogarth and Karelaia 2005). Most of these studies give exact performance measures for two
or three alternatives, or provide performance estimates based on simulation, or on particular data
sets.

An exception is Baucells et al. (in press), henceforth BCH, where lower bounds for the prob-
ability that DEBA will choose a best alternative (one with the largest utility) and upper bounds for
the expected loss of DEBA have been obtained by exploiting the concept of cumulative dominance
(Kirkwood and Sarin 1985). Two binary probabilistic models were considered in BCH: one in which
attributes are assumed to be independent Bernoulli random variables and another one with positive
inter-attribute correlation and attributes of the same average quality. The bounds are not restricted
to DEBA: they apply, respectively, to the so-called cumulative dominance compliant heuristics and
fully cumulative dominance compliant heuristics, of which DEBA is an example. The bounds were
obtained using exact computational approaches allowing the analysis of cases with up to 10 alterna-
tives and 10 attributes. The lower bounds for the probability that the selection heuristic will choose
a best alternative allowed the identification of cases in which the selection heuristic is guaranteed
to have a good performance under the assumed cognitive limitations. The upper bounds for the
expected loss widened that identification.

The expected loss, or expected difference between the utility of a best alternative and the utility
of the alternative chosen by DEBA is the focus of this paper. The upper bounds for the expected loss
of DEBA obtained in BCH were derived by noting that, in the presence of cumulative dominance,
DEBA is ensured to make the correct choice and incur zero utility loss, and, if cumulative dominance
holds up to attribute r∗, then the loss is non-greater than the sum of weights from r∗+1 to k, which
can be shown to be (tightly) bounded by (k−r∗)/k. That approach assumes a most pessimistic all-0
path from attribute r∗ + 1 on for the alternative chosen by DEBA, together with a most optimistic
all-1 path from attribute r∗ + 1 on for the best alternative, ignoring the statistical properties of the
probabilistic models. Our goal here is to repair this shortcoming and exploit the peculiarities of
DEBA to improve the upper bounds for the expected loss derived in BCH. We will consider the
same two probabilistic models as in BCH. The approach we will follow is to improve the upper
bounds for the expected loss conditioned on the last attribute index r∗ for which some alternative
exhibits cumulative dominance. The resulting new upper bounds are tight, improve substantially the
upper bounds obtained in BCH, and widen significantly the identification of cases in which DEBA is
guaranteed to have a good performance under the assumed cognitive limitations. Such guarantee can
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be exploited to disregard the use of more sophisticated and more costly decision rules, including the
obtention of more accurate estimates for the weights. To calculate the bounds we use computational
approaches similar to the ones used in BCH yielding exact values for cases with up to 10 alternatives
and 10 attributes.

The rest of the paper is organized as follows. Section 2 presents the probabilistic models for
the attributes which will be considered (they are the same as those considered in BCH), reviews
the cumulative dominance concept, and summarizes the developments in BCH regarding the upper
bounds for the expected loss under those probabilistic models. Sections 3 and 4 are quite technical,
and derive the improved, new upper bounds for the probabilistic models without and with correla-
tion, respectively. Section 5 includes the numerical calculation of the improved upper bounds for the
expected loss of DEBA under our two probabilistic models, the comparison with the upper bounds
obtained in BCH, and the analysis of the tightness of the new upper bounds. We also show in that
section that the new upper bounds widen significantly the identification of cases in which DEBA
is guaranteed to have a good performance. Section 6 concludes the paper and highlights future re-
search directions. Finally, the Appendix includes some proofs. Throughout the paper we use the
conventions that

∑n′

i=n ui = 0, n′ < n and that 0 by an undefined quantity is equal to 0.

2 Preliminaries

Two probabilistic models for the values of the attributes xi,r, 1 ≤ i ≤ m, 1 ≤ r ≤ k will be
considered:

ZIAC (Zero Inter-Attribute Correlation) model: The xi,r are independent Bernoulli random vari-
ables with parameter pr, 0 < pr < 1.

PIAC (Positive Inter-Attribute Correlation) model: The xi,r are obtained as xi,r = (1 − zi)yli,r +
ziy

h
i,r, where the zi, yli,r, y

h
i,r are independent Bernoulli random variables with parameters p,

pl = p − √ρp, and ph = p +
√
ρ(1 − p), respectively, for some 0 < p < 1 and some

0 ≤ ρ < 1.

The ZIAC model is a simple model without need for justification. We note that E[xi,r] = pr.
Thus, the parameter pr can be looked at as measuring the average quality of the attribute r: higher
values of pr model attributes of higher average quality. The PIAC model is intuitively appealing: if
there is positive correlation among the attributes of a given alternative, it is because there is some
common cause shifting the average quality of the attributes of a given alternative. In the PIAC
model, this is captured by the alternatives belonging to a “good” population (with expected values
for the attribute values equal to ph = p +

√
ρ(1 − p)) with probability p and to a “bad” population

(with expected values for the attribute values equal to pl = p−√ρp) with probability 1− p. In the
PIAC model, E[xi,r] = p and the attribute values of any given alternative have positive correlation
ρ. The ZIAC model with pr = p, 1 ≤ r ≤ k, can be seen as a particular case of the PIAC model
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Figure 1: Alternative profiles illustrating cumulative dominance in the binary attribute case.

with ρ = 0. Since
∑k

r=1wr = 1, in the PIAC model the expected value of the utility of any given
alternative i is E[Ui] = p, so the parameter p measures the average quality of an alternative. In
the ZIAC model, E[Ui] =

∑k
r=1wrpr, and the (unknown) weigthed sum

∑k
r=1wrpr is a measure

of the average quality of an alternative. Of course, for pr = p, 1 ≤ r ≤ k, E[Ui] = p, and the
parameter p is in that case a measure of the average quality of an alternative.

In BCH, upper bounds for the expected loss of DEBA and similar related heuristics were ob-
tained for the ZIAC and the PIAC models using the concept of cumulative dominance. We will
start the review of those upper bounds by reviewing the concept of cumulative dominance. The
cumulative profile of an alternative i, 1 ≤ i ≤ m, is defined as (Xi,1, Xi,2, . . . , Xi,k), where
Xi,r =

∑r
s=1 xi,s, 1 ≤ r ≤ k. Alternative i exhibits cumulative dominance over alternative j

up to attribute r, denoted by cr(i, j), if and only if Xi,s ≥ Xj,s, 1 ≤ s ≤ r. Alternative i exhibits
cumulative dominance over alternative j if and only if ck(i, j), i.e. if alternative i exhibits cumula-
tive dominance over alternative j up to attribute k. Fig. 1 illustrates cumulative dominance in the
binary attribute case. Alternative 2 exhibits cumulative dominance over alternative 3 up to attribute
2, and alternative 1 exhibits cumulative dominance over alternatives 2 and 3. Further, we can use
the fact that weights are non-increasing to conclude that U1 = w1 + w3 ≥ U2 = w1 + w4 and
U1 = w1 + w3 ≥ U3 = w2 + w3. It is known that cumulative dominance characterizes optimality
for non-increasing weights (Kirkwood and Sarin 1985):

Proposition 1. Ui ≥ Uj for all weights w1 ≥ w2 ≥ · · · ≥ wk ≥ 0,
∑k

r=1wr = 1 if and only if
ck(i, j).

For 1 ≤ r ≤ k, let Cr denote the set of alternatives that exhibit cumulative dominance over any
other alternative up to attribute r, i.e.,

Cr = {i, 1 ≤ i ≤ m : cr(i, j), 1 ≤ j ≤ m} .

Obviously, C1 ⊃ C2 ⊃ · · · ⊃ Ck. All alternatives in Cr have identical cumulative attribute profile
up to attribute r and, therefore, they have identical attribute profile up to attribute r. More im-
portantly, if Ck is non-empty, then Proposition 1 guarantees that the alternatives in Ck will have
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the largest utility. In the example of Fig. 1, C1 = C2 = {1, 2} and C3 = C4 = {1}. C1 will
always be non-empty. In the binary attribute case, C2 will be always non-empty too. This fol-
lows by noting that C2 can only be empty if there exist two alternatives i, j with xi,1 > xj,1 and
xi,1 + xi,2 < xj,1 + xj,2, which, being xi,r and xj,r binary, is impossible. For r ≥ 3, there is no
guarantee thatCr will be non-empty. Consider for instance the case of two alternatives with attribute
profiles x1 = (1, 0, 0) and x2 = (0, 1, 1). In that case, we have C3 = ∅. We say that a heuristic
is cumulative dominance compliant if, whenever Ck 6= ∅, the heuristic chooses an alternative from
Ck. It follows from Proposition 1 that:

Theorem 1. For all weights w1 ≥ w2 ≥ · · · ≥ wk ≥ 0,
∑k

r=1wr = 1, if Ck is non-empty, then any
cumulative dominance compliant heuristic will choose a best alternative.

Theorem 1 is not restricted to the binary attribute case.

Let r∗ denote the highest attribute index for which some alternative exhibits cumulative domi-
nance over all other alternatives. Formally,

r∗ = max
1≤r≤k

{r : Cr 6= ∅} .

By definition, Cr = ∅, r∗ < r ≤ k. Of course, Ck is non-empty if and only if r∗ = k. In the binary
attribute case, r∗ ≥ 2. For non-binary attributes, r∗ could be equal to 1. A heuristic is said to be
fully cumulative dominance compliant if it always chooses an alternative fromCr∗ . Fully cumulative
dominance compliance implies cumulative dominance compliance. The following result has been
shown in BCH:

Theorem 2. DEBA fully complies with cumulative dominance.

Let c the alternative chosen by DEBA. Then, the loss of the heuristic is

L = max
1≤i≤m

Ui − Uc .

The approach taken in BCH to upper bound E[L] for any fully cumulative compliant heuristic was
to compute the probability mass function of r∗, P (r) = P [r∗ = r], 2 ≤ r ≤ k − 1, and to use the
upper bound for E[L | r∗ = r], 2 ≤ r ≤ k − 1, given by the following theorem, which holds in the
more general case of arbitrary attributes taking values in the interval [0, 1]:

Theorem 3. For any fully cumulative compliant heuristic E[L | r∗ = r] ≤ (k − r)/k, 1 ≤ r ≤ k.

Since L is 0 when r∗ = k and, in the binary attribute case, r∗ ≥ 2, Theorem 3 allow us to write:

E[L] ≤ E[L]ub =

k−1∑
r=2

P (r)
k − r
k

. (1)

The procedure proposed in BCH to compute the probabilities P (r) is as follows. Let Q(r) =

P [r∗ ≥ r], 2 ≤ r ≤ k. Clearly:

P (r) = Q(r)−Q(r + 1) , 2 ≤ r ≤ k − 1 ,
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with Q(2) = 1, reducing the computation of P (r), 2 ≤ r ≤ k − 1 to that of Q(r), 3 ≤ r ≤ k.
The probabilities Q(r), 3 ≤ r ≤ k were computed using ROBDDs (Reduced Ordered Binary
Decision Diagrams) with complement 0-edges. ROBDDs (Bryant 1986) are canonical represen-
tations of Boolean functions which only depend on the ordering of the binary variables. Given a
Boolean function F (x1, x2, . . . , xn) of n independent Bernoulli random variables, we can compute
P [F (x1, x2, . . . , xn) = 1] by building the ROBDD of F () as a function of x1, x2, . . . , xn and, then,
making a depth-first traversal of the ROBDD starting at the root node. When returning from the visit
to each non-terminal node n with binary variable associated with it x, we obtain the probability that
the Boolean function represented by n is equal to 1 by multiplying the probability that the Boolean
function represented by the 0-edge node is equal to 1 by the probability that x has value 0, multi-
plying the probability that the Boolean function represented by the 1-edge node by the probability
that x has value 1, and adding up those partial results. The ROBDD of a Boolean function can be
built from a description of the function using Boolean operators (for instance, NOT (¬), AND(∧),
OR(∨)), which can be looked at as a combinational circuit (Ercegovac and Lang 1985) having inputs
x1, x2, . . . , xn and a single output, by traversing depth-first the description and using well-known
procedures (Bryant 1986) to obtain the ROBDD of the output of a NOT gate from the ROBDD
of the input, and the ROBDD of the output of a two-input gate (for instance, AND, OR) from the
ROBDDs of the two inputs. ROBDDs with complement 0-edges (Brace et al. 1990) are a variant
of ROBDDs in which the root may represent either the given Boolean function F (x1, x2, . . . , xn)
or its complement and non-terminal nodes may have either a 0-edge node and a 1-edge node or a
complement 0-edge node an a 1-edge node, the complement 0-edge node of a node n represent-
ing the complement of the Boolean function obtained from the Boolean function represented by n
by setting the variable x associated with n to 0. Adapting the previously described procedure to
compute P [F (x1, x2, . . . , xn) = 1] to that variant of ROBDDs is trivial. To build ROBDDs with
complement 0-edges the well-known CU Decision Diagram package (Somenzi 2005) was used. The
binary variables were sorted taking into account the structure of the combinational circuit represent-
ing F (x1, x2, . . . , xn) using the topology heuristic (Nikolskaia et al. 1998).

The probability Q(r) can be computed as the probability that the indicator function of the
event {r∗ ≥ r} = {Cr 6= ∅} is equal to 1. For the ZIAC model, the independent Bernoulli random
variables to be considered are xi,s, 1 ≤ i ≤ m, 1 ≤ s ≤ r, and the combinational circuit was built
based on

1{Cr 6=∅} =

m∨
i=1

m∧
j=1
j 6=i

r∧
s=1

1{Xi,s≥Xj,s} .

For s = 1, the logic used to generate 1{Xi,1≥Xj,1}, 1 ≤ i ≤ m, 1 ≤ j ≤ m, j 6= i was

1{Xi,1≥Xj,1} = 1{xi,1≥xj,1} = xi,1 ∨ ¬xj,1 .

For generating 1{Xi,s≥Xj,s}, 1 ≤ i ≤ m, 1 ≤ j ≤ m, j 6= i, 2 ≤ s ≤ r from xi,s, 1 ≤ i ≤ m,
1 ≤ j ≤ m, j 6= i, 2 ≤ s ≤ r we used m(r − 1) specialized binary carry propagate adders and
m(m− 1)(r − 1) binary comparators (see BCH, for details). For the PIAC model, the independent
Bernoulli random variables to be considered are zi, 1 ≤ i ≤ m and yli,s, y

h
i,s, 1 ≤ i ≤ m, 1 ≤ s ≤ r

and the combinational circuit yielding 1{Cr 6=∅} was built as for the ZIAC model, adding the logic to
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obtain xi,s, 1 ≤ i ≤ m, 1 ≤ s ≤ r

xi,s = ¬zi ∧ yli,s ∨ zi ∧ yhi,s .

Intuitively, it is clear that the upper bounds for E[L | r∗ = r] given by Theorem 3 on which
the upper bound E[L]ub for E[L] given by (1) are based can be quite rough for DEBA. Being DEBA
fully cumulative dominance compliant, the alternative c chosen by DEBA will belong to Cr∗ . Then,
for r∗ = r, c can only loose from attribute r + 1 on and the upper bounds given by Theorem 3
are obtained by assuming that c will have an all-0 pattern from attribute r + 1 on and some other
alternative will have an all-1 pattern from attribute r+1 on, giving a loss from attribute r+1 on equal
to
∑k

s=r+1ws, which is (tightly) bounded by (k − r)/k. The improved upper bounds for E[L] for
DEBA derived in this paper are simply obtained by deriving better upper bounds for E[L | r∗ = r],
2 ≤ r ≤ k − 1 using the properties of the probabilistic models under consideration.

3 Improved upper bounds for the ZIAC model

The goal of this section is to derive improved upper bounds E[L | r∗ = r]iub for E[L | r∗ = r],
2 ≤ r ≤ k−1 for the ZIAC probabilistic model taking advantage of the properties of DEBA and the
ZIAC probabilistic model. Use of those improved upper bounds in conjunction with the ROBDD-
based approach used in BCH and reviewed in the previous section to compute the probability mass
function of r∗, P (r) = P [r∗ = r], 2 ≤ r ≤ k − 1, will yield the improved upper bound for E[L]

E[L]iub =

k−1∑
r=2

P (r)E[L | r∗ = r]iub . (2)

In the derivation of the improved upper bounds for E[L | r∗ = r], 2 ≤ r ≤ k − 1 we will use the
following theorem.

Theorem 4. Let r, 1 ≤ r ≤ k and let Er be any event depending only on xj,s, 1 ≤ j ≤ m,
1 ≤ s ≤ r − 1 such that P [i is chosen by DEBA ∧ Er] > 0. Let xi,r be the (m − 1)(k − r + 1)-
vector with components xj,s − xi,s, 1 ≤ j ≤ m, j 6= i, r ≤ s ≤ k. Let F (u1, . . . , u(m−1)(k−r+1))

be any function which is non-decreasing on each ul. Then, for the ZIAC model,

E[F (xi,r) | i is chosen by DEBA ∧ Er] ≤ E[F (xi,r)] .

Proof. See the Appendix.

Essentially, what Theorem 4 says is that, conditioned on any event Er do not depending on the
alternatives from attribute r on and which does not preclude any given alternative i to be chosen by
DEBA, and in terms of a function which is non-decreasing on the differences between the values
of the attributes from attribute r on of the other alternatives and the corresponding attributes of
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the alternative chosen by DEBA, for the ZIAC probabilistic model, DEBA cannot perform worse in
average than a random selection (E[F (xi,r)] is, by symmetry, equal for all i, 1 ≤ i ≤ m).

The improved upper bounds for E[L | r∗ = r], 2 ≤ r ≤ k − 1 are given by the following
theorem, where I+(x) = max{0, x}. The theorem also asserts that the bounds potentially improve
those used in BCH. The sketch of the derivation of the bounds is as follows. First, it is relatively
easy to show using linear programming results that

E[L | r∗ = r] ≤ max
r+1≤t≤k

V (r, t)

t
,

where V (r, t) is any upper bound for E[S(r, t) | r∗ = r] with

S(r, t) = I+

 max
1≤i≤m
i 6=c

{
1 +

t∑
s=r+2

(xi,s − xc,s)
} .

To derive the upper bound, we exploit the symmetries of the ZIAC model and use Theorem 4 to
conclude that

E[S(r, t) | r∗ = r] ≤ E[Z(r, t)] .

Theorem 5. For DEBA and the ZIAC model,

E[L | r∗ = r] ≤ E[L | r∗ = r]iub = max
r+1≤t≤k

V (r, t)

t
, 2 ≤ r ≤ k − 1 ,

where
V (r, t) = E[Z(r, t)] ,

with

Z(r, t) = I+

(
max

1≤i≤m−1

{
1 +

t∑
s=r+2

(xi,s − xm,s)
}}

.

Furthermore, E[L | r∗ = r]iub ≤ (k − r)/k, 2 ≤ r ≤ k.

Proof. Assume r∗ = r, 2 ≤ r ≤ k − 1, and let c be the alternative chosen by DEBA. For any
alternative i, 1 ≤ i ≤ m, we can write

Ui =

r∑
s=1

(ws − ws+1)Xi,s + wr+1Xi,r+1 +

k∑
s=r+2

wsxi,s

and, since c has cumulative dominance over all other alternatives up to attribute r and weights are
non-negative and non-increasing, for all i, 1 ≤ i ≤ m, i 6= c,

Ui − Uc ≤ wr+1(Xi,r+1 −Xc,r+1) +
k∑

s=r+2

ws(xi,s − xc,s) ,

yielding

L ≤ I+
(

max
1≤i≤m
i 6=c

{
wr+1(Xi,r+1 −Xc,r+1) +

k∑
s=r+2

ws(xi,s − xc,s)
})

. (3)
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We continue by finding the maximum of wr+1(Xi,r+1−Xc,r+1) +
∑k

s=r+2ws(xi,s− xc,s) subject
to the constraints defining the domain of possible values for wr+1, wr+2, . . . , wk:

wk ≥ 0 ,

ws ≥ ws+1, r + 1 ≤ s ≤ k − 1 ,

(r + 1)wr+1 +
k∑

s=r+2

ws ≤ 1 ,

where the last one comes from w1 ≥ w2 ≥ · · · ≥ wr ≥ wr+1 and
∑k

s=1ws = 1. This is a linear
programming problem (Luenberger, 2003). Using the variables xs = ws−ws+1, r+1 ≤ s ≤ k−1

and a slack variable y, the problem can be put into standard form with the restrictions:

k−1∑
s=r+1

sxs + kwk + y = 1 ,

wk ≥ 0 ,

xs ≥ 0, r + 1 ≤ s ≤ k − 1 ,

y ≥ 0 ,

which has basic feasible solutions

(xr+1, xr+2, . . . , xk−1, wk, y) =

(
1

r + 1
, 0, . . . , 0, 0, 0

)
,

(xr+1, xr+2, . . . , xk−1, wk, y) =

(
0,

1

r + 2
, . . . , 0, 0, 0

)
,

...

(xr+1, xr+2, . . . , xk−1, wk, y) =

(
0, 0, . . . ,

1

k − 1
, 0, 0

)
,

(xr+1, xr+2, . . . , xk−1, wk, y) =

(
0, 0, . . . , 0,

1

k
, 0

)
,

(xr+1, xr+2, . . . , xk−1, wk, y) = (0, 0, . . . , 0, 0, 1) .

Since the convex domain defined by the restrictions is bounded, the maximum is achieved at some
basic feasible solution. Those basic feasible solutions correspond to the points (wr+1, wr+2, . . . , wk)

(wr+1, wr+2, . . . , wk) =

(
1

r + 1
, 0, . . . , 0

)
,

(wr+1, wr+2, . . . , wk) =

(
1

r + 2
,

1

r + 2
, . . . , 0

)
,

...

(wr+1, wr+2, . . . , wk) =

(
1

k
,
1

k
, . . . ,

1

k

)
,

(wr+1, wr+2, . . . , wk) = (0, 0, . . . , 0) ,
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and, therefore, the maximum of wr+1(Xi,r+1 −Xc,r+1) +
∑k

s=r+2ws(xi,s − xc,s) is

max
r+1≤t≤k

1

t

(
Xi,r+1 −Xc,r+1 +

t∑
s=r+2

(xi,s − xc,s)
)
.

Using that maximum in (3):

L ≤ I+
(

max
1≤i≤m
i 6=c

max
r+1≤t≤k

1

t

(
Xi,r+1 −Xc,r+1 +

t∑
s=r+2

(xi,s − xc,s)
))

= max
r+1≤t≤k

1

t
I+

(
max
1≤i≤m
i 6=c

{
Xi,r+1 −Xc,r+1 +

t∑
s=r+2

(xi,s − xc,s)
})

.

But, because c cumulative dominates all other alternatives up to attribute r and attributes are binary,
necessarily Xi,r+1 ≤ Xc,r+1 + 1, i 6= c, and

L ≤ max
r+1≤t≤k

S(r, t)

t

with

S(r, t) = I+

 max
1≤i≤m
i 6=c

{
1 +

t∑
s=r+2

(xi,s − xc,s)
} ,

yielding

E[L | r∗ = r] ≤ max
r+1≤t≤k

V (r, t)

t
,

where V (r, t) is any upper bound for E[S(r, t) | r∗ = r].

Exploiting the symmetries of the ZIAC model,

E[S(r, t) | r∗ = r] = E[Z(r, t) |m is chosen by DEBA ∧ r∗ = r] ,

with

Z(r, t) = I+

(
max

1≤i≤m−1

{
1 +

t∑
s=r+2

(xi,s − xm,s)
})

.

But, the event r∗ = r only depends on xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r+ 1, P [m is chosen by DEBA ∧
r∗ = r] > 0, and Z(r, t) is non-decreasing on each xi,s − xm,s, 1 ≤ i ≤ m − 1, r + 2 ≤ s ≤ k,
and, then, using Theorem 4,

E[S(r, t) | r∗ = r] ≤ E[Z(r, t)] .

It remains to show that E[L | r∗ = r]iub ≤ (k − r)/k, 2 ≤ r ≤ k − 1. Since Z(r, t) ≤ t− r,
we have E[Z(r, t)] ≤ t− r. Then, E[L | r∗ = r]iub ≤ maxr+1≤t≤k(t− r)/r = (k − r)/k.

The E[Z(r, t)]’s involved in the improved upper bounds for E[L | r∗ = r] given by Theo-
rem 4 can be obtained by using the recurrence-based computational scheme given by the following
theorem. The recurrences can be easily obtained from the definition of E[Z(r, t)].
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Theorem 6. For the ZIAC model, E[Z(r, t)], 2 ≤ r ≤ k− 1, r+1 ≤ t ≤ k can be computed using

E[Z(r, t)] =

t−r∑
a=1

aψ(r, t, a)

and the recurrences:

ψ(r, t, a) =

t−r∑
a′=a

φ(m−1, r, t, a′)π(r, t, a′−a) , 2 ≤ r ≤ k−1 , r+1 ≤ t ≤ k , 1 ≤ a ≤ t− r ,

φ(1, r, t, a) = π(r, t, a− 1) , 2 ≤ r ≤ k − 1 , r + 1 ≤ t ≤ k , 1 ≤ a ≤ t− r ,

φ(b, r, t, a) = φ(b− 1, r, t, a)
a−1∑
a′=0

π(r, t, a′) + π(r, t, a− 1)
a−1∑
a′=1

φ(b− 1, r, t, a′) ,

2 ≤ b ≤ m− 1 , 2 ≤ r ≤ k − 1 , r + 1 ≤ t ≤ k , 1 ≤ a ≤ t− r ,

π(r, r + 1, 0) = 1 , 2 ≤ r ≤ k − 1 ,

π(r, r + 2, 0) = 1− pr+2 , 2 ≤ r ≤ k − 2 ,

π(r, r + 2, 1) = pr+2 , 2 ≤ r ≤ k − 2 ,

π(r, t, t− r − 1) = pr+2 π(r + 1, t, t− r − 2) , 2 ≤ r ≤ k − 3 , r + 3 ≤ t ≤ k ,

π(r, t, a) = (1− pr+2)π(r + 1, t, a) + pr+2 π(r + 1, t, a− 1) ,

2 ≤ r ≤ k − 3 , r + 3 ≤ t ≤ k , 1 ≤ a ≤ t− r − 2 ,

π(r, t, 0) = (1− pr+2)π(r + 1, t, 0) , 2 ≤ r ≤ k − 3 , r + 3 ≤ t ≤ k .

Proof. Let, for 2 ≤ r ≤ k − 1 and r + 1 ≤ t ≤ k, be the random variables

Hi(r, t) =

t∑
s=r+2

xi,s , 1 ≤ i ≤ m,

I(b, r, t) = max
1≤i≤b

{
1 +

t∑
s=r+2

xi,s

}
, 1 ≤ b ≤ m− 1 ,

and let (by symmetry, all Hi(r, t), 1 ≤ i ≤ m have the same probability mass function)

π(r, t, a) = P [Hi(r, t) = a] ,

φ(b, r, t, a) = P [I(b, r, t) = a] ,

ψ(r, t, a) = P [Z(r, t) = a] .

Then, the result follows using elementary probability theory by noting that

I(1, r, t) = 1 +H1(r, t) ,

I(b, r, t) = max{I(b− 1, r, t), 1 +Hb(r, t)} , 2 ≤ b ≤ m− 1 ,

Z(r, t) = I+(I(m− 1, r, t)−Hm(r, t)) .
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4 Improved upper bounds for the PIAC model

In this section, we derive improved upper boundsE[L|r∗ = r]iub forE[L|r∗ = r], 2 ≤ r ≤ k−1 for
the PIAC probabilistic model taking advantage of the properties of DEBA and the PIAC probabilistic
model. The bounds will be obtained in terms of the conditional probabilities P [Alr | |G| = g],
2 ≤ r ≤ k, 0 ≤ g ≤ m − 1, P [Ahr | |G| = g], 2 ≤ r ≤ k, 1 ≤ g ≤ m, and P [Al,hr | |G| = g],
2 ≤ r ≤ k, 1 ≤ g ≤ m−1, whereG is the random variable “number of good alternatives”,Alr is the
event “some bad alternative but no good alternative cumulative dominates all other alternatives up
to attribute r”, Ahr is the event “some good alternative but no bad alternative cumulative dominates
all other alternatives up to attribute r”, and Al,hr is the event “some good alternative and some bad
alternative cumulative dominates all other alternatives up to attribute r”. The main reason why
the upper bounds for E[L | r∗ = r], 2 ≤ r ≤ k − 1 are obtained in terms of those conditional
probabilities is that the conditional probabilities can be computed using ROBDDs which turned out
to have moderate sizes for values of m and k as large as 10. The upper bounds for E[L | r∗ = r],
2 ≤ r ≤ k − 1 will also depend on the probability mass function of r∗, P (r) = P [r∗ = r], 2 ≤
r ≤ k − 1. That probability mass function can be easily obtained from the conditional probabilities
and can be used to obtain the improved upper bound E[L]iub for E[L] from the upper bounds for
E[L | r∗ = r], 2 ≤ r ≤ k − 1 using (2)

E[L]iub =

k−1∑
r=2

P (r)E[L | r∗ = r]iub .

We start by discussing how the conditional probabilities can be computed using ROBDDs.
Then, we explain how the probability mass function of r∗, P (r), 2 ≤ r ≤ k − 1 can be computed
from the conditional probabilities. Finally, we obtain the improved upper bounds for E[L | r∗ = r],
2 ≤ r ≤ k − 1 in terms of the conditional probabilities and the probability mass function of r∗,
P (r), 2 ≤ r ≤ k − 1.

To compute the conditional probabilities using ROBDDs, we introduce two Bernouilli random
variables, a0 and a1, independent of zi, 1 ≤ i ≤ m and yli,s, y

h
i,s, 1 ≤ i ≤ m, 1 ≤ s ≤ k and define

the event Br = Blr ∩ Bhr , where Blr is the event “either a0 = 0 or some bad alternative cumulative
dominates all other alternatives up to attribute r” and Bhr is the event “either a1 = 0 or some good
alternative cumulative dominates all other alternatives up to attribute r”. By the definition of the
events Alr, Ahr , and Al,hr , it is clear that

P [Alr ∪ Al,hr | |G| = g] = P [1Br = 1 | |G| = g ∧ a0 = 1 ∧ a1 = 0] ,

P [Ahr ∪ Al,hr | |G| = g] = P [1Br = 1 | |G| = g ∧ a0 = 0 ∧ a1 = 1] ,

P [Al,hr | |G| = g] = P [1Br = 1 | |G| = g ∧ a0 = 1 ∧ a1 = 1] . (4)

Further, since Alr, Ahr , and Al,hr are disjoint,

P [Alr | |G| = g] = P [Alr ∪ Al,hr | |G| = g]− P [Al,hr | |G| = g]

= P [1Br = 1 | |G| = g ∧ a0 = 1 ∧ a1 = 0]

− P [1Br = 1 | |G| = g ∧ a0 = 1 ∧ a1 = 1] (5)
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and

P [Ahr | |G| = g] = P [Ahr ∪ Al,hr | |G| = g]− P [Al,hr | |G| = g]

= P [1Br = 1 | |G| = g ∧ a0 = 0 ∧ a1 = 1]

− P [1Br = 1 | |G| = g ∧ a0 = 1 ∧ a1 = 1] (6)

Using (4), (5), and (6), the conditional probabilities can be computed from P [1Br = 1 | |G| =
g ∧ a0 = 1 ∧ a1 = 0], 2 ≤ r ≤ k, 0 ≤ g ≤ m− 1, P [1Br = 1 | |G| = g ∧ a0 = 0 ∧ a1 = 1],
2 ≤ r ≤ k, 1 ≤ g ≤ m, and P [1Br = 1 | |G| = g ∧ a0 = 1 ∧ a1 = 1], 2 ≤ r ≤ k, 0 ≤ g ≤ m.
Using the symmetries of the PIAC model, the definition of conditional probability, and the fact that
the underlying Bernouilli random variables a0, a1, zi, 1 ≤ i ≤ m, and yli,s, y

h
i,s, 1 ≤ i ≤ m,

1 ≤ s ≤ r are independent, P [1Br = 1 | |G| = g ∧ a0 = 1 ∧ a1 = 0] can be computed as
P [1Br = 1], with the “success” probability of the Bernouilli random variables zi, 1 ≤ i ≤ g set
to 1, the “success” probability of the Bernouilli random variables zi, g + 1 ≤ i ≤ m set to 0, the
“success” probability of the Bernouilli random variable a0 set to 1, and the “success” probability of
the Bernouilli random variable a1 set to 0. Similarly, P [1Br = 1 | |G| = g ∧ a0 = 0 ∧ a1 = 1] can
be computed as P [1Br = 1], with the “success” probability of the Bernouilli random variables zi,
1 ≤ i ≤ g set to 1, the “success” probability of the Bernouilli random variables zi, g + 1 ≤ i ≤ m

set to 0, the “success” probability of the Bernouilli random variable a0 set to 0, and the “success”
probability of the Bernouilli random variable a1 set to 1; and P [1Br = 1||G| = g∧a0 = 1∧a1 = 1]

can be computed as P [1Br = 1], with the “success” probability of the Bernouilli random variables
zi, 1 ≤ i ≤ g set to 1, the “success” probability of the Bernouilli random variables zi, g+1 ≤ i ≤ m
set to 0, the “success” probability of the Bernouilli random variable a0 set to 1, and the “success”
probability of the Bernouilli random variable a1 set to 1. All those expectations can be computed
from a ROBDD representation of 1Br as a function of a0, a1, zi, 1 ≤ i ≤ m, yli,s, y

h
i,s, 1 ≤ i ≤ m,

1 ≤ s ≤ r. As in BCH, ROBDDs with complement 0-edges can be built with the help of the
CU Decision Diagram Package. A combinational circuit yielding 1Br as a function of a0, a1, zi,
1 ≤ i ≤ m, yli,s, y

h
i,s, 1 ≤ i ≤ m, 1 ≤ s ≤ r can be built based on

1Br =

[
¬a0 +

m∨
i=1

¬zi
m∧
j=1

j 6=i

r∧
s=1

1{Xi,s≥Xj,s}

]
∧
[
¬a1 +

m∨
i=1

zi

m∧
j=1

j 6=i

r∧
s=1

1{Xi,s≥Xj,s}

]
,

where the indicator functions 1{Xi,s≥Xj,s}, 1 ≤ i ≤ m, 1 ≤ j ≤ m, j 6= i, 1 ≤ s ≤ r can be
expressed in terms of the variables zi, 1 ≤ i ≤ m, yli,s, y

h
i,s, 1 ≤ i ≤ m, 1 ≤ s ≤ r as explained in

Section 2.

The following theorem gives expressions for P (r), 2 ≤ r ≤ k− 1 in terms of P [Alr | |G| = g],
0 ≤ g ≤ m − 1, 2 ≤ r ≤ k, P [Ahr | |G| = g], 1 ≤ g ≤ m, 2 ≤ r ≤ k, and P [Al,hr | |G| = g],
1 ≤ g ≤ m − 1, 2 ≤ r ≤ k. Its proof is immediate from the definitions of those conditional
probabilities.
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Theorem 7. For the PIAC model and 2 ≤ r ≤ k − 1,

P (r) = (1− p)m
(
P [Alr | |G| = 0]− P [Alr+1 | |G| = 0]

)
+

m−1∑
g=1

(
m

g

)
pg(1− p)m−g(

P [Alr | |G| = g] + P [Ahr | |G| = g] + P [Al,hr | |G| = g]

− P [Alr+1 | |G| = g]− P [Ahr+1 | |G| = g]− P [Al,hr+1 | |G| = g]
)

+ pm
(
P [Ahr | |G| = m]− P [Ahr+1 | |G| = m]

)
.

Proof. Conditioning on |G| and using P [|G| = g] =
(
m
g

)
pg(1− p)m−g, 0 ≤ g ≤ m,

P (r) = P [r∗ = r] =
m∑
g=0

P [|G| = g]P [r∗ = r | |G| = g]

=
m∑
g=0

(
m

g

)
pg(1− p)m−gP [r∗ = r | |G| = g] . (7)

Using the definitions of Alr, Ahr , and Al,hr , for 2 ≤ r ≤ k − 1,

{r∗ = r} = Alr ∪ Ahr ∪ Al,hr −
(
Alr+1 ∪ Ahr+1 ∪ Al,hr+1

)
,

and, sinceAlr+1 ∪Ahr+1 ∪Al,hr+1 ⊂ Alr ∪Ahr ∪Al,hr ,Alr,Ahr , andAl,hr are disjoint, andAlr+1,Ahr+1,
and Al,hr+1 are disjoint,

P [r∗ = r | |G| = g] = P [Alr | |G| = g] + P [Ahr | |G| = g] + P [Al,hr | |G| = g]

− P [Alr+1 | |G| = g]− P [Ahr+1 | |G| = g]− P [Al,hr+1 | |G| = g] ,

which used in (7), taking into account P [Alr | |G| = m] = P [Alr+1 | |G| = m] = P [Ahr | |G| = 0] =

P [Ahr+1 | |G| = 0] = P [Al,hr | |G| = 0] = P [Al,hr+1 | |G| = 0] = P [Al,hr | |G| = m] = P [Al,hr+1 | |G| =
m] = 0, 2 ≤ r ≤ k − 1 gives the expression for P (r), 2 ≤ r ≤ k − 1.

The path to the derivation of the improved upper bounds for E[L | r∗ = r], 2 ≤ r ≤ k − 1

starts with the following theorem, which can be looked at as a natural extension to the PIAC model
of Theorem 4 in the previous section.

Theorem 8. Let r, 1 ≤ r ≤ k, let G′ ⊂ {1, 2, . . . ,m}, and let Er be any event depending only on
xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r − 1 such that P [i is chosen by DEBA ∧ Er | G = G′] > 0. Let xi,r
be the (m− 1)(k − r + 1)-vector with components xj,s − xi,s, 1 ≤ j ≤ m, j 6= i, r ≤ s ≤ k. Let
F (u1, . . . , u(m−1)(k−r+1)) be any function which is non-decreasing on each ul. Then, for the PIAC
model,

E[F (xi,r) |G = G′ ∧ i is chosen by DEBA ∧ Er] ≤ E[F (xi,r) |G = G′] .
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Proof. See the Appendix.

Using Theorem 8, the derivation of the improved upper bounds for E[L | r∗ = r], 2 ≤ r ≤ k− 1 is,
roughly, as follows. First, retaking a result obtained in the previous section,

E[L | r∗ = r] ≤ max
r+1≤t≤k

V (r, t)

t
,

where, c being the alternative chosen by DEBA, V (r, t) is any upper bound for E[S(r, t) | r∗ = r]

with

S(r, t) = I+

 max
1≤i≤m
i 6=c

{
1 +

t∑
s=r+2

(xi,s − xc,s)
} .

That upper bound is obtained in terms of upper bounds for E[S(r, t) | |G| = g ∧ r∗ = r ∧ Alr],
0 ≤ g ≤ m − 1, E[S(r, t) | |G| = g ∧ r∗ = r ∧ Ahr ], 1 ≤ g ≤ m, and E[S(r, t) | |G| =
g ∧ r∗ = r ∧ Al,hr ], 1 ≤ g ≤ m − 1, P (r), and the conditional probabilities P [Alr | |G| = g],
P [Alr+1 | |G| = g], 0 ≤ g ≤ m − 1, P [Ahr | |G| = g], P [Ahr+1 | |G| = g], 1 ≤ g ≤ m, and
P [Al,hr | |G| = g], P [Al,hr+1 | |G| = g], 1 ≤ g ≤ m − 1 using elementary probability theory and
the relationships between the events {r∗ = r}, Alr, Ahr , Al,hr , Alr+1, Ahr+1, and Al,hr+1. The upper
bounds for E[S(r, t) | |G| = g ∧ r∗ = r ∧ Alr], 0 ≤ g ≤ m−1, E[S(r, t) | |G| = g ∧ r∗ = r ∧ Ahr ],
1 ≤ g ≤ m, and E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ], 1 ≤ g ≤ m− 1 are obtained by exploiting
the symmetries of the PIAC model and using Theorem 8.

The following proposition gives the upper bounds for E[S(r, t) | |G| = g ∧ r∗ = r ∧ Alr],
E[S(r, t) | |G| = g ∧ r∗ = r ∧ Ahr ], and E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ].

Proposition 2. Let 2 ≤ r ≤ k − 1 and r + 1 ≤ t ≤ k. Then, for DEBA and the PIAC model,

E[S(r, t) | |G| = g ∧ r∗ = r ∧ Alr] ≤ E[Zl,g(r, t)] , 0 ≤ g ≤ m− 1 ,

with

Zl,g(r, t) = I+

(
max

{
1m−g>1 max

1≤i≤m−g−1

{
1 +

t∑
s=r+2

(yli,s − ylm,s)
}
,

1g>0 max
m−g≤i≤m−1

{
1 +

t∑
s=r+2

(yhi,s − ylm,s)
}})

,

E[S(r, t) | |G| = g ∧ r∗ = r ∧ Ahr ] ≤ E[Zh,g(r, t)] , 1 ≤ g ≤ m,

with

Zh,g(r, t) = I+

(
max

{
1m−g>0 max

1≤i≤m−g

{
1 +

t∑
s=r+2

(yli,s − yhm,s)
}
,

1g>1 max
m−g+1≤i≤m−1

{
1 +

t∑
s=r+2

(yhi,s − yhm,s)
}})

,
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and

E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ]

≤ max {E[Zl,g(r, t)], E[Zh,g(r, t)]} , 1 ≤ g ≤ m− 1 .

Proof. Let 0 ≤ g ≤ m− 1, let Gl,g be the event “alternatives 1, . . . ,m− g − 1 are bad, alternatives
m − g, . . . ,m − 1 are good, and alternative m is bad”, and let Cl,g,r be the event “some alternative
in the subset {1, . . . ,m− g− 1,m} but no alternative in the subset {m− g, . . . ,m− 1} cumulative
dominates all other alternatives up to attribute r”. Exploiting the symmetries of the PIAC model,

E[S(r, t) | |G| = g ∧ r∗ = r ∧ Alr]
= E[Z(r, t) | Gl,g ∧ m is chosen by DEBA ∧ r∗ = r ∧ Cl,g,r]

with

Z(r, t) = I+

(
max

1≤i≤m−1

{
1 +

t∑
s=r+2

(xi,s − xm,s)
})

.

But, the event {r∗ = r} ∩ Cl,g,r only depends on xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r + 1,
P [m is chosen by DEBA ∧ r∗ = r ∧ Cl,g,r | Gl,g] > 0, and Z(r, t) is non-decreasing on each
xi,s − xm,s, 1 ≤ i ≤ m− 1, r + 2 ≤ s ≤ k, and, then, using Theorem 8,

E[Z(r, t) | Gl,g ∧ m is chosen by DEBA ∧ r∗ = r ∧ Cl,g,r]
≤ E[Z(r, t) | Gl,g] = E[Zl,g(r, t)] ,

yielding
E[S(r, t) | |G| = g ∧ r∗ = r ∧ Alr] ≤ E[Zl,g(r, t)] .

Similarly, let 1 ≤ g ≤ m, let Gh,g be the event “alternatives 1, . . . ,m − g are bad and al-
ternatives m − g + 1, . . . ,m are good”, and let Ch,g,r be the event “some alternative in the subset
{m− g+ 1, . . . ,m} but no alternative in the subset {1, . . . ,m− g} cumulative dominates all other
alternatives up to attribute r”. Exploiting the symmetries of the PIAC model,

E[S(r, t) | |G| = g ∧ r∗ = r ∧ Ahr ]
= E[Z(r, t) | Gh,g ∧ m is chosen by DEBA ∧ r∗ = r ∧ Ch,g,r] .

But, the event {r∗ = r} ∩ Ch,g,r only depends on xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r + 1,
P [m is chosen by DEBA ∧ r∗ = r ∧ Ch,g,r | Gh,g] > 0, and Z(r, t) is non-decreasing on each
xi,s − xm,s, 1 ≤ i ≤ m− 1, r + 2 ≤ s ≤ k, and, then, using Theorem 8,

E[Z(r, t) | Gh,g ∧ m is chosen by DEBA ∧ r∗ = r ∧ Ch,g,r]
≤ E[Z(r, t) | Gh,g] = E[Zh,g(r, t)] ,

yielding
E[S(r, t) | |G| = g ∧ r∗ = r ∧ Ahr ] ≤ E[Zh,g(r, t)] .
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Finally, let 1 ≤ g ≤ m− 1. Clearly (recall that c denotes the alternative chosen by DEBA),

E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ]

= P [c is bad | |G| = g ∧ r∗ = r ∧ Al,hr ]

E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ∧ c is bad]

+ P [c is good | |G| = g ∧ r∗ = r ∧ Al,hr ]

E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ∧ c is good] ,

and, since P [c is bad | |G| = g ∧ r∗ = r ∧ Al,hr ] ≥ 0, P [c is good | |G| = g ∧ r∗ = r ∧ Al,hr ] ≥ 0,
and P [c is bad | |G| = g ∧ r∗ = r ∧ Al,hr ] + P [c is good | |G| = g ∧ r∗ = r ∧ Al,hr ] = 1,
it suffices to prove that E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ∧ c is bad] ≤ E[Zl,g(r, t)] and
that E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ∧ c is good] ≤ E[Zh,g(r, t)]. To prove the former,
let Gl,g be the event previously defined and let C′l,g,r be the event “some alternative in the subset
{1, . . . ,m−g−1,m} and some alternative in the subset {m−g, . . . ,m−1} cumulative dominates
all other alternatives up to attribute r”. Exploiting the symmetries of the PIAC model,

E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ∧ c is bad]

= E[Z(r, t) | Gl,g ∧ m is chosen by DEBA ∧ r∗ = r ∧ C′l,g,r] .

But, the event {r∗ = r} ∩ C′l,g,r only depends on xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r + 1,
P [m is chosen by DEBA ∧ r∗ = r ∧ C′l,g,r | Gl,g] > 0, and Z(r, t) is non-decreasing on each
xi,s − xm,s, 1 ≤ i ≤ m− 1, r + 2 ≤ s ≤ k, and, then, using Theorem 8,

E[Z(r, t) | Gl,g ∧ m is chosen by DEBA ∧ r∗ = r ∧ C′l,g,r]
≤ E[Z(r, t) | Gl,g] = E[Zl,g(r, t)] ,

yielding
E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ∧ c is bad] ≤ E[Zl,g(r, t)] .

To prove the second, let Gh,g be the event previously defined and let C′h,g,r be the event “some
alternative in the subset {1, . . . ,m − g} and some alternative in the subset {m − g + 1, . . . ,m}
cumulative dominates all other alternatives up to attribute r”. Exploiting the symmetries of the
PIAC model,

E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ∧ c is good]

= E[Z(r, t) | Gh,g ∧ m is chosen by DEBA ∧ r∗ = r ∧ C′h,g,r] .

But, the event {r∗ = r} ∩ C′h,g,r only depends on xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r + 1,
P [m is chosen by DEBA ∧ r∗ = r ∧ C′h,g,r | Gh,g] > 0, and Z(r, t) is non-decreasing on each
xi,s − xm,s, 1 ≤ i ≤ m− 1, r + 2 ≤ s ≤ k, and, then, using Theorem 8,

E[Z(r, t) | Gh,g ∧ m is chosen by DEBA ∧ r∗ = r ∧ C′h,g,r]
≤ E[Z(r, t) | Gh,g] = E[Zh,g(r, t)] ,

yielding
E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ∧ c is good] ≤ E[Zh,g(r, t)] .
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The improved upper bounds for E[L | r∗ = r], 2 ≤ r ≤ k − 1 are given by the following theorem.

Theorem 9. For DEBA and the PIAC model,

E[L | r∗ = r] ≤ E[L | r∗ = r]iub = max
r+1≤t≤k

V (r, t)

t
, 2 ≤ r ≤ k − 1 ,

where

V (r, t) =
(1− p)m
P (r)

(
P [Alr | |G| = 0]− P [Alr+1 | |G| = 0]

)
E[Zl,0(r, t)]

+
m−1∑
g=1

(
m

g

)
pg(1− p)m−g

P (r)[
P [Alr | |G| = g]E[Zl,g(r, t)] + P [Ahr | |G| = g]E[Zh,g(r, t)]

+
(
P [Al,hr | |G| = g]− P [Al,hr+1 | |G| = g]− P [Alr+1 | |G| = g]

− P [Ahr+1 | |G| = g]
)
max{E[Zl,g(r, t)], E[Zh,g(r, t)]}

+ min
{
P [Alr | |G| = g], P [Alr+1 | |G| = g]

}
(
max{E[Zl,g(r, t)], E[Zh,g(r, t)]} − E[Zl,g(r, t)]

)
+ min

{
P [Ahr | |G| = g], P [Ahr+1 | |G| = g]

}
(
max{E[Zl,g(r, t)], E[Zh,g(r, t)]} − E[Zh,g(r, t)]

)]

+
pm

P (r)

(
P [Ahr | |G| = m]− P [Ahr+1 | |G| = m]

)
E[Zh,m(r, t)] ,

with theZl,g(r, t) andZh,g(r, t) defined in Proposition 2. Furthermore,E[L|r∗ = r]iub ≤ (k−r)/k,
2 ≤ r ≤ k − 1.

Proof. Let c be the alternative chosen by DEBA. From the proof of Theorem 5,

E[L | r∗ = r] ≤ max
r+1≤t≤k

V (r, t)

t
,

where V (r, t) is any upper bound for E[S(r, t) | r∗ = r].

It remains to derive V (r, t). To that end, we first consider the refinement of the event {r∗ = r}
into the collection of disjoint non-empty events {|G| = g} ∩ {r∗ = r} ∩ Alr, 0 ≤ g ≤ m − 1,
{|G| = g} ∩ {r∗ = r} ∩ Ahr , 1 ≤ g ≤ m, and {|G| = g} ∩ {r∗ = r} ∩ Al,hr , 1 ≤ g ≤ m − 1.
Using the definition of conditional expectation, we can express E[S(r, t) | r∗ = r] in terms of
E[S(r, t) | |G| = g ∧ r∗ = r ∧ Alr], 0 ≤ g ≤ m − 1, E[S(r, t) | |G| = g ∧ r∗ = r ∧ Ahr ],
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1 ≤ g ≤ m, and E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ], 1 ≤ g ≤ m− 1 as

P (r)E[S(r, t) | r∗ = r]

= P [|G| = 0 ∧ r∗ = r ∧ Alr] E[S(r, t) | |G| = 0 ∧ r∗ = r ∧ Alr]

+

m−1∑
g=1

(
P [|G| = g ∧ r∗ = r ∧ Alr] E[S(r, t) | |G| = g ∧ r∗ = r ∧ Alr]

+ P [|G| = g ∧ r∗ = r ∧ Ahr ] E[S(r, t) | |G| = g ∧ r∗ = r ∧ Ahr ]

+ P [|G| = g ∧ r∗ = r ∧ Al,hr ] E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ]

)
+ P [|G| = m ∧ r∗ = r ∧ Ahr ] E[S(r, t) | |G| = m ∧ r∗ = r ∧ Ahr ] .

Using P [|G| = g ∧ r∗ = r ∧ Alr] = P [|G| = g]P [r∗ = r ∧ Alr | |G| = g], P [|G| = g ∧ r∗ =

r ∧ Ahr ] = P [|G| = g]P [r∗ = r ∧ Ahr | |G| = g], P [|G| = g ∧ r∗ = r ∧ Al,hr ] = P [|G| =
g]P [r∗ = r ∧ Al,hr | |G| = g], and P [|G| = g] =

(
m
g

)
pg(1− p)m−g, we get

E[S(r, t) | r∗ = r]

=
(1− p)m
P (r)

P [r∗ = r ∧ Alr | |G| = 0] E[S(r, t) | |G| = 0 ∧ r∗ = r ∧ Alr]

+
m−1∑
g=1

(
m

g

)
pg(1− p)m−g

P (r)(
P [r∗ = r ∧ Alr | |G| = g] E[S(r, t) | |G| = g ∧ r∗ = r ∧ Alr]

+ P [r∗ = r ∧ Ahr | |G| = g] E[S(r, t) | |G| = g ∧ r∗ = r ∧ Ahr ]

+ P [r∗ = r ∧ Al,hr | |G| = g] E[S(r, t) | |G| = g ∧ r∗ = r ∧ Al,hr ]

)

+
pm

P (r)
P [r∗ = r ∧ Ahr | |G| = m] E[S(r, t) | |G| = m ∧ r∗ = r ∧ Ahr ] ,

and using Proposition 2,

E[S(r, t) | r∗ = r]

≤ (1− p)m
P (r)

P [r∗ = r ∧ Alr | |G| = 0] E[Zl,0(r, t)]

+

m−1∑
g=1

(
m

g

)
pg(1− p)m−g

P (r)(
P [r∗ = r ∧ Alr | |G| = g] E[Zl,g(r, t)]

+ P [r∗ = r ∧ Ahr | |G| = g] E[Zh,g(r, t)]

+ P [r∗ = r ∧ Al,hr | |G| = g] max{E[Zl,g(r, t)], E[Zh,g(r, t)]}
)

+
pm

P (r)
P [r∗ = r ∧ Ahr | |G| = m] E[Zh,m(r, t)] , (8)
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For |G| = 0, the event {r∗ = r} ∩ Alr is identical to the event Alr −Alr+1 and Alr+1 ⊂ Alr, and we
get

P [r∗ = r ∧ Alr | |G| = 0] = P [Alr | |G| = 0]− P [Alr+1 | |G| = 0] . (9)

Similarly, for |G| = m, the event {r∗ = r} ∩ Ahr is identical to the event Ahr −Ahr+1 and Ahr+1 ⊂
Ahr+1, and we get

P [r∗ = r ∧ Ahr | |G| = m] = P [Ahr | |G| = m]− P [Ahr+1 | |G| = m] . (10)

No such simple relationships exist for P [r∗ = r ∧ Alr | |G| = g], P [r∗ = r ∧ Ahr | |G| = g],
P [r∗ = r ∧ Al,hr | |G| = g], 1 ≤ g ≤ m − 1, and we will content ourselves by deriving an upper
bound for

T (g, r, t) = P [r∗ = r ∧ Alr | |G| = g] E[Zl,g(r, t)]

+ P [r∗ = r ∧ Ahr | |G| = g] E[Zh,g(r, t)]

+ P [r∗ = r ∧ Al,hr | |G| = g] max{E[Zl,g(r, t)], E[Zh,g(r, t)]} ,
1 ≤ g ≤ m− 1 . (11)

Clearly, from the definitions of Alr, Ahr , and Al,hr ,

{r∗ = r} ∩ Alr = Alr −
(
Alr+1 ∪ Ahr+1 ∪ Al,hr+1

)
,

{r∗ = r} ∩ Ahr = Ahr −
(
Alr+1 ∪ Ahr+1 ∪ Al,hr+1

)
, (12)

{r∗ = r} ∩ Al,hr = Al,hr −
(
Alr+1 ∪ Ahr+1 ∪ Al,hr+1

)
.

Also, Alr+1 ⊂ Alr ∪ Al,hr , Ahr+1 ⊂ Ahr ∪ Al,hr , and Al,hr+1 ⊂ Al,hr . Define Al′r+1 = Alr+1 ∩ Alr,
Al′′r+1 = Alr+1 ∩ Al,hr , Ah′r+1 = Ahr+1 ∩ Ahr , and Ah′′r+1 = Ahr+1 ∩ Al,hr . The Venn diagram of Fig. 2
shows the relationships between the events Alr, Ahr , Al,hr , Alr+1, Al′r+1, Al′′r+1, Ahr+1, Ah′r+1, Ah′′r+1,
and Al,hr+1. Using them in (12),

{r∗ = r} ∩ Alr = Alr −Al′r+1,

{r∗ = r} ∩ Ahr = Ahr −Ah′r+1,

{r∗ = r} ∩ Al,hr = Al,hr −
(
Al′′r+1 ∪ Ah′′r+1 ∪ Al,hr+1

)
,

and using Al′r+1 ⊂ Alr, Ah′r+1 ⊂ Ahr , Al′′r+1 ∪ Ah′′r+1 ∪ Al,hr+1 ⊂ Al,hr , and the fact that Al′′r+1, Ah′′r+1,
and Al,hr+1 are disjoint,

P [r∗ = r ∧ Alr | |G| = g] = P [Alr | |G| = g]− P [Al′r+1 | |G| = g] ,

P [r∗ = r ∧ Ahr | |G| = g] = P [Ahr | |G| = g]− P [Ah′r+1 | |G| = g] ,

P [r∗ = r ∧ Al,hr | |G| = g] = P [Al,hr | |G| = g]

−P [Al′′r+1 | |G| = g]− P [Ah′′r+1 | |G| = g]− P [Al,hr+1 | |G| = g] ,
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which used in (11) give

T (g, r, t) = P [Alr | |G| = g] E[Zl,g(r, t)] + P [Ahr | |G| = g]E[Zh,g(r, t)]

+

(
P [Al,hr | |G| = g]− P [Al,hr+1 | |G| = g]

)
max{E[Zl,g(r, t)], E[Zh,g(r, t)]}

− P [Al′r+1 | |G| = g] E[Zl,g(r, t)]− P [Ah′r+1 | |G| = g] E[Zh,g(r, t)]

− P [Al′′r+1 | |G| = g] max{E[Zl,g(r, t)], E[Zh,g(r, t)]}
− P [Ah′′r+1 | |G| = g] max{E[Zl,g(r, t)], E[Zh,g(r, t)]}

1 ≤ g ≤ m− 1 .

The upper bound for T (g, r, t), 1 ≤ g ≤ m − 1, is obtained by finding the maximum of T (g, r, t)
as a function of P [Al′r+1 | |G| = g], P [Ah′r+1 | |G| = g], P [Al′′r+1 | |G| = g], and P [Ah′′r+1 | |G| = g],
subject to the constraints that those variables are known to satisfy. The constraints are (see Fig. 2):

P [Al′r+1 | |G| = g] + P [Al′′r+1 | |G| = g] = P [Alr+1 | |G| = g] ,

P [Ah′r+1 | |G| = g] + P [Ah′′r+1 | |G| = g] = P [Ahr+1 | |G| = g] ,

0 ≤ P [Al′r+1 | |G| = g] ≤ P [Alr | |G| = g] ,

0 ≤ P [Ah′r+1 | |G| = g] ≤ P [Ahr | |G| = g] ,

P [Al′′r+1 | |G| = g] ≥ 0 ,

P [Ah′′r+1 | |G| = g] ≥ 0 ,

P [Al′′r+1 | |G| = g] + P [Ah′′r+1 | |G| = g] ≤ P [Al,hr | |G| = g]− P [Al,hr+1 | |G| = g] .

This is equivalent to find the maximum of

T (g, r, t) = P [Alr | |G| = g] E[Zl,g(r, t)] + P [Ahr | |G| = g] E[Zh,g(r, t)]

+

(
P [Al,hr | |G| = g]− P [Al,hr+1 | |G| = g]− P [Alr+1 | |G| = g]

− P [Ahr+1 | |G| = g]

)
max{E[Zl,g(r, t)], E[Zh,g(r, t)]}

+ P [Al′r+1 | |G| = g]

(
max{E[Zl,g(r, t)], E[Zh,g(r, t)]} − E[Zl,g(r, t)]

)
+ P [Ah′r+1 | |G| = g]

(
max{E[Zl,g(r, t)], E[Zh,g(r, t)]} − E[Zh,g(r, t)]

)
,

1 ≤ g ≤ m− 1

as a function of P [Al′r+1 | |G| = g] and P [Ah′r+1 | |G| = g] subject to the constraints

0 ≤ P [Al′r+1 | |G| = g] ≤ P [Alr | |G| = g] ,

0 ≤ P [Ah′r+1 | |G| = g] ≤ P [Ahr | |G| = g] ,

P [Al′r+1 | |G| = g] ≤ P [Alr+1 | |G| = g] ,

P [Ah′r+1 | |G| = g] ≤ P [Ahr+1 | |G| = g] ,
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Figure 2: Venn diagram showing the relationships between the events Alr, Ahr , Al,hr , Alr+1, Al′r+1,
Al′′r+1, Ahr+1, Ah′r+1, Ah′′r+1, and Al,hr+1.

P [Al′r+1 | |G| = g] + P [Ah′r+1 | |G| = g]

≥ P [Alr+1 | |G| = g] + P [Ahr+1 | |G| = g]− P [Al,hr | |G| = g] + P [Al,hr+1 | |G| = g] .

Since the function is non-decreasing on both P [Al′r+1 | |G| = g] and P [Ah′r+1 | |G| = g], a point
(a, b) at which T (g, r, t) achieves its maximum is

a = min{P [Alr | |G| = g], P [Alr+1 | |G| = g]}

b = min{P [Ahr | |G| = g], P [Ahr+1 | |G| = g]}

yielding (11)

P [r∗ = r ∧ Alr | |G| = g] E[Zl,g(r, t)] + P [r∗ = r ∧ Ahr | |G| = g] E[Zh,g(r, t)]

+ P [r∗ = r ∧ Al,hr | |G| = g] max{E[Zl,g(r, t)], E[Zh,g(r, t)]}
≤ P [Alr | |G| = g] E[Zl,g(r, t)] + P [Ahr | |G| = g] E[Zh,g(r, t)]

+

(
P [Al,hr | |G| = g]− P [Al,hr+1 | |G| = g]− P [Alr+1 | |G| = g]

−P [Ahr+1 | |G| = g]

)
max{E[Zl,g(r, t)], E[Zh,g(r, t)]}

+ min{P [Alr | |G| = g], P [Alr+1 | |G| = g]}(
max{E[Zl,g(r, t)], E[Zh,g(r, t)]} − E[Zl,g(r, t)]

)
+ min{P [Ahr | |G| = g], P [Ahr+1 | |G| = g]}(

max{E[Zl,g(r, t)], E[Zh,g(r, t)]} − E[Zh,g(r, t)]

)
,

1 ≤ g ≤ m− 1 . (13)

The upper bound V (r, t) for E[S(r, t) | r∗ = r] is obtained by combining (8), (9), (10), and (13).

It remains to show thatE[L|r∗ = r]iub ≤ (k−r)/k, 2 ≤ r ≤ k−1. SinceZl,g(r, t), Zh,g(r, t) ≤
t − r, we have E[Zl,g(r, t)], E[Zh,g(r, t)] ≤ t − r. Furthermore, careful analysis of the pro-
cedure followed to derive V (r, t) reveals that V (r, t) is given by the right-hand side of (8) with
P [r∗ = r ∧ Alr | |G| = g], P [r∗ = r ∧ Ahr | |G| = g], and P [r∗ = r ∧ Al,hr | |G| = g],
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1 ≤ g ≤ m − 1 replaced by quantities Rlg(r), R
h
g (r), and Rl,hg (r), 1 ≤ g ≤ m − 1 satisfying

Rlg(r), R
h
g (r), R

l,h
g (r) ≥ 0 and Rlg(r) +Rhg (r) +Rl,hg (r) = P [r∗ = r | |G| = g]. Then, we have

V (r, t)

t− r ≤ 1

P (r)

[
(1− p)m P [r∗ = r ∧ Alr | |G| = 0]

+
m−1∑
g=1

(
m

g

)
pg (1− p)m−gP [r∗ = r | |G| = g]

+ pm P [r∗ = r ∧ Ahr | |G| = m]

]
,

and taking into account that, for |G| = 0, {r∗ = r} ⊂ Alr and, for |G| = m, {r∗ = r} ⊂ Ahr , and
using P [|G| = g] =

(
m
g

)
pg(1− p)m−g,

V (r, t)

t− r ≤
1

P (r)

m∑
g=0

P [|G| = g]P [r∗ = r | |G| = g] =
P [r∗ = r]

P (r)
= 1 .

Then, E[L | r∗ = r]iub = maxr+1≤t≤k V (r, t)/t ≤ maxr+1≤t≤k(t− r)/t = (k − r)/k.

It remains to discuss the computation of the E[Zl,g(r, t)]’s and E[Zh,g(r, t)]’s involved in the
improved upper bounds forE[L|r∗ = r], 2 ≤ r ≤ k−1 given by Theorem 9. They can be computed
using a recurrence-based computational scheme similar to the one given by Theorem 6 to compute
the E[Z(r, t)]’s involved in the improved upper bounds for the ZIAC model. The recurrence-based
computational scheme is given by the following theorem.

Theorem 10. For the PIAC model, E[Zl,g(r, t)], 0 ≤ g ≤ m − 1, 2 ≤ r ≤ k − 1, r + 1 ≤ t ≤ k

and E[Zh,g(r, t)], 1 ≤ g ≤ m, 2 ≤ r ≤ k − 1, r + 1 ≤ t ≤ k can be computed using

E[Zl,g(r, t)] =Wl,g(t− r) ,

E[Zh,g(r, t)] =Wh,g(t− r) ,

Wl,g(u) =
u∑
a=1

a ξl,g(u, a) , 0 ≤ g ≤ m− 1 , 1 ≤ u ≤ k − 2 ,

Wh,g(u) =

u∑
a=1

a ξh,g(u, a) , 1 ≤ g ≤ m, 1 ≤ u ≤ k − 2 ,

and the recurrences:

ξl,g(u, a) =

u∑
a′=a

ψ(m− g− 1, u, a′)πl(u, a′−a) , 0 ≤ g ≤ m− 1 , 1 ≤ u ≤ k− 2 , 1 ≤ a ≤ u ,

ξh,g(u, a) =
u∑

a′=a

ψ(m− g, u, a′) πh(u, a′ − a) , 1 ≤ g ≤ m, 1 ≤ u ≤ k − 2 , 1 ≤ a ≤ u ,

ψ(0, u, a) = φh(m− 1, u, a) , 1 ≤ u ≤ k − 2 , 1 ≤ a ≤ u ,

ψ(m− 1, u, a) = φl(m− 1, u, a) , 1 ≤ u ≤ k − 2 , 1 ≤ a ≤ u ,
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ψ(b, u, a) = φl(b, u, a)

a∑
a′=1

φh(m− b− 1, u, a′) + φh(m− b− 1, u, a)

a−1∑
a′=1

φl(b, u, a′) ,

1 ≤ b ≤ m− 2 , 1 ≤ u ≤ k − 2 , 1 ≤ a ≤ u ,

φl(1, u, a) = πl(u, a− 1) , 1 ≤ u ≤ k − 2 , 1 ≤ a ≤ u ,

φl(b, u, a) = φl(b− 1, u, a)

a−1∑
a′=0

πl(u, a′) + πl(u, a− 1)

a−1∑
a′=1

φl(b− 1, u, a′) ,

2 ≤ b ≤ m− 1 , 1 ≤ u ≤ k − 2 , 1 ≤ a ≤ u ,

φh(1, u, a) = πh(u, a− 1) , 1 ≤ u ≤ k − 2 , 1 ≤ a ≤ u ,

φh(b, u, a) = φh(b− 1, u, a)
a−1∑
a′=0

πh(u, a′) + πh(u, a− 1)
a−1∑
a′=1

φh(b− 1, u, a′) ,

2 ≤ b ≤ m− 1 , 1 ≤ u ≤ k − 2 , 1 ≤ a ≤ u ,

πl(1, 0) = 1 ,

πl(2, 0) = 1− pl ,

πl(2, 1) = pl ,

πl(u, u− 1) = pl πl(u− 1, u− 2) , 3 ≤ u ≤ k − 2 ,

πl(u, a) = (1− pl)πl(u− 1, a) + pl πl(u− 1, a− 1) , 3 ≤ u ≤ k − 2 , 1 ≤ a ≤ u− 2 ,

πl(u, 0) = (1− pl)πl(u− 1, 0) , 3 ≤ u ≤ k − 2 .

πh(1, 0) = 1 ,

πh(2, 0) = 1− ph ,

πh(2, 1) = ph ,

πh(u, u− 1) = ph πh(u− 1, u− 2) , 3 ≤ u ≤ k − 2 ,

πh(u, a) = (1− ph)πh(u− 1, a) + ph πh(u− 1, a− 1) , 3 ≤ u ≤ k − 2 , 1 ≤ a ≤ u− 2 ,

πh(u, 0) = (1− ph)πh(u− 1, 0) , 3 ≤ u ≤ k − 2 .

Proof. See the Appendix.
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5 Analysis

In this section we will illustrate the improved upper bounds for the expected loss of DEBA obtained
in this paper, will compare them with those obtained in BCH, and will analyze their tightness.
We will also discuss how the improved upper bounds allow us to extend the conclusions in BCH
regarding the performance of DEBA.

To illustrate the improved upper bounds for the expected loss of DEBA and compare them with
those obtained in BCH, we will set as the base case scenario the ZIAC model with pr = 0.5. We will
then consider the following six variations. First, to examine the effect of average attribute quality, we
will change the probability level pr in the ZIAC model to the values pr = 0.2 and pr = 0.8. Second,
to observe the effect of varying pr, we will consider a low-to-high pattern in which pr increases
linearly from p1 = 0.2 to pk = 0.8, i.e. pr = 0.2+ 0.6(r− 1)/(k− 1), and a high-to-low pattern in
which pr decreases linearly with r from p1 = 0.8 to pk = 0.2, i.e. pr = 0.8− 0.6(r − 1)/(k − 1).
The average of the pr’s is 0.5 in both cases. Third, to examine the effect of positive correlation, we
will set p = 0.5 in the PIAC model and will explore the correlation levels ρ = 0.2 and ρ = 0.5.
For these seven scenarios, Fig. 3 plots the upper bounds for the expected loss of DEBA, E[L]ub,
obtained in BCH for 2 ≤ m ≤ 10 and 3 ≤ k ≤ 10. Fig. 4 plots the improved upper bounds,
E[L]iub, obtained in this paper. We can first note that the improved upper bounds are substantially
better than those obtained in BCH: for large k they are about half the previously obtained upper
bounds. Another important point is that the improved upper bounds seem to increase relatively
less rapidly with k than the upper bounds obtained in BCH, implying that the comparison with the
upper bounds obtained in BCH would probably get better for larger values of k. The behavior of
E[L]iub with respect to the average quality of the attributes, a varying average attribute quality, and
the presence of inter-attribute positive correlation is similar to the behavior with respect to those
characteristics of E[L]ub: E[L]iub decreases when the average quality of the attributes increases
beyond 0.5, when there is a high-to-low pattern in the average attribute qualities, and in the presence
of increasing positive inter-attribute correlation. The behavior of E[L]iub with respect to k and m
is also similar to the behavior of E[L]ub. First, for fixed m and increasing k, E[L]iub increases.
This is because in (2) the P (r) are independent of k and E[L | r∗ = r]iub is non-decreasing with
k (see Theorems 5 and 9). Second, for fixed k, E[L]iub → 0 as m → ∞. This is because, for
fixed k, for both the ZIAC and the PIAC probabilistic models, the probability that there will be
some all-1 alternative goes to 1 as m → ∞ (see BCH), implying P (k) → 1, which by (2) implies
E[L]iub → 0. As for E[L]ub, for fixed k, there seems to exist a turning point for m, m∗, before
which E[L]iub increases with m and beyond which E[L]iub decreases with m. The turning point
m∗ seems to decrease as k decreases, as the average quality of the attributes increases, and in the
presence of increasing positive inter-attribute correlation.

Before analyzing the tightness of E[L]iub, we will compare E[L | r∗ = r]iub, 2 ≤ r ≤ k − 1

with the upper bounds, E[L | r∗ = r]ub = (k − r)/k, used in BCH and analyze the tightness of
the former. This will allow us to discuss till what extent the upper bounds obtained in this paper can
be further improved. The event r∗ = r, 2 ≤ r ≤ k − 1 implies the existence of some alternative i
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Figure 3: E[L]ub as a function of m and k for seven scenarios (base case and six variations).
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different from the alternative c chosen by DEBA with Xi,r = Xc,r and Xi,r+1 = Xc,r+1 + 1. The
feasible set of weights w1 = w2 = · · · = wr+1 = 1/(r + 1), wr+2 = wr+3 = · · · = wk = 0

give to alternative i a utility Ui that is 1/(r + 1) larger than the utility Uc of the alternative chosen
by DEBA. This implies that any upper bound for E[L | r∗ = r] independent on the precise values
of the weights cannot be smaller than 1/(r + 1). In summary, 1/(r + 1) is a lower bound on any
feasible upper bound for E[L | r∗ = r]. For the ZIAC model, Fig. 5 compares E[L | r∗ = r]iub with
1/(r + 1), and with E[L | r∗ = r]ub = (k − r)/k. Fig. 6 performs the same comparison for the
PIAC model. First, notice that both figures show a significant difference betweenE[L|r∗ = r]ub and
1/(r+ 1), suggesting room for significant improvement of the upper bounds for E[L | r∗ = r] used
in BCH. That observation was the motivation for our work. For the ZIAC model, E[L | r∗ = r]iub

are close to 1/(r + 1) in all cases, indicating that they cannot be further improved significantly. For
the PIAC model, however, E[L | r∗ = r]iub are not close to 1/(r+1) for small r. Thus, in principle,
there could exist room for significant improvement of the upper bounds E[L | r∗ = r]iub for the
PIAC model. However, we doubt that this is actually the case. The reason is that there exists an
intuitive explanation for the departure from 1/(r+1): for small values of r there is a non-negligible
probability that, conditioned on r∗ = r, the alternatives in Cr∗ are from the “bad” population and, in
that scenario, with appropriate sets of feasible weights, the conditional expected loss of DEBA can
be high compared to 1/(r + 1).

We next analyze the tightness of the improved upper bounds for the expected loss of DEBA
obtained in this paper. To that end, we will compare E[L]iub with the maximum value of E[L] over
all feasible weights, E[L]max. Exact computation of E[L]max does not seem feasible: one has first
to derive an exact procedure for the computation of E[L] for any given set of feasible weights, and
then take the maximum over all feasible sets of weights. To estimateE[L]max we used the following,
expensive approach. First, we sampled 100,000 realizations of sets of alternatives. Second, using
those samples, we obtained point estimates for E[L] for 100,000 uniformly sampled sets of feasible
weights, and took the maximum of those point estimates to estimate E[L]max. Table 1 compares
E[L]iub with the estimates for E[L]max for the ZIAC model. Table 2 performs the comparison for
the PIAC model. For E[L]max we give the point estimate and its 90 % confidence interval. We also
give the percent increase of E[L]iub with respect to the point estimate for E[L]max. For the ZIAC
model, we exclude the case m = 10, k = 5, pr = 0.8 because in that case E[L]max was so small
that the point estimate for E[L]max had a confidence interval of too poor a quality. In all cases, the
upper bound E[L]iub is reasonably tight. Broadly speaking, the tightness of E[L]iub improves with
the average quality of the attributes and in the presence of inter-attribute correlation and degrades as
k increases. Given those results and the discussed good tightness of E[L | r∗ = r]iub, it is unlikely
that the upper bounds for the expected loss of DEBA obtained in this paper can be further improved
significantly unless more sophisticated approaches than conditioning on r∗ are used.

The relevance of the improved upper bounds stems from the fact that they widen the identifica-
tion of cases in which DEBA is guaranteed to have a good performance under the assumed cognitive
limitations regarding the values of the weights of the utility function. More specifically, E[L]iub

is reasonably small in all seven considered scenarios, indicating a reasonably good performance of
DEBA for numbers of alternatives and attributes as large as 10 when attribute values are uncorre-
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Figure 5: 1/(r + 1), E[L | r∗ = r]ub (ub), and E[L | r∗ = r]iub (iub) for the ZIAC probabilistic
model.
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Figure 6: 1/(r + 1), E[L | r∗ = r]ub (ub), and E[L | r∗ = r]iub (iub) for the PIAC probabilistic
model.

Table 1: Tightness of E[L]iub for the ZIAC model.

m k pr E[L]max E[L]iub increase

5 5 0.2 0.04181 ± 0.00049 0.05576 33 %
5 5 0.5 0.04521 ± 0.00052 0.05836 29 %
5 5 0.8 0.002420 ± 0.000119 0.002520 4 %
5 10 0.2 0.06026 ± 0.00046 0.10741 78 %
5 10 0.5 0.07381 ± 0.00055 0.11878 61 %
5 10 0.8 0.01976 ± 0.00027 0.02303 17 %
10 5 0.2 0.06495 ± 0.00059 0.10536 62 %
10 5 0.5 0.03694 ± 0.00045 0.04394 19 %
10 10 0.2 0.08479 ± 0.00052 0.17827 110 %
10 10 0.5 0.08487 ± 0.00056 0.13581 60 %
10 10 0.8 0.008324 ± 0.000167 0.008728 5 %
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Table 2: Tightness of E[L]iub for the PIAC model.

m k p ρ E[L]max E[L]iub increase

5 5 0.5 0.2 0.02835 ± 0.00046 0.03612 27 %
5 5 0.5 0.5 0.009502 ± 0.000299 0.011422 20 %
5 10 0.5 0.2 0.05618 ± 0.00060 0.07788 39 %
5 10 0.5 0.5 0.02103 ± 0.00042 0.02651 26 %

10 5 0.5 0.2 0.01363 ± 0.00030 0.01635 20 %
10 5 0.5 0.5 0.002130 ± 0.000133 0.002552 20 %
10 10 0.5 0.2 0.04757 ± 0.00049 0.06899 45 %
10 10 0.5 0.5 0.009768 ± 0.000232 0.012141 24 %

lated or when there exists positive inter-attribute correlation irrespectively of the average quality of
the attributes. Using the upper bounds obtained in BCH, a good performance of DEBA for up to
10 alternatives and 10 attributes is only predicted when the average quality of the attributes is high,
when there exists positive inter-attribute correlation, and when, not being the average qualities of
the attributes low, there is a high-to-low pattern in the average qualities of the attributes.

6 Conclusions

The DEBA heuristic is a popular and intuitively appealing heuristic for multi-attribute choice when
weights are non-increasing which has been extensively studied in the literature (Bröeder 2000). For
any heuristic, the expected loss is a reasonable measure for the performance, arguably better than the
probability of making the best choice. In this paper, we have derived improved upper bounds for the
expected loss of DEBA independent of the precise values of the weights for the binary attribute case
and for two probabilistic models: one in which the attribute values are assumed to be independent
Bernoulli random variables, and another one with positive inter-attribute correlation and attributes
of the same average quality. It has been shown that the new upper bounds improve substantially
the upper bounds derived in BCH. Furthermore, they have been shown to be tight. The new upper
bounds extend significantly the identification of cases in which a good performance of DEBA can
be guaranteed under the assumed cognitive limitations. In particular, a good performance of the
heuristic is guaranteed for numbers of alternatives and numbers of attributes as large as 10 when
attribute values are uncorrelated or when there is positive inter-attribute correlation. A low value in
the upper bound for the expected loss of DEBA can be used to recommend use of the simple DEBA
decision heuristic and disregard the use of more sophisticated and costly decision rules, including
the obtention of more accurate estimates for the attribute weights.

An obvious direction for future research is the extension of the work presented in this paper
to a probabilistic model for the attribute values allowing arbitrary average qualities for all attributes
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and allowing any feasible inter-attribute correlation matrix. First attempts in that direction seem to
indicate that the extension is a challenging one.
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Appendix A

The proof of Theorem 4 is preceeded by a lemma and a proposition. The lemma establishes a
result regarding conditional expected values of a non-decreasing function of the the differences of
independent Bernouilli random variables and a common independent Bernouilli random variable.

Lemma 1. Let n ≥ 2. Let F (u1, . . . , un−1) be a function which is non-decreasing on each ui. Let
vi, 1 ≤ i ≤ n, be independent Bernoulli random variables with parameters pi, 0 < pi < 1. Let Eν
be the event {v1 = 1 ∨ v1 = · · · = vν = 0}, 2 ≤ ν ≤ n. Then,

E[F (v2 − v1, . . . , vn − v1) | Eν ] ≤ E[F (v2 − v1, . . . , vn − v1) | Eν ] .

Proof. Let the events E1 = {v1 = 1}, E2ν = {v1 = · · · = vν = 0}. Clearly, E1 ∪ E2ν = Eν and
E1 ∩ E2ν = ∅. Because

E[F (v2 − v1, . . . , vn − v1) | Eν ]

=
P [E1] E[F (v2 − v1, . . . , vn − v1) | E1] + P [E2ν ] E[F (v2 − v1, . . . , vn − v1) | E2ν ]

P [E1] + P [E2ν ]
,

it is enough to prove

E[F (v2 − v1, . . . , vn − v1) | E1] ≤ E[F (v2 − v1, . . . , vn − v1) | Eν ]

and
E[F (v2 − v1, . . . , vn − v1) | E2ν ] ≤ E[F (v2 − v1, . . . , vn − v1) | Eν ] .

Let E3ν be the event {v2 = · · · = vν = 0}. Since Eν = {v1 = 0} ∩ E3ν and, for v1 = 0,
F (v2 − v1, . . . , vn − v1) = F (v2, . . . , vn),

E[F (v2 − v1 . . . , vn − v1) | Eν ] = E[F (v2, . . . , vn) | E3ν ] . (14)
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We will start by proving

E[F (v2, . . . , vn) | E3ν ] ≥ E[F (v2, . . . , vn)] . (15)

Being F (u1, . . . , un−1) non-decreasing on each ui,

E[F (v2, . . . , vn) | E3ν ] = E[F (0, . . . , 0, vν+1, . . . , vn)] ≤ E[F (v2, . . . , vn)]

and, then, (15) follows from

E[F (v2, . . . , vn)] =
∏

2≤i≤ν
(1− pi) E[F (v2, . . . , vn) | E3ν ]

+

[
1−

∏
2≤i≤ν

(1− pi)
]
E[F (v2, . . . , vn) | E3ν ] .

Using (14) and (15), it is enough to prove

E[F (v2 − v1, . . . , vn − v1) | E1] ≤ E[F (v2, . . . , vn)]

and
E[F (v2 − v1, . . . , vn − v1) | E2ν ] ≤ E[F (v2, . . . , vn)] .

When the event E1 is realized F (v2 − v1, . . . , vn − v1) = F (v2 − 1, . . . , vn − 1) and, being
F (u1, . . . , un−1) non-decreasing on each ui,

E[F (v2 − v1, . . . , vn − v1) | E1] = E[F (v2 − 1, . . . , vn − 1)] ≤ E[F (v2, . . . , vn)] ,

proving the first result. When the event E2(ν) is realized F (v2 − v1, . . . , vn − v1) =

F (0, . . . , 0, vν+1, . . . , vn) and, being F (u1, . . . , un−1) non-decreasing on each ui,

E[F (v2 − v1, . . . , vn − v1) | E2ν ] = E[F (0, . . . , 0, vν+1, . . . , vn)] ≤ E[F (v2, . . . , vn)] ,

proving the second result.

Let Ar, 1 ≤ r ≤ k be the set of alternatives which remain after the rth DEBA elimination step,
and let conventionally A0 = {1, 2, . . . ,m}. More specifically, A1 includes the alternatives with
maximum first attribute value, A2 includes the alternatives in A1 with maximum second attribute
value, etc. We clearly have A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ Ak 6= ∅. DEBA selects at random any
alternative from Ak. We continue the proof of Theorem 4 by the following key proposition, from
which Theorem 4 will follow almost immediately. The proposition establishes that, conditioned on
any event Er do not depending on the alternatives from attribute r on and which does not preclude
any given alternative i to belong to the subset Ar−1 (and to any subset An, 0 ≤ n ≤ k), and in terms
of a function which is non-decreasing on the differences between the values of the attributes from
attribute r on of the other alternatives and the corresponding attributes of alternative i, the expected
value of the function conditioned on i ∈ An is non-increasing on n. The sketch of the proof of the
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proposition is as follows. Since in the ZIAC probabilistic model, the xj,s’s are independent, Er only
depends on xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r − 1, and {i ∈ An}, {i ∈ An+1} only depend on xj,s, 1 ≤
j ≤ m, 1 ≤ s ≤ n+1, triviallyE[F (xi,r)|i ∈ An+1∧Er] = E[F (xi,r)|i ∈ An∧Er] = E[F (xi,r)]

for 0 ≤ n ≤ r−2. For the case r−1 ≤ n ≤ k−1, either P [i ∈ An−An+1∧Er] = 0 and we also have
E[F (xi,r) | i ∈ An+1 ∧ Er] = E[F (xi,r) | i ∈ An ∧ Er], or, otherwise, being An+1 ⊂ An, the result
follows ifE[F (xi,r)|i ∈ An+1∧Er] ≤ E[F (xi,r)|i ∈ An−An+1∧Er]. The proof of the latter is done
by considering that {i ∈ An+1} = {i ∈ An}∩Fi,n+1 and {i ∈ An−An+1} = {i ∈ An}∩Fi,n+1,
where Fi,n+1 = {xi,n+1 = 1 ∨ xj,n+1 = 0, j ∈ An}, and invoking Lemma 1, using the fact that
xj,n+1, 1 ≤ j ≤ m are independent of xj,s, 1 ≤ j ≤ m, r ≤ s ≤ k, s 6= n+ 1.

Proposition 3. Let r, 1 ≤ r ≤ k and let Er be any event depending only on xj,s, 1 ≤ j ≤ m,
1 ≤ s ≤ r − 1 such that P [i ∈ Ar−1 ∧ Er] > 0 (which implies P [i ∈ An ∧ Er] > 0, 0 ≤ n ≤ k).
Let xi,r be the (m−1)(k−r+1)-vector with components xj,s−xi,s, 1 ≤ j ≤ m, j 6= i, r ≤ s ≤ k.
Let F (u1, . . . , u(m−1)(k−r+1)) be any function which is non-decreasing on each ul. Then, for the
ZIAC model and 0 ≤ n ≤ n′ ≤ k,

E[F (xi,r) | i ∈ An′ ∧ Er] ≤ E[F (xi,r) | i ∈ An ∧ Er] .

Proof. It is enough to show

E[F (xi,r) | i ∈ An+1 ∧ Er] ≤ E[F (xi,r) | i ∈ An ∧ Er]

for 0 ≤ n ≤ k − 1. Since the events {i ∈ An} and {i ∈ An+1} only depend on xj,s, 1 ≤ j ≤ m,
1 ≤ s ≤ n + 1 and the xj,s are independent Bernouilli random variables, for 0 ≤ n ≤ r − 2, we
trivially have E[F (xi,r) | i ∈ An+1 ∧ Er] = E[F (xi,r) | i ∈ An ∧ Er] = E[F (xi,r)]. It remains to
consider the case r−1 ≤ n ≤ k−1. For P [i ∈ An−An+1 ∧ Er] = 0, the events {i ∈ An}∩Er and
{i ∈ An+1} ∩ Er are identical, and we trivially have E[F (xi,r) | i ∈ An+1 ∧ Er] = E[F (xi,r) | i ∈
An ∧ Er]. Therefore, assume P [i ∈ An −An+1 ∧ Er] > 0. Since, being An+1 ⊂ An,

E[F (xi,r) | i ∈ An ∧ Er] = P [i ∈ An+1 ∧ Er | i ∈ An ∧ Er] E[F (xi,r) | i ∈ An+1 ∧ Er]
+ P [i ∈ An −An+1 ∧ Er | i ∈ An ∧ Er] E[F (xi,r) | i ∈ An −An+1 ∧ Er]

=

(
1− P [i ∈ An −An+1 ∧ Er | i ∈ An ∧ Er]

)
E[F (xi,r) | i ∈ An+1 ∧ Er]

+ P [i ∈ An −An+1 ∧ Er | i ∈ An ∧ Er] E[F (xi,r) | i ∈ An −An+1 ∧ Er]
= E[F (xi,r) | i ∈ An+1 ∧ Er]

+ P [i ∈ An −An+1 ∧ Er | i ∈ An ∧ Er](
E[F (xi,r) | i ∈ An −An+1 ∧ Er]− E[F (xi,r) | i ∈ An+1 ∧ Er]

)
,

and it is enough to prove that

E[F (xi,r) | i ∈ An+1 ∧ Er] ≤ E[F (xi,r) | i ∈ An −An+1 ∧ Er] .
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Let Fi,n+1 be the event {xi,n+1 = 1 ∨ xj,n+1 = 0, j ∈ An}. We have {i ∈ An+1} = {i ∈
An} ∩ Fi,n+1 and {i ∈ An −An+1} = {i ∈ An} ∩ Fi,n+1. It is enough to show that

E[F (xi,r) | Fi,n+1 ∧ i ∈ An ∧ Er] ≤ E[F (xi,r) | Fi,n+1 ∧ i ∈ An ∧ Er] .

Letting x̂i,n+1 the (m − 1)-vector with components xj,n+1 − xi,n+1, 1 ≤ j ≤ m, j 6= i, letting
x̃r,n+1 the m(k − r)-vector with components xj,s, 1 ≤ j ≤ m, r ≤ s ≤ k, s 6= n+ 1, denoting by
π(ũr,n+1) the joint probability mass function of xj,s, 1 ≤ j ≤ m, r ≤ s ≤ k, s 6= n+1, conditioned
on {i ∈ An} ∧ Er, and denoting by F (ũr,n+1, x̂i,n+1) the function of x̂i,n+1 which is obtained
from F (xi,r) by setting each xj,s in x̃r,n+1 to uj,s, since xj,n+1, 1 ≤ j ≤ m, are independent of
xj,s, 1 ≤ j ≤ m, r ≤ s ≤ k, s 6= n+ 1,

E[F (xi,r) | Fi,n+1 ∧ i ∈ An ∧ Er] =
∑

ũr,n+1∈{0,1}m(k−r)

π(ũr,n+1)E[F (ũr,n+1, x̂i,n+1) | Fi,n+1]

E[F (xi,r) | Fi,n+1 ∧ i ∈ An ∧ Er] =
∑

ũr,n+1∈{0,1}m(k−r)

π(ũr,n+1)E[F (ũr,n+1, x̂i,n+1) | Fi,n+1]

and, since, by Lemma 1,

E[F (ũr,n+1, x̂i,n+1) | Fi,n+1] ≤ E[F (ũr,n+1, x̂i,n+1) | Fi,n+1]

the result follows.

Proof of Theorem 4. The event “i is chosen by DEBA” is identical to {i ∈ Ak}. Further, since
Ar−1 ⊂ Ak, P [i is chosen by DEBA ∧ Er] > 0 implies P [i ∈ Ar−1 ∧ Er] > 0. Applying, then,
Proposition 3 with n = 0 and n′ = k, taking into account that {i ∈ A0} is the “true” event, we
obtain

E[F (xi,r) | i is chosen by DEBA ∧ Er] ≤ E[F (xi,r) | Er] .

But, since the xj,s’s are independent and Er only depends on xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ r − 1,

E[F (xi,r) | Er] = E[F (xi,r)] .

Proof of Theorem 8. Conditioned on G = G′, the xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ k are independent
Bernouilli random variables. Nothing on the proof of Theorem 4 depended on the (for the ZIAC
model) independent Bernouilli random variables xj,s, 1 ≤ j ≤ m, 1 ≤ s ≤ k having a “success”
parameter depending only on s. Then, the result follows as a trivial generalization of Theorem 4.

Proof of Theorem 10. Let, for 2 ≤ r ≤ k − 1 and r + 1 ≤ t ≤ k, be the random variables

H l
i(r, t) =

t∑
s=r+2

yli,s , 1 ≤ i ≤ m,

Hh
i (r, t) =

t∑
s=r+2

yhi,s , 1 ≤ i ≤ m,
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I l(b, r, t) = max
1≤i≤b

{
1 +

t∑
s=r+2

yli,s

}
, 1 ≤ b ≤ m− 1 ,

Ih(b, r, t) = max
1≤i≤b

{
1 +

t∑
s=r+2

yhi,s

}
, 1 ≤ b ≤ m− 1 ,

J(b, r, t) = max

{
1b>0 max

1≤i≤b

{
1 +

t∑
s=r+2

yli,s

}
,1m−b>1 max

b+1≤i≤m−1

{
1 +

t∑
s=r+2

yhi,s

}}
,

0 ≤ b ≤ m− 1 ,

and let (by symmetry, all H l
i(r, t), 1 ≤ i ≤ m have the same probability mass function, all Hh

i (r, t),
1 ≤ i ≤ m have the same probability mass function, and the probability mass functions of H l

i(r, t),
Hh
i (r, t), I

l(b, r, t), Ih(b, r, t), J(b, r, t), Zl,g(r, t), and Zh,g(r, t) depend on r and t through t− r)

P [H l
i(r, t) = a] = πl(t− r, a) ,

P [Hh
i (r, t) = a] = πh(t− r, a) ,

P [I l(b, r, t) = a] = φl(b, t− r, a) ,

P [Ih(b, r, t) = a] = φh(b, t− r, a) ,

P [J(b, r, t) = a] = ψ(b, t− r, a) ,

P [Zl,g(r, t) = a] = ξl,g(t− r, a) ,

P [Zh,g(r, t) = a] = ξh,g(t− r, a) .

Then, the result follows using elementary probability theory by noting that

I l(1, r, t) = 1 +H l
1(r, t) ,

I l(b, r, t) = max{I l(b− 1, r, t), 1 +H l
b(r, t)} , 2 ≤ b ≤ m− 1 ,

Ih(1, r, t) = 1 +Hh
1 (r, t) ,

Ih(b, r, t) = max{Ih(b− 1, r, t), 1 +Hh
b (r, t)} , 2 ≤ b ≤ m− 1 ,

J(0, r, t) = Ih(m− 1, r, t) ,

J(m− 1, r, t) = I l(m− 1, r, t) ,

for 1 ≤ b ≤ m − 2, J(b, r, t) is the maximum of two independent random variables with same
probability mass functions as I l(b, r, t) and Ih(m− b− 1, r, t), and

Zl,g(r, t) = I+(J(m− g − 1, r, t)−H l
m(r, t)) , 0 ≤ g ≤ m− 1 ,

Zh,g(r, t) = I+(J(m− g, r, t)−Hh
m(r, t)) , 1 ≤ g ≤ m.
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