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Abstract 

The study aimed to study the accuracy in RR time 
series derived from the seismocardiogram when 
employing different heartbeat detectors in subjects 
measured in a quiet environment. The ECG and 
seismocardiogram of 17 healthy volunteers was recorded 
at a sampling frequency of 5 kHz using a Biopac 
acquisition system. The seismocardiogram was acquired 
using a triaxial accelerometer (LIS344ALH, ST 
Microelectronics).  Four detectors of the heartbeat from 
the seismocardiogram were employed relying either on 
the Continuous Wavelet Transform or bandpass filtering. 
The detectors adapt their parameters to the morphology 
of the signal by estimating mean heart rate and the 
bandwidth of the signal associated to the heartbeat. For 
all detectors, the standard deviation of the error in the 
obtained RR time series is in mean slightly higher than 2 
ms and the percentage of obtained RR time intervals that 
have an error higher than 30 ms is around 3.5%. The 
seismocardiogram, when measured in a quiet 
environment, can be used instead of the ECG to obtain 
reliable RR time series when using proper heartbeat 
detectors. 

1. Introduction

The analysis of heart rate variability (HRV) has been 
established during the past few decades as a valuable non-
invasive tool to assess the status of the cardiovascular 
autonomic function and it has been frequently used in the 
analysis of physiological signals in different clinical and 
functional conditions [1, 2].  Over recent years, there has 
been interest into using unobtrusive methods to 
monitoring heart rate without electrodes. The 
seismocardiogram (SCG) is the study of body vibrations 
induced by the heartbeat. This term was popularized in 
the 90s by Salermo and Zanetti [3]. However, the 
recording of body movements associated with cardiac 
activity is much older [4]. The ballistocardiogram (BCG) 
records the movements of the body as an effect of the 

blood mass ejected by the heart with each contraction. 
Usually the BCG is recorded in a supine position over a 
mobile platform that moves with each beat. The SCG 
usually records the sternal acceleration and has higher 
frequency content than BCG. Recently, the interest in 
SCG has been revitalized by the availability of low cost 
MEMS sensors and portable devices that include them 
(smartphones, PDA, etc.)  

Some authors have proposed the SCG signal to study 
changes in the cardiovascular system [5,6,7]. Friedrich et 
al [8] have estimated the RR intervals from the 
ballistocardiogram and compare them with the ECG RR 
intervals. Hence the interest to compare the quality of RR 
time series obtained from the SCG with a gold standard 
time series obtained from the ECG.  

The aim of this work is to propose an algorithmic 
approach to the detection of heartbeats from the SCG 
robust and accurate enough to obtain RR time series that 
can be used for HRV analysis. With this approach, we 
define four heartbeat detectors and compare time series 
with those obtained from the ECG. 

2. Materials and methods

2.1. Heartbeat detectors from the SCG 

Because the morphology of the SCG can differ from 
subject to subject and with differences in the positioning 
of the sensor over the body, adaptive algorithms for the 
heartbeat detection have been created. The proposed 
heartbeat detectors are based on two basic assumptions: 
the measured accelerations associated with the heartbeat 
are narrowband processes and the heartbeat is nearly 
periodic. Then, the first step in all the proposed heartbeat 
detectors is to find the appropriate frequency band that 
contains the most of the energy of the SCG.  In order to 
estimate the mean of the heart rate, the power spectrum of 
the SCG is computed by using the periodogram and a 
Hanning window. The mean heart rate is computed as the 
frequency that has a maximum power between 0.5 Hz and 
2 Hz (these limits could be adapted when bradycardia or 
tachycardia is suspected). The next step is to analyze at 
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random segments of the SCG containing a few heartbeats 
in order to provide a “central frequency” around which 
most of the energy of the signal is contained. This step 
can be achieved in several ways. In this work, after 
bandpass filtering the SCG with a bidirectional 
Butterworth filter of order 4 and cutoff frequencies of 5 
and 30 Hz, we have computed the continuous wavelet 
transform (CWT) of segments spanning four times the 
mean heart period previously estimated. The chosen 
wavelet has been the complex Gaussian of order 4. The 
CWT has been computed for scales whose central 
frequencies lie between 5 Hz and 30 Hz (for the chosen 
wavelet and a sampling frequency of 5 kHz these scales 
go from 84 to 500). For each scale, the standard deviation 
of the magnitude of the CWT is computed and the 
appropriate scale is chosen as the one that maximizes the 
standard deviation.  Moreover, the central frequency of 
this scale is also computed. The process is repeated in as 
many segments containing approximately 4 heartbeats as 
desired and finally the mean of central frequencies (cfopt) 
as well as the rounding of the mean of appropriate scales 
(sopt) are computed. Figure 1 shows an example with a 
segment of the filtered SCG, the evolution of the standard 
deviation with the scale and the magnitude of the CWT 
using the appropriate scale. 

After estimation of cfopt and sopt, we have defined four 
heartbeat detectors: 
 Detector 1 (DET1) computes the CWT using sopt and 

the complex Gaussian wavelet of order 4. If C is the 
obtained complex signal, Re(C) and Im(C) its real 
and imaginary parts respectively, then and in order to 
maximize the visibility of the heartbeat, the form 
factor (ratio between maximum and standard 
deviation) of Re(C), - Re(C), Im(C) and - Im(C) are 
computed. The signal that maximizes the form factor 
is chosen to detect the heartbeats. This detection has 
been achieved using an adaptive threshold with a 
time constant of 2 s. The heartbeat is located at the 
maximum of the signal in a window of 200 ms 
centered at the intersection of the signal with the 
threshold. 

 Detector 2 (DET2) starts with the heartbeats detected 
with DET1 and refines the position by maximizing 
the correlation of the signal with the first detected 
heartbeat. 

 Detector 3 (DET3) filters the SCG using a bandpass 
bidirectional Butterworth filter of order 4 with cutoff 
frequencies equal to cfopt·2

-1/2 and cfopt·2
1/2. If fSCG is 

the filtered signal, if the form factor of –fSCG is 
higher than the form factor of fSCG then –fSCG is 
used for detection instead of fSCG. The detection has 
employed once again an adaptive threshold with a 
time constant of 2 s and a window to locate the 
maximum around the intersection points.  
 Detector 4 (DET4) starts with the heartbeats 
detected with DET3 and refines the position by 

maximizing the correlation of the signal with the first 
detected heartbeat. 
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Figure 1. Example of the choice of the best scale to detect 
the heartbeat. The maximum of the standard deviation of 
the magnitude of the CWT corresponds in this case to the 
scale 169 that it is associated with a central frequency of 
14.8 Hz 

462



2.2. Database description 

For the study we measured the ECG, breathing and 
SCG in 17 healthy subjects (age: 24.7 years ± 3.9 years, 
sex: 6 females/11 males, body mass index: 24.7 kg/m2 ± 
3.9 kg/m2). Data was acquired using a Biopac MP36 data 
acquisition system (Santa Barbara, CA, USA). Channels 
1 and 2 of the system were devoted to measure 
conventional ECG (leads I and II respectively) with a 
bandwidth between 0.05 Hz and 150 Hz, channel 3 was 
employed to measure the respiratory signal obtained from 
a thoracic piezoresistive band (SS5LB sensor by Biopac, 
Santa Barbara, CA, USA) with a bandwidth of 0.05 Hz to 
10 Hz and  channel 4 was devoted to acquire the SCG 
using a triaxial accelerometer (LIS344ALH, ST 
Microelectronics) and a bandwidth between 0.5 Hz and 
100 Hz. For the ECG measurement we used monitoring 
electrodes with foam tape and sticky gel (3M Red Dot 
2560). Each channel was sampled at 5 kHz.  

During the measurement, the subjects were asked to be 
very still in supine position on a comfortable 
conventional single bed and awake. After attachment of 
sensors, we recorded the basal state of the subjects by 
measuring during 5 minutes. After that, the subjects 
started to listening music during approximately 50 
minutes. Finally, we monitored all subjects 5 minutes 
more after the music ended. 

 
2.3. Comparison assessment 

For each of the recordings, the QRS complexes were 
detected for the standard lead I. A first rough fiducial 
point was obtained by using the Pan-Tompkins QRS 
detector [9] but was further refined by maximizing the 
correlation between any detected QRS complex and the 
first detected QRS complex using templates of 200 ms 
duration centered on the rough fiducial point. From these 
QRS locations, the reference RR time series was 
computed (RRref). On the other hand, from the outputs of 
the four detectors were used to obtain four RR time series 
from the SCG (RR1, RR2. RR3 and RR4). Due to 
misdetections, the error between the reference and the 
detector n (dRRn) was assessed by the standard deviation 
of the differences between RRref and RRn when these 
differences are lower than 30 ms. The percentage of 
rejected differences (higher than 30 ms) were accounted 
as an indicator of the quality of the measurement (%Mn). 
Figure 2 shows an example using the detector 3.  

 
3. Results 

Table 1 shows the results for the error between time 
series and the percentage of misdetections for each 
detector. As seen by the results, the four detectors provide 
quite similar RR time series when compared with that 

obtained from the ECG. Detector 1 has the lowest error 
while detectors 2 and 4 (based on matching pattern) have 
a slightly higher error.  
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Figure 2. Example of comparison of two RR time series. 
The upper panel shows the RR time series of reference 
and that obtained from the third detector (that has some 
misdetections). The lower panel shows the differences 
between time series without the misdetections (dRR3 = 
1.47 ms, %Mn = 1.57%) 

 
Table 1. Results for errors and misdetections (mean ± 
standard deviation) 

 
Detector dRRn (ms) %Mn 
1 2.27 ± 0.81 3.34 ± 5.69 
2 2.34 ± 0.82 4.29 ± 8.06 
3 2.30 ± 0.80 3.87 ± 6.69 
4 2.33 ± 0.85 4.78 ± 8.79 
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Detector 1 has also the lowest percentage of 
misdetections. 

 
4. Discussion 

Because all the proposed detectors provide quite 
similar results, the best choice is detector 3 because it is 
easier to implement. On the other hand, the detectors can 
be further optimized by taking into account that detectors 
1 and 2 use a complex Gaussian wavelet of order 4 and 
detectors 3 and 4 rely on a simple bandpass filter. 
Choosing another wavelet (or combination of wavelets at 
different scales) or defining other cutoff frequencies of 
the filter can improve the detectors. Nevertheless, the 
accuracy of the detection is high enough for most HRV 
applications. 

The recordings have been obtained in a very controlled 
and quiet environment with the subjects lying still. Maybe 
some of the proposed detectors are more robust than the 
others in front of movement or other artifacts. This 
question will be answered in future works. Moreover, the 
visual inspection of the error between RR time series 
suggests that the difference between both time series is 
modulated by breathing. A future work will study how 
much of the error can be explained by breathing. 

 
5. Conclusion 

We have proposed some heartbeat detectors to obtain 
the RR time series from the seismocardiogram. The 
detectors adapt their parameters to the morphology of the 
signal by estimating mean heart rate and the bandwidth of 
the signal associated to the heartbeat. For all detectors, 
the standard deviation of the error in the obtained RR 
time series is in mean slightly higher than 2 ms and the 
percentage of obtained RR time intervals that have an 
error higher than 30 ms is around 3.5%. Because all the 
proposed detectors have quite similar performances, the 
best detector, for its simplicity, is based on a narrowband 
bandpass filter.    
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