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Collective variables (CVs) are low-dimensional representations of the state of a complex system,
which help us rationalize molecular conformations and sample free energy landscapes with molecular
dynamics simulations. Given their importance, there is need for systematic methods that effectively
identify CVs for complex systems. In recent years, nonlinear manifold learning has shown its abil-
ity to automatically characterize molecular collective behavior. Unfortunately, these methods fail to
provide a differentiable function mapping high-dimensional configurations to their low-dimensional
representation, as required in enhanced sampling methods. We introduce a methodology that, start-
ing from an ensemble representative of molecular flexibility, builds smooth and nonlinear data-driven
collective variables (SandCV) from the output of nonlinear manifold learning algorithms. We demon-
strate the method with a standard benchmark molecule, alanine dipeptide, and show how it can be
non-intrusively combined with off-the-shelf enhanced sampling methods, here the adaptive biasing
force method. We illustrate how enhanced sampling simulations with SandCV can explore regions
that were poorly sampled in the original molecular ensemble. We further explore the transferability
of SandCV from a simpler system, alanine dipeptide in vacuum, to a more complex system, alanine

dipeptide in explicit water. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4830403]

. INTRODUCTION

Molecular dynamics (MD) simulations provide atomic
resolution of important processes involving biomolecules,
which complement experimental observations' and can help
understand the relation between conformational changes and
function.” MD can in principle establish a link between
atomic motions and thermodynamic observables. Yet, in prac-
tice this goal is not easily realized. Leaving aside the accuracy
of current force fields, the predictive ability of MD is mainly
limited by sampling. Indeed, while femtosecond time steps
are required for accurate and stable time integration, impor-
tant phenomena such as molecular conformational changes
involve a hierarchy of time scales spanning milliseconds and
up.? This huge disparity, caused generically by metastability,
makes the accurate sampling of the equilibrium distribution,
and hence the evaluation of thermodynamics observables, ex-
tremely challenging even in highly specialized supercomput-
ing platforms.* An additional issue in molecular simulations
of complex systems is processing and extracting meaningful
information out of large amounts of data contained in the nu-
merical trajectories. To deal with these difficulties, we adopt a
nonlinear intrinsic manifold model for molecular systems,>’
develop techniques complementary to nonlinear dimension-
ality reduction methods® to define smooth collective variables
based on molecular ensembles, and enhance sampling with
these variables.

Collective variables (CVs), also called reaction coordi-
nates, order parameters, or slow variables depending on the
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context, are low-dimensional representations of the state of
a molecular system. CVs often capture the concerted nature
of molecular conformational changes. They organize our un-
derstanding of the system, e.g., through a low-dimensional
free energy surface (FES), and are at the core of a myriad of
enhanced sampling methods, including metadynamics,’ non-
equilibrium work methods,'® or the adaptive biasing force
(ABF) method,!" which we implement here (see Ref. 12 for a
comprehensive review).

For simple systems, experience or intuition can guide the
selection of CVs, which can take the form of distances be-
tween molecular groups or dihedral angles. However, for most
systems of interest, this choice is far from obvious, which
has motivated many attempts to systematize the selection
of CVs. When a specific transition between two metastable
states is considered, a number of methods have been pro-
posed to identify transition paths.'3~!7 Path collective vari-
ables provide two CVs, along and perpendicular to a given
transition path.'® To examine broader or higher-dimensional
regions of conformational space, CVs based on linear com-
binations of modes have been proposed. These include CVs
based on the normal modes of the linearized potential energy,
or on statistical learning methods applied to a training set of
molecular conformations, as in essential dynamics relying on
principal component analysis (PCA).'*?° Besides being rou-
tinely used to post-process molecular simulations, PCA has
been used to drive enhanced sampling in combination with
metadynamics.?»>?

In recent years, it has been noted that molecular mo-
tion often occurs to a good approximation on nonlinear low-
dimensional manifolds of dimension d <« 3N where N is
the number of particles,s’6 sometimes referred to as slow
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or intrinsic manifold.” Although in general it is far from
obvious that one should expect such a manifold to be an in-
herent feature of complex molecular systems, modeling these
in terms of nonlinear manifolds has shown to be fruitful in
many instances. Such nonlinearity may arise from steric in-
teractions amongst different protein domains, or upon rela-
tive rotations of subunits about molecular hinges.?* This field
has been fueled by the emergence of nonlinear dimension-
ality reduction (NLDR) techniques in the field of statistical
learning,® which automatically identify nonlinear correlations
hidden in high-dimensional data. Locally linear embedding
(LLE)** and Isomap?® are amongst the oldest and most suc-
cessful methods, which have been applied in a wide variety of
problems in science and engineering. In essence, these meth-
ods represent a set of high-dimensional data points in low-
dimensions by trying to preserve some notion of similarity
between the high-dimensional points.

Isomap has been shown to distill functionally meaning-
ful nonlinear coordinates, and has been used to post-process
an equilibrated trajectory of a coarse-grained protein.’
Reference 6 presents a comprehensive comparison of NLDR
methods applied to cyclo-octane conformations, and shows
that low-dimensional embeddings may be non-manifold ob-
jects. Rather than geometric similarity, other authors focus
on diffusion distances,”® which account for the underlying
Fokker-Planck operator. Reference 7 obtains nonlinear CVs
of n-alkane chains through diffusion maps, and the approach
is subsequently refined in Ref. 27. Diffusion maps provide a
deep understanding of the physics, but their accurate estima-
tion requires a good sampling of the equilibrium distribution,
which may limit their applicability. Reference 28 recognizes
that often MD trajectories densely sample basins around con-
formers connected by sparsely sampled paths, and proposes a
new iterative NLDR method adapted to such ensembles called
sketch-map, in the spirit of earlier variants of multidimen-
sional scaling.?® See Ref. 30 for a recent review.

A fundamental limitation of NLDR techniques in the
present context is that they merely provide a low-dimensional
representation of the molecular conformations present in the
training molecular ensemble. Unlike PCA, most NLDR meth-
ods employed for studying molecular conformations are dis-
crete in nature,’! and do not provide a differentiable map-
ping between arbitrary atomic positions and CVs, required
in enhanced sampling methods to evaluate the atomic forces
resulting from a bias in the space of CVs. In order to pro-
vide a method that can be generally applied to discrete
reduced-dimensionality embeddings, and make NLDR tech-
niques easily applicable to modeling molecular systems with
nonlinear manifolds, the goal of the present work is to de-
velop techniques complementary to NLDR that take their
output and automatically generate differentiable CVs. Some
recent works point in the same direction, but the topic is
far from being settled. Reference 6 construct mappings be-
tween low and high dimensions following the ideas of LLE,
but it is not clear that such mappings are differentiable or
can be evaluated at conformations outside the convex hull
of the training molecular ensemble. This reference also im-
plements neural networks autoencoder, which provides for-
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Reference 32 adapts diffusion maps to bias simulations with
umbrella sampling, and Ref. 33 introduces a field-overlap pro-
cedure to combine sketch-map with metadynamics and ac-
celerate conformational exploration. Reference 34 general-
izes path collective variables'® to higher dimensions, defines
smooth CVs from the output of Isomap for cyclo-octane,®
and reports on promising but not converged enhanced sam-
pling simulations. Our work is similar in scope to this ref-
erence, by taking the output of Isomap to define smooth
CVs and perform enhanced sampling. In different contexts,
we have previously proposed techniques to smoothly repre-
sent intrinsic manifolds identified by NLDR, including the
reduced modeling of mechanical systems,* point-set surface
parametrization,*® or stereotyped cell motility.?’

Here, we introduce a general and flexible method to de-
fine smooth and nonlinear data-driven collective variables
(SandCV). The input of this method is a molecular en-
semble representative of the system’s geometric variabil-
ity, which does not need to be thermodynamically mean-
ingful. Such an ensemble can be obtained from a variety
of conformation exploration methods in MD,**3° or even
from experiments.*’ By combining existing NLDR methods,
a smooth parametrization of the intrinsic manifold, and geo-
metric operations, we obtain a robust and general method that
produces differentiable CVs, presented in Sec. II. SandCV is
non-intrusive with regards to the enhanced sampling method,
imposes a negligible computational overhead, and can be eas-
ily integrated in standard MD codes*"*? in conjunction with
free energy calculation libraries.** In Sec. III, we show its ef-
fectiveness with a benchmark system, alanine dipeptide, and
combine it with ABF for enhanced sampling and free energy
calculation. The conclusions are collected in Sec. I'V.

II. METHODS
A. Problem statement

The methods presented here address the following prob-
lem. Given prior knowledge of a molecular system in terms of
an ensemble of M conformations given by the Cartesian coor-
dinates of Natoms, R = {ry,r2, ..., Fa, ..., ry} C R3V, the
goal is to define a smooth function, referred to as collective
variables, C : R* — R¢ mapping any out-of-sample molec-
ular conformation r € R3" into a low-dimensional represen-
tation& = C(r) € R<. These collective variables should quan-
titatively represent the state of the system. They should also be
amenable to enhanced sampling MD techniques, i.e., explicit
expressions of its derivatives should be available, and their
evaluation should be robust and computationally efficient.

Our strategy for defining the CVs is data-driven, and
hinges on the intrinsic manifold model for molecular systems
and on statistical learning methods. We proceed in several
steps detailed in Secs. I B-II D. We first identify the intrinsic
manifold underlying the molecular ensemble with nonlinear
dimensionality reduction methods in Sec. II B. These methods
operate at the discrete level, and for this reason we then build
a smooth representation of this manifold in Sec. II C. Finally,
we map any out-of-sample conformation to low-dimensions
by projecting it onto the intrinsic manifold, as elaborated in
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FIG. 1. Tllustration of the main stages to identify the nonlinear intrinsic manifold, both in abstract terms (left) and also for a specific example involving alanine
dipeptide (right). In the left plots, the points r,, x,, and &, are different representations of a given configuration. A molecular ensemble representing the
geometric variability of the molecule (a) is first represented in a way that eliminates irrelevant atoms, translations, and rotations, which obscure the comparison
of conformations, resulting in (b). We refer to this step as filtering and alignment, although it may involve resorting to internal coordinates. In (b), the features of
the underlying intrinsic manifold may be already identified. The aligned configurations are then embedded in low dimensions by a NLDR method, here Isomap,
preserving as much as possible the geodesic distance between high-dimensional configurations, thus revealing the structure of the intrinsic manifold (c). For
reference, we compare the embedding coordinates {1, £, } to the dihedral angles commonly used as CVs for this molecule. The rainbow coloring is the sum of

the two dihedral angles in both embeddings.

concrete reference to the system studied here, alanine dipep-
tide. This small molecule, shown in Figure 1(a), has been
extensively studied and is a benchmark for free energy cal-
culation methods.'!+!7-18:22.27 1t is particularly well suited for
our purposes because its exhibits metastability, good CVs are
known (the dihedral angles ® and W), and these are highly
nonlinear.

B. Identifying the intrinsic manifold

Dimensionality reduction techniques try to identify the
correlations hidden in a high-dimensional data set, the train-
ing set, in order to represent the data with less redun-
dancy in low dimensions. Figure 1(a) provides an instance
of molecular ensemble for alanine dipeptide, together with a
schematic representation of the configurations in R3*V. The
low-dimensional representation provides a better understand-
ing of the system, and can be more easily visualized. Most
dimensionality reduction methods try to preserve the simi-
larity between the points in high dimension. Before apply-
ing these techniques to molecular conformations described by
the Cartesian coordinates of the atomic positions r, € R3N,
one should note that such vectors cannot be directly com-
pared to assess conformational similarity since a translation
or rotation of the atomic positions leaves the conformation
unchanged. Furthermore, some light atoms such as hydrogens
present a very large variability and do not help in representing
oo fe@tstROiS/139(21)/214101/12/$30.00

Alignment is a standard procedure to remove rigid body
transformations and correctly assess shape similarity between
molecular configurations. Some alignment methods optimally
superimpose each configuration in the ensemble to a ref-
erence configuration. Here, we use Procrustes superimposi-
tion without scaling and reflection,** applied on a filtered
conformation consisting only of the backbone atoms of the
molecule. Different subsets of atoms or groups of them may
be more appropriate for other systems. Other alignment pro-
cedures are possible, such as transforming the Cartesian
coordinates r, € R* to a smooth contact map,45 or resort-
ing to internal coordinates.® Since MD codes typically apply
forces in Cartesian coordinates, alignment maps to be used in
conjunction with enhanced sampling MD techniques need to
be differentiated with respect to the Cartesian coordinates, as
elaborated later. Figure 1(b) illustrates the filtering and align-
ment procedure, which we symbolically denote as an operator
A : RN — RP. For Procrustes analysis on the Nz backbone
atoms, D = 3Njp. The figure also suggests that alignment may
reveal the intrinsic manifold of the molecule. After alignment,
the molecular ensemble R is transformed to the set of points
X = {xl,xz, ey Xa, ...,XM} CRD.

Adopting the intrinsic manifold paradigm to model the
molecular system,> %447 we seek to identify this nonlin-
ear and low-dimensional structure underlying X with NLDR
methods. We resort to Isomap,? although the procedure pre-
sented here is not specific to this method. Isomap builds on
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pairwise distances distp(x,, Xp) in high dimension, finds an
optimal low dimensional embedding of the points in X, de-
noted by B = {£,&5,...,&4, ..., Ex} C RY, such that the
matrix of pairwise distances in low dimension, given by
disty(&,, &), is as close as possible to the high-dimensional
counterpart. Algorithmically, finding this embedding involves
linear algebra operations on the distance matrix. The key
idea behind Isomap is replacing the Euclidean distance by
the geodesic distance, that is, the length of the shortest path
within the manifold connecting two points, when computing
pairwise distances in high dimensions. To make this feasible,
Isomap approximates the geodesic distance on a graph. The
first step in Isomap is to build a weighted graph G whose ver-
tices are the points X, and whose edges are the connections
between K nearest neighbors, weighted by the length of these
connections. In a second step, the geodesic distance between
any pair of points distp g(x,, Xp) is approximated by the
length of the shortest path connecting them in the graph. With
this distance matrix capturing the low-dimensional geometry
of the manifold, the embedding is obtained through the clas-
sical MDS procedure. Figure 1(c) illustrates how Isomap pro-
vides a discrete mapping between the input point set X ¢ R”
and the output point set & C R?. Interestingly, the colormap
in Figure 1(c) highlights the similarity between the Isomap
embedding for alanine dipeptide and the embedding based
on dihedral angles, although there is a nonlinear transforma-
tion between them. Note also that the Isomap embedding uses
more collective information since it involves 10 atoms, in-
stead of the 5 involved in the two dihedrals.

The estimation of the intrinsic dimensionality d, an input
in NLDR algorithms, is not obvious for most systems, and
is scale dependent in general.*® The low-dimension d is se-
lected by the user on the basis of previous knowledge about
the system, of intrinsic dimension detection methods, or of
computational convenience.® Note that although the configu-
rations lying on a d dimensional nonlinear manifold can also
be represented as a linear superposition of modes, the num-
ber of linear dimensions (dimension of the affine hull of X) is
necessarily larger than d.

C. Parametrizing the intrinsic manifold

From the output of NLDR, E, we introduce now a smooth
parametrization of the intrinsic manifold, as illustrated in
Figure 2. In this figure, the aligned configurations are rep-
resented in high dimensions by light blue points, which es-
sentially lie on a nonlinear manifold, and their embedding
in low-dimensions is represented by darker blue points ly-
ing on a segment. To represent mathematically and numeri-
cally this manifold (purple line), we define a parametrization
M : Q c R? — RP of the form

L
ME) =" pi®)yi, (1)

i=l1

where p;(§) are smooth basis functions associated to a set of
landmarks 75; represented by black crosses, see Figure 2. We
denote by € a region in R delimited by the points in E. We
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FIG. 2. The intrinsic manifold underlying the set of M aligned configurations
(light-blue points) is parametrized from the low-dimensional embedding with
a linear combination of L (& M) basis functions p;(§), resulting in the pur-
ple line. The coefficients y; are obtained through a least-squares fit. An out-
of-sample point x is labeled in low-dimensional space by first obtaining its
closest-point projection on the manifold, ¥, and then finding its pre-image
through M.

M to the data in a least-squares sense, i.e., by minimizing

M

Y e — ML, )

a=1

which involves solving a L x L linear system of equations.
Here and elsewhere, | - | denotes the Euclidean norm.

The support of the basis functions p;(§) should be wide
enough to filter the out-of-manifold variability, but not too
wide to blunt the features of the intrinsic manifold. The sup-
port of these basis functions should also observe sampling,
to avoid ill-conditioning of the least-squares fit associated to
narrow functions in poorly sampled regions. While systematic
procedures are desirable, this support is chosen here heuristi-
cally, and then verified by visually inspecting the image of M
together with the original ensemble.

Here, we use local maximum-entropy basis functions
given by

e*ﬁi\’;‘*'li\zﬂ'@*'li)

Zj e BilE—n;P+r-(E—n;)’

pi(§) = 3)
where the parameter §; sets the width of the basis func-
tions locally, and A is a Lagrange multiplier that enforces that
the basis functions reproduce exactly affine functions, which
can be found by minimizing the denominator in the equation
above.*»*" Denoting by h the typical spacing between land-
mark points, if ;4 is very large, then the basis functions be-
come narrow and faceted, converging to the barycentric coor-
dinates of the underlying Delaunay simplicial complex. If in-
stead ;42 is small, then the basis functions become very wide
and smooth. If A = 0, then the basis functions result in the
Shepard approximants®' used in path collective variables.'®
The local maximum-entropy basis functions are smooth, can
accurately represent point-set manifolds,*® and can deal with
non-uniform sets of landmarks in any dimension d. However,
many other choices are possible for parametrizing M.

D. SandCV: Putting it all together

Although the dynamics of the molecule closely follows
the intrinsic manifold, represented numerically by the set
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CV must be able to assign a label &, representative of the state
of the system, to any out-of-sample aligned configuration x.
The closest-point projection onto the intrinsic manifold, de-
noted by P(x), is a very natural geometric concept that ac-
complishes this. The closest-point projection onto a smooth
manifold is itself smooth in a neighborhood of the manifold
and away from the boundaries.’? In practical terms, the fluc-
tuations around the intrinsic manifold should remain small
compared to its local curvature for P to remain differentiable.
Thus, we define the SandCV as the composition of three maps

Cr)y=M"oPo A(r), 4

as depicted graphically in Figure 2. Thus, by definition, the
sub-manifolds of constant C(r) in configuration space are per-
pendicular to the intrinsic manifold. Although this expression
is conceptually illuminating, in practice the SandCV is evalu-
ated by minimizing

IM(E) — A(r)I*, Q)

with respect to &. Numerically, we resort to Newton’s
method, possibly with a few quasi-Newton iterations with
line-search,3 to solve this d-dimensional optimization prob-
lem.

Equation (4) is also useful to derive the Jacobian of the
SandCV. Applying the chain rule, and denoting by D the
matrix of partial derivatives of a mapping, the Jacobian of
the proposed CV can be computed as the product of three
matrices

DC(r) = DM~ () DP(x) DA(r), (6)
S —— N e N N e’
dx(3N) dxD DxD Dx(3N)

where we have highlighted the dimensions of the Jacobian
matrices and for conciseness we introduce x = A(r) and
X = P(x). The Jacobian of alignment is method-dependent.
For Procrustes superimposition, we refer to Appendix A. In
Appendix B, we derive an exact expression for the d x D
matrix DM ~!(%)DP(x) in Eq. (6), given by

DM~ (®)DP(x) =DM (§)DM(&)
—D*ME)(x — %)) ' DM (®). (7)

It is clear that if either the intrinsic manifold is flat (D*M
= 0) or x is on the manifold, the derivative of the closest point
projection is the identity and this expression simplifies to the
pseudo-inverse of DM, as indicated by the inverse function
theorem. In practice, we find that correctly accounting for
DP is essential to accurately compute DC(r), and that the
computational overhead of this procedure in every time-step
of the MD simulation is negligible.

To illustrate how DC(r) is needed in enhanced sampling
methods, consider we want to bias the MD simulation with
a potential defined in CV space, U(&). This is the case in
umbrella sampling or metadynamics. The bias can be seen
as a potential in terms of all-atom configurations by compos-
ing it with the CVs, U o C(r). The force on the CVs is then
F; = —0U/0&. By the chain rule, we can map these forces
to the atoms of the molecule, F,(r) = DC(r)F¢(§), as illus-
trated in Figure 3. In the ABF method used here,!! the force

Eoisupenimstion i is fhsrmadyngnic force on the CY3g 514 adey presented in Sec. IIL,
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biasing collective force

FIG. 3. Illustration of how bias forces in SandCV space are applied to the
molecule in an enhanced sampling MD simulation. In each time-step, the
all-atom configuration r is aligned to a common frame, and then mapped to
the low-dimensional embedding, &, through the closest-point projection on
the intrinsic manifold. The bias force F'¢ is then evaluated in low-dimension,
e.g., as an approximation of the derivative of the free energy, and mapped to
the atoms with the Jacobian of SandCV.

E. Dealing with general manifolds

Isomap and other NLDR algorithms can only succeed in
identifying d-manifolds of simple topology, which admit an
embedding in R¢. Some molecules evolve on manifolds with
complex topology, due, for instance, to the cyclic nature of
rotations about bonds. In fact, alanine dipeptide is an instance
of such a system, and as shown later, its intrinsic manifold
has the topology of a two-dimensional torus. A consequence
pointed out in Ref. 6 is that low-dimensional embeddings may
become non-manifold even if the system evolves on a well-
defined manifold embedded in high-dimensions. In encoun-
tering topological obstructions, NLDR methods collapse con-
figurations that are distinct in high-dimensions. Even for man-
ifolds of simple topology but with significant intrinsic curva-
ture, NLDR methods such as Isomap may provide highly dis-
torted embeddings of poor quality. All these difficulties are
potentially serious, and arise when one attempts to describe
globally (with a single chart) the intrinsic manifold.

These difficulties were noted in Ref. 36, where a general
computational method to address them was proposed, and ap-
plied to point-set surface processing. By recursively partition-
ing the ensemble X with specialized algorithms,> it is easy to
ensure that each partition has simple topology and admits an
embedding in its intrinsic dimension without excessive dis-
tortion. By applying NLDR and a smooth parametrization to
each of these partitions, the manifold can be described by
an atlas of charts, which can then be glued using a partition
of unity. This general methodology is in principle applica-
ble to molecular systems as well. However, in the current ex-
ploratory work, we have adopted an ad hoc approach to deal
with the topology of the intrinsic manifold of alanine dipep-

© 2013 AIP Publishing LLC
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lll. RESULTS AND DISCUSSIONS

We exercise the proposed method studying alanine dipep-
tide (N-acetyl-N'-methyl-L-alanylamide), also known as di-
alanine, both in vacuum and in explicit water. As mentioned
earlier, this small peptide has become a testbed for free energy
calculations. The backbone dihedral angles ® and W have
been shown to be effective collective variables, although the
significance of other dihedral angles has been examined.*>

We first describe the implementation of Isomap to ala-
nine dipeptide, which requires addressing the topology of its
intrinsic manifold. We then build the SandCV from the re-
sulting low-dimensional embedding, and perform enhanced
sampling simulations using the ABF method. We show the
effectiveness of SandCV as a smooth CV by showing the
convergence of the enhanced sampling method. These sim-
ulations provide FES, which are then compared with those
computed along the dihedral angles. To show the possibilities
of SandCV in more realistic situations with non-ideal sam-
pling of the intrinsic manifold, we apply the methodology
starting from a training set obtained by a crude exploration
method, which does not visit significant regions of configu-
ration space. We show that SandCV, combined with the ABF
method, can bridge over these gaps and explore these regions.
Finally, we examine the transferability of SandCV obtained
under simple simulation conditions (vacuum) to more com-
plex conditions (explicit water).

All simulations were performed with version 2.8 of the
NAMD* molecular dynamics code with the CHARM?22
force field® and a Langevin thermostat. For the simulations
in explicit water, we use the particle mesh Ewald method®’

J. Chem. Phys. 139, 214101 (2013)

for long-range electrostatic forces and periodic boundary con-
ditions. We implement SandCV in a stand-alone C++ code
that implements the vectorial version of the ABF method'!
and communicates with NAMD through a TCL interface to
obtain configurations and return forces on the atoms.

A. Isomap low-dimensional embedding

We initially consider an ideal sampling of the intrinsic
manifold, obtained by running two 100 ns simulations of ala-
nine dipeptide in water and vacuum at 300 K, and sampling
configurations every 10 ps, resulting in 10 000 configurations.
In these simulations, sampling was enhanced with the ABF
method along the two dihedral angles, resulting in a nearly
uniform sampling in dihedral space.

As discussed in Sec. II D, the nontrivial topology of the
manifold underlying some datasets is a generic obstacle for
dimensionality reduction. For alanine dipeptide, due to the
periodicity of the dihedral angles, the intrinsic manifold has
the topology of the two-dimensional torus. Consequently, di-
mensionality reduction techniques will collapse distant parts
of the manifold, thereby failing to identify it properly, unless
d > 3. Figure 4(a) shows the three-dimensional Isomap em-
bedding for the ideally sampled ensemble of alanine dipep-
tide in vacuum. The results in explicit water are similar. Such
representation is not dimensionally optimal, as the intrinsic
dimension is 2, and does not fill a region in the low-
dimensional embedding. Yet, it is very useful because it al-
lows us to visually identify tearing curves on the manifold. We
use this information to eliminate edges in the Isomap graph

FIG. 4. Low-dimensional embedding of alanine dipeptide in vacuum with Isomap. (a) The three-dimensional embedding of alanine dipeptide shows it has the
topology of a torus, and allows us to identify tearing curves to simplify the topology. (b) Two-dimensional embedding after tearing. The landmark points used
in the parametrization are marked as black dots. (c) Smooth parametrization of the intrinsic manifold (gray surface) visualized on the three-dimensional Isomap

Q0BAIOBRGR61 BABHITHOIAIOMALBERLA!s the dihedral angle $139, 214101-1
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G connecting vertices separated by the tearing curves. This
ad hoc method is effective in the present system, but may be
insufficient in others. In Sec. II E, we have suggested a gen-
eral method to deal with general manifolds, which is beyond
the scope of the present paper.

The procedure we adopt here results in a two-
dimensional embedding that respects the local geometric
structure of the intrinsic manifold, yet introduces artificial
boundaries, see Figure 4(b). Figure 4(c) illustrates the smooth
parametrization of the intrinsic manifold as a surface in the
three-dimensional teared Isomap embedding.

B. Enhanced sampling with SandCV

We illustrate next how SandCV is successfully coupled
with an enhanced sampling algorithm, here ABF, to com-
pute free energies. The success of enhanced sampling strate-
gies can be established by the uniformity of sampling along
the CVs as the simulation proceeds.'! Furthermore, equilib-
rium properties such as the thermodynamic force on the CVs
should converge with simulation time. Figure 5 provides nu-
merical evidence of the convergence of two ABF simula-
tions: one based on dihedral angles, and another one based
on SandCV. We present the results for alanine dipeptide in
vacuum, but those in water are similar. Figure 5(a) shows
the convergence of the thermodynamic force as a function of
simulation time. It can be seen that ABF simulations based
on either dihedrals or SandCV exhibit similar convergence,
and the semi-logarithmic scale highlights the exponential con-
vergence, as theoretically predicted.”® The different panels
in Figure 5(b) show how the histograms of conformations
in SandCV space converge to a uniform distribution, as ex-
pected. These results show that SandCV, based on statistical
learning, captures the metastability of the system, since it is
known that enhanced sampling methods become ineffective if
the remaining transversal coordinates exhibit metastability.>
This fact is not surprising, since we have already noted that
the Isomap embedding closely mimics an embedding based
on dihedral angles. This simulation also shows that all the on-
line operations behind SandCV executed in every time-step
of the simulation (parametrization of the intrinsic manifold,
closest-point projection, and Jacobian of the CV) can be ro-
bustly implemented in a standard MD code.

J. Chem. Phys. 139, 214101 (2013)

C. Free energy comparisons

Free energy surfaces are subjective in that they funda-
mentally depend on the CVs along which they vary, and are
not insensitive to reparametrizations of CV space.®® Although
this fact does not have consequences on physical observables
such as rates of conformational changes,®! it complicates a
meaningful comparison between FES along different CVs.
However, since we have found that SandCV's based on NLDR
closely correlate with dihedral angles, we attempt this com-
parison next.

We consider three types of CVs: (1) the usual dihedral
angles, (2) the SandCV based on the two-dimensional em-
bedding given by the dihedral angles, and (3) the SandCV
based on the two-dimensional Isomap embedding, as de-
scribed above. In (2), we can easily retain periodicity of the
CV. In (3), we tear the manifold to simplify its topology and
place a corral potential around the boundary of the embedding
to confine the trajectory within the region of interest. The cor-
ral potential is not biased by the enhanced sampling method.
It should be high enough so that trajectories do not escape
the region of interest, and narrow enough not to shrink ex-
cessively this region. The iso-contours near the boundary of
the free-energy landscapes in Figure 6(c) give an idea of the
width of this corral potential in our simulations. By analyzing
the system in vacuum and in water, we end up with six differ-
ent sets of CVs. The corresponding FES are computed with
100 ns ABF simulations, which we have shown to converge
in Figure 5. We parametrize the intrinsic manifold with about
11x11 landmark points, and choose g = 1/h* for the basis
functions in Eq. (3), where 4 is the typical spacing between
landmark points.

Dihedral CVs and the SandCV based on the dihedral em-
bedding are not necessarily in direct correspondence. For in-
stance, the former only involves 5 atoms of the molecule,
while the latter involves the 10 backbone atoms of the align-
ment. Yet, Figures 6(a) and 6(b) show that the resulting FES
are very similar, both in vacuum and in water. The FES ob-
tained with the SandCV based on Isomap exhibits the same
features, but nonlinearly mapped from dihedral space.

Table I provides a quantitative comparison of free en-
ergy discrepancies between the main features of the FES, in-
cluding free energy basins, hills, and saddle points. All FES
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08 ° :
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FIG. 5. Convergence of ABF simulations for alanine dipeptide in vacuum. (a) Convergence of the thermodynamic forces along the CVs for a simulation biased
along dihedral angles (red triangles) and along SandCV (blue circles). We plot the error in the forces (¢) relative to the equilibrium forces F, obtained with a
reference long simulation (here 200 ns long), and normalized with the error at # = 100 ns. (b) Snapshots of the normalized deviation from uniform sampling of
the histograms in the SandCV simulation, that is, (¢;; — ¢)/¢ where ¢;; is the number of samples in bin (i, j), ¢ = Zl j¢ij/nBins, and nBins is the number of
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FIG. 6. Comparison of the free energy surface of alanine dipeptide in vacuum (v) and water (w) along three different sets of CVs. (a) Backbone dihedral
angles (® and W), (b) SandCV based on the two-dimensional embedding given by the dihedral angles, and (c) SandCV based on a two-dimensional Isomap

embedding.

were shifted so that the free energy of Point 1 vanishes. The
agreement of the free energy differences is remarkable, with
a maximum deviation smaller than 0.3 kcal/mol, that is about
0.5 kgT. These results further emphasize the close similarity
between dihedral angles and the data-driven CVs based on
NLDR, which lead to nearly identical free energy differences
between the main features of the FES.

D. SandCV on a realistic ensemble with poorly
sampled regions

In practice, MD trajectories do not sample well regions of
high free energy, even with configuration space exploration
techniques. This is a fundamental hurdle in statistical learn-
ing approaches to identify CVs. We consider next a realis-

tic application of SandCV in combination with Isomap, in
which a training set of configurations resulting from a sim-
ple exploration methodology does not sample large regions in
dihedral space. We first run a set of short simulations of ala-
nine dipeptide in water with different starting points randomly
selected from a high-temperature simulation and quenched
to 310 K. From 1400 starting configurations, we run short
100 ps simulations sampled every 20 fs. We end up with 1400
trajectories with 5000 configurations, and a total of 7 x 10°
configurations. Since these are too many points for a stan-
dard Isomap implementation and since that many points
do not bring additional value to the geometrical descrip-
tion of the manifold, we decimate the data in two steps
on the basis of geometric similarity. First, we select
1000 quasi-uniformly distributed configurations out of each

TABLE I. Free energy differences at the points marked in Figure 6. The units are in kcal/mol. (1kgT = 0.596

kcal/mol).
Embedding 1 2 3 4 5
Vacuum Dihedral angles 0.00 12.644 17.532 8.364 2.340
SandCV with dihedral angles embedding 0.00 12.438 17.547 8.351 2.216
SandCV with NLDR-based embedding 0.00 12.420 17.534 8.438 2.309
Water Dihedral angles 0.00 13.908 12.997 —0.084 3913
SandCV with dihedral angles embedding 0.00 13.648 12.998 —0.151 3.854
SandCV with NLDR-based embedding 0.00 13.718 13.064 —0.305 3.971
0021-9606/2013/139¢2H214101/12/$30-00 139244101=1 ©r2013 AIP Publishing LLC
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trajectory, chosen in such a way that the Euclidean dis-
tance between any pair of aligned configurations within a
trajectory is larger than a cutoff. Second, the resulting 1.4
x 10° configurations are joined and decimated with an-
other cut-off criterion, ending up with 9163 configurations.
This number of high-dimensional points is easily manage-
able by Isomap, which is memory intensive for large train-
ing sets, and contains all the relevant information present
in the original data. We resort to the procedure described
in Sec. III A to tear the manifold.

Figure 7(a) shows the two-dimensional embedding of
these configurations as translucent points. The large unex-
plored regions (“holes”) are apparent. By placing 93 uni-
formly spaced landmark points 7; and taking 8 = 1/h? in
Eq. (3), the smooth representation of the intrinsic manifold
in Eq. (1) bridges over the holes, and therefore the SandCV
bridges over the corresponding regions in configuration space.
By performing an ABF simulation based on this SandCV, we
populate the holes and end up with a nearly uniform sam-
pling, illustrative of the convergence of the free energy cal-
culation, see Figure 7(b). The resulting FES is represented in
Figure 7(a), and highlights the correspondence between the
holes and the regions of high free energy. This experiment
suggests that SandCV can be used for configuration space ex-

(a) 0 2 4 6 8 10 12 14
kcal/mol

4 x10°
counts

FIG. 7. SandCV on a training set with unexplored regions. The low-
dimensional embedding of the training set exhibits large holes (a), which cor-
respond to regions of high free energy. An ABF simulation based on SandCV
can bridge over these regions and end up with nearly uniform sampling in the

§02d 98062064 HdBA(BY 21 I0MKRIF30 Qhfigurations in CV spacd 39, 214 10ghlighted in (a).
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ploration, by bridging free energy basins separated by high
barriers. Since it is likely that the description of the intrinsic
manifold is poor over the holes, it is possible to proceed in
two steps, by first filling these as demonstrated here, and then
recomputing the SandCV with the enhanced training set. This
procedure assumes that the energy barriers responsible for the
holes are much smaller than those giving rise to the nonlinear
manifold character of the conformation ensemble, e.g., rigid
bonds, bending angles, or steric constraints.

E. Transferability of SandCV

The previous example illustrates that producing an ad-
equate training set can be challenging, particularly for large
molecules in explicit water. A natural remedy would be to
build the SandCV from a simpler model, such as a coarse-
grained protein model, and then use it to enhance sampling
in the full model. We explore here this idea by building a
SandCV with a training set of alanine dipeptide in vacuum,
as in Figure 6(c) top, and then biasing with it a simulation of
the molecule in explicit water. The latter system is much more
difficult to simulate due to the larger number of particles and
the long-range electrostatic forces.

Figure 8(a) shows a reference FES in water computed
with the dihedral angles, while Figure 8(b) shows the FES

(2) 3
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FIG. 8. Exploring the transferability of SandCV. The free energy of ala-
nine dipeptide in water, shown in (a) in terms of dihedral angles, is com-
puted along SandCV based on an ensemble in vacuum (b). For comparison,
the FES in (b) should be rotated by 180°, and the support of (b) has been
© 2013 AIP Publishing LLC
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of the molecule in water but along the vacuum SandCV.
Despite the CV is defined for a different and simpler sys-
tem, we find that the ABF simulation converges as in previ-
ous examples. Furthermore, the similarity of the landscape is
remarkable, suggesting SandCV are transferable for this sys-
tem. Broadly speaking, this suggests that even if the under-
lying intrinsic manifold of a simplified system is noticeably
different from that of a complex system, a simulation such as
that presented here can produce a good training set of config-
urations of the complex system, which can then be the basis
of a better SandCV.

IV. CONCLUSION

We have introduced a general method to model molecu-
lar systems with SandCV. These CVs can be non-intrusively
combined with standard enhanced sampling molecular dy-
namics methods. The input of the method is an ensemble
representative of the flexibility of the molecule, which does
not need to be thermodynamically meaningful. The geometric
structure hidden in this ensemble is revealed by existing non-
linear dimensionality reduction methods (here Isomap), and
then further processed to define collective variables C(r) and
its derivatives.

We exercise SandCV with alanine dipeptide both in vac-
uum and in explicit water. This system is a benchmark for free
energy calculations and has well-known and highly nonlin-
ear collective variables, two of its backbone dihedral angles
@ and . We demonstrate the effectiveness of the method
by providing numerical evidence of the convergence of en-
hanced sampling simulations based on SandCV. These simu-
lations also show that the method can be integrated in standard
MD codes and combined with an off-the-shelf enhanced sam-
pling method. We then compare the free energy surfaces ob-
tained with the ABF method in combination with dihedral an-
gles, and several flavors of SandCV. This comparison shows
that a systematic machine learning method such as SandCV
provides a description of the system that closely mimics one
based on the conventional dihedral angles.

In practice, data-driven collective variables are limited by
the difficulty of producing training sets of configurations that
sample the intrinsic manifold with sufficient density.> We ex-
plore this issue in two ways. First, we consider a realistic en-
semble after a simple configuration exploration step, which
fails to visit large regions. We show that SandCV can bridge
over these regions, and then populate them in a subsequent
enhanced sampling simulation. Second, we show that the ini-
tial training set can be obtained with a simplified system, for
instance, alanine dipeptide in vacuum, and then the resulting
SandCV transferred to a complex system, much more expen-
sive to simulate, here alanine dipeptide in water.

SandCV provides a flexible framework composed of dis-
tinct conceptual and algorithmic blocks. The first block is the
alignment of the molecule, which here is performed with Pro-
crustes superimposition. The second block is the identifica-
tion of the intrinsic manifold through nonlinear dimensional-
ity reduction methods. Here, we use Isomap. The third block
is the smooth parametrization of the intrinsic manifold, per-

finamabesigo tARasaRNLentidiy2/4§iroRimants. The last bit8% 214101-1
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is the closest-point projection of out-of-sample configura-
tions onto the intrinsic manifold, to label arbitrary configu-
rations by the low-dimensional embedding coordinates. The
first three of these ingredients can be replaced by alternative
algorithms, adapted to specific systems or computer codes,
without affecting the general methodology. For instance, we
have explored alignment of proteins through smooth contact
maps, and dimensionality reduction with iterative methods
that minimize a nonlinear cost function.® The embedding in
low dimensions can also combine physical insight and statis-
tical learning techniques. Complex systems may require de-
scribing the intrinsic manifold and the CVs through multiple
charts, as discussed in Sec. II E. Currently, we are implement-
ing SandCV within a popular free energy calculation plug-
in,® which will allow us to combine this method with many
free energy calculation strategies and make it available to the
scientific community.
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APPENDIX A: PROCRUSTES SUPERIMPOSITION

A differentiable alignment is an essential part of SandCV.
Here, we summarize Procrustes superimposition and obtain
its derivatives.

1. Alignment as an optimization problem

We represent any given configuration r, € R3V as a N,
x 3 matrix X, where a subset of Ny atoms out of the N atoms
of the full molecule have been selected. We find the optimal
rotation matrix R € R3*3 and translation vector t € R'*3 by
minimizing the cost function

cost(R, t) = |(XR + replt]) — X,er |,

where X, is a reference configuration and rep : R'3
— RM>3 i5 a function that produces a matrix with Ny copies
of its argument. This optimization problem can be solved re-
sorting to the singular value decomposition (SVD). First, we
define the matrix

M = (Xre — repltres)’ (X —replul), (A1)

where & € R and Mref € R3 are, respectively, the vec-
tors of the average atom position of the given configuration
and the reference one. Invoking the SVD, M = USV7 where
U and V are orthonormal matrices whose columns are eigen-
vectors of MM and M” M, respectively, and S is a diagonal
matrix of singular values. The optimal rotation and translation
matrices are then

R=VU", t= p, ©20RAIP PublishingADG
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Since the SVD is not unique, it has to be chosen appropriately
so that R is a proper rotation, i.e., detR = 1.

2. Derivatives of the singular value decomposition

We first obtain the derivatives of M with respect to X,
the rth component of ith atom, in terms of the SVD

as v’

oM oU
v +US )
a}(ir

— = — SV 4y U—
8Xir‘ 8Xir a)(ir

By pre- and post-multiplying this equation by U and V, re-
spectively, and recalling that they are orthonormal, we have

oM aU aS v’
U —vV=U"—§+ +S_—V.
aXvir a)(ir a)(ir 8)(ir

We then subtract this equation from its transpose, and take
into account that S is symmetric to find

M7’ oM
A\ Uu-u’ A%
a)(ir aXir
EAY% au au” avT
=|VI— —UT— |S+S U-— vV].
8Xir 8)(ir 8Xir 8Xir
(A3)
By defining
v auT
QX)) =V’ —U,
( ) a)(ir * 8)(ir

and considering that V' -2 and %U are skew-symmetric,%
we rewrite Eq. (A3) as
oMT M

QXS +8SQX;,)=VI —U-U
(Xir)S + SQ(X;r) X, X,

V. (A4

This gives us a set of equations that can be solved if the sin-
gular values are non-degenerate. The solution can be written
in the indicial notation, for p # g,

1 [ My
Vinp
S, + S, 39X,

aan
qu(Xir) = Unq -U —an s

" 0X ir
(AS)
without summation over p and ¢, where

OM
8Xir

= Xim — Mm)anr-

3. Derivatives of the Procrustes superimposition

The derivatives of the Procrustes superimposition follow
from the derivatives of the rotation matrix and translation vec-
tor with respect to X. Since t depends only on R, see Eq. (A2),

ve2o19B0aed 30 3R ate the/ dugsatoes of R, which foll@g; 214101-1
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from
oR EAY U’
=—U +V—
8Xir 8)(ir 8Xir
EAY U’
=V|(VI— |UT +V uju’
8)(ir 8Xir
v auT
=V VI — + uju’
8Xvir 8Xvir
= VQ(X;)UT.

APPENDIX B: JACOBIAN OF THE CLOSEST-POINT
PROJECTION

As argued in the text, the Jacobian of SandCV follows
from

DC(r) = DM~ (®)DP(x)DA(r),

where DA(r) can be computed as indicated in
Appendix A. On the other hand, from the inverse function
theorem DM ~!(%) is the pseudo-inverse of the matrix DM

DM~ '(®) = [DM” (EDME)]'DM’ (&), (B1)

where & = M~!(x). Thus, we only need the Jacobian of the
closest point projection DP(x). Since this matrix always ap-
pears in the formulation of SandCV multiplied by DM ~!(x),
we directly compute the product DM ~!(&)DP(x).

In the vicinity of a smooth manifold, the closest-point
projection can be written as

X =Pkx)=x —dx)n(x),

where n(x) is a normal vector to the manifold at ¥ and d(x)
is the distance to the manifold. Taking the derivative of this
equation, we find

DP(x)=1p —d(x)Dn(x) — n(x) ® Dd(x). (B2)

Multiplying Eq. (B2) by DM~!(%), recalling Eq. (B1), not-
ing that the rows of DM are tangent to the manifold, and
introducing a normal unit vector field A/ as a function of the
embedding coordinates, i.e., n(x) =N o M~ o P(x), we
have

DM~ 'DP =DM 'DM]'DMT
x {Ip — d(x)DNDM™'DP}.

Noting that DA ~!'D7P appears in both sides of this equation
and solving for it, we obtain

DM™'DP ={I;, + d[DM"DM]!
x DMTDN} ' DM, (B3)
and by further using of Eq. (B1) and simplifying, we find
DM™'DP = (DM'DM +dDM DN} 'DMT,  (B4)

where we still need to compute the Jacobian of the unit normal
vector DAV, Noting that the rows of DM are perpendicular
to V, we take the derivative of their inner product,

DM N) = D’ MTN + B.26TDIE 2ublishing LLC
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and therefore DMTDN = —D> M7’ N. Plugging this expres-
sion into Eq. (B4), we finally obtain

DM~ (@®)DP(x) = {DM” (E)DM(&)
—D*M(E)(x — %)) 'DM” (%).

M. Sotomayor and K. Schulten, Science (N.Y.) 316, 1144 (2007).

2M. Osadchy and R. Kolodny, Proc. Natl. Acad. Sci. U.S.A. 108, 12301
(2011).

3K. A. Henzler-Wildman, M. Lei, V. Thai, S. J. Kerns, M. Karplus, and D.
Kern, Nature (London) 450, 913 (2007).

4R. O. Dror, M. O. Jensen, D. W. Borhani, and D. E. Shaw, J. Gen. Physiol.
135, 555 (2010).

5P. Das, M. Moll, H. Stamati, L. E. Kavraki, and C. Clementi, Proc. Natl.
Acad. Sci. U.S.A. 103, 9885 (2006).

OW. M. Brown, S. Martin, S. N. Pollock, E. a. Coutsias, and J.-P. Watson, J.
Chem. Phys. 129, 064118 (2008).

7A. L. Ferguson, A. Z. Panagiotopoulos, P. G. Debenedetti, and 1. G.
Kevrekidis, Proc. Natl. Acad. Sci. U.S.A. 107, 13597 (2010).

8. A. Lee and M. Verleysen, Nonlinear Dimensionality Reduction, Infor-
mation Science and Statistics, edited by M. I. Jordan, R. Nowak, and B.
Scholkopf (Springer, New York, NY, 2007).

9A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002).

10C, Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

HE. Darve, D. Rodriguez-Gémez, and A. Pohorille, J. Chem. Phys. 128,
144120 (2008).

12C. Chipot and A. Pohorille, Free Energy Calculations, Springer Series in
Chemical Physics Vol. 86, edited by C. Chipot and A. Pohorille (Springer,
Berlin, 2007).

13R. Olender and R. Elber, J. Chem. Phys. 105, 9299 (1996).

4y Joénsson, G. Mills, and K. W. Jacobsen, “Nudged elastic band method
for finding minimum energy paths of transition,” in Classical and Quan-
tum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G.
Ciccotti, and D. F. Coker (World Scientific, 1998), Chap. 16, pp. 385-404.

I5W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002).

lop, Passerone, M. Ceccarelli, and M. Parrinello, J. Chem. Phys. 118, 2025
(2003).

7W. Ren, E. Vanden-Eijnden, P. Maragakis, and W. E, J. Chem. Phys. 123,
134109 (2005).

18D, Branduardi, F. L. Gervasio, and M. Parrinello, J. Chem. Phys. 126,
054103 (2007).

194, Amadei, A. B. Linssen, and H. J. Berendsen, Proteins 17, 412 (1993).

201, Daidone and A. Amadei, WIREs: Comput. Mol. Sci. 2, 762 (2012).

2ly. Spiwok, P. Lipovovd, and B. Krilové, J. Phys. Chem. B 111, 3073
(2007).

22V, Spiwok, B. Kralovd, and L. Tvaroska, J. Mol. Model. 14, 995 (2008).

BY. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, Nature (London) 386,
299 (1997).

248, T. Roweis and L. K. Saul, Science (N.Y.) 290, 2323 (2000).

253, B. Tenenbaum, V. de Silva, and J. C. Langford, Science 290, 2319 (2000).

26R. R. Coifman, I. G. Kevrekidis, S. Lafon, M. Maggioni, and B. Nadler,
Multiscale Model. Simul. 7, 842 (2008).

2TM. a. Rohrdanz, W. Zheng, M. Maggioni, and C. Clementi, J. Chem. Phys.
134, 124116 (2011).

28M. Ceriotti, G. A. Tribello, and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A.
108, 13023 (2011).

29, Sammon, IEEE Trans. Comput. C-18, 401 (1969).

30M. a. Rohrdanz, W. Zheng, and C. Clementi, Annu. Rev. Phys. Chem. 64,
295 (2013).

311, V. der Maaten, E. Postma, and J. van den Henrik, “Dimensionality re-
duction: A comparative review,” Technical Report No. TiCC TR 2009-005
(Tilburg Centre for Creative Computing, 2009).

0021-9606/2013/139(21)/214101/12/$30.00

139, 214101-1

J. Chem. Phys. 139, 214101 (2013)

32A. L. Ferguson, A. Z. Panagiotopoulos, P. G. Debenedetti, and I. G.
Kevrekidis, J. Chem. Phys. 134, 135103 (2011).

3G. A. Tribello, M. Ceriotti, and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A.
109, 5196 (2012).

34y, Spiwok and B. Kralov4, J. Chem. Phys. 135, 224504 (2011).

33D. Millan and M. Arroyo, Comput. Methods Appl. Mech. Eng. 261-262,
118 (2013).

36D, Milldn, A. Rosolen, and M. Arroyo, Int. J. Numer. Methods Eng. 93,
685 (2013).

M. Arroyo, L. Heltai, D. Milldn, and A. DeSimone, Proc. Natl. Acad. Sci.
U.S.A. 109, 17874 (2012).

3D, J. Earl and M. W. Deem, Phys. Chem. Chem. Phys. 7, 3910 (2005).

39G. a. Tribello, M. Ceriotti, and M. Parrinello, Proc. Natl. Acad. Sci. U.S.A.
107, 17509 (2010).

40R. B. Fenwick, S. Esteban-Martin, B. Richter, D. Lee, K. F. a. Walter, D.
Milovanovic, S. Becker, N. Lakomek, C. Griesinger, and X. Salvatella, J.
Am. Chem. Soc. 133, 10336 (2011).

417, C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C.
Chipot, R. D. Skeel, L. Kalé, and K. Schulten, J. Comput. Chem. 26, 1781
(2005).

42D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J.
C. Berendsen, J. Comput. Chem. 26, 1701 (2005).

43M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri,
D. Donadio, F. Marinelli, F. Pietrucci, and R. a. Broglia, Comput. Phys.
Commun. 180, 1961 (2009).

4“4p M. Kroonenberg, W. J. Dunn, and J. J. F. Commandeur, J. Chem. Inf.
Comput. Sci. 43, 2025 (2003).

4M. Bonomi, D. Branduardi, F. L. Gervasio, and M. Parrinello, J. Am.
Chem. Soc. 130, 13938 (2008).

46 A Garcia, Phys. Rev. Lett. 68, 2696 (1992).

4TR. Hegger, A. Altis, P. Nguyen, and G. Stock, Phys. Rev. Lett. 98, 028102
(2007).

48p Grassberger and I. Procaccia, Physica D 9, 189 (1983).

OM. Arroyo and M. Ortiz, Int. J. Numer. Methods Eng. 65, 2167
(2006).

S0A. Rosolen, D. Millan, and M. Arroyo, Int. J. Numer. Methods Eng. 82,
868 (2010).

STH. Wendland, Scattered Data Approximation (Cambridge University Press,
Cambridge, 2005).

328, J. Ruuth and B. Merriman, J. Comput. Phys. 227, 1943 (2008).

53], Nocedal and S. Wright, Numerical Optimization, 2nd ed. (Springer Sci-
ence+Business Media, LLC, New York, NY, 2006), p. 664.

54G. Karypis and V. Kumar, STAM J. Sci. Comput. 20, 359 (1998).

35P. G. Bolhuis, C. Dellago, and D. Chandler, Proc. Natl. Acad. Sci. U.S.A.
97, 5877 (2000).

56 A. D. MacKerell, D. Bashford, R. L. Dunbrack, J. D. Evanseck, M. J. Field,
S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K.
Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B.
Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J.
Straub, M. Watanabe, J. Widrkiewicz-Kuczera, D. Yin, and M. Karplus, J.
Phys. Chem. B 102, 3586 (1998).

S7U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G.
Pedersen, J. Chem. Phys. 103, 8577 (1995).

58T Lelievre, M. Rousset, and G. Stoltz, Free Energy Computations: A Math-
ematical Perspective (Imperial College Press, 2010).

591 Sutto, S. Marsili, and F. L. Gervasio, WIREs: Comput. Mol. Sci. 2, 771
(2012).

60W. E, W. Ren, and E. Vanden-Eijnden, J. Phys. Chem. B 109, 6688
(2005).

61D, Frenkel, Eur. Phys. J. Plus 128, 10 (2013).

62M. Ceriotti, G. a. Tribello, and M. Parrinello, J. Chem. Theory Comput. 9,
1521 (2013).

63T, Papadopoulo and M. 1. A. Lourakis, in Computer Vision - ECCV 2000,
Lecture Notes in Computer Science Vol. 1842 (Springer Berlin/Heidelberg,
2000), p. 554.

© 2013 AIP Publishing LLC


http://dx.doi.org/10.1126/science.1137591
http://dx.doi.org/10.1073/pnas.1102727108
http://dx.doi.org/10.1038/nature06407
http://dx.doi.org/10.1085/jgp.200910373
http://dx.doi.org/10.1073/pnas.0603553103
http://dx.doi.org/10.1073/pnas.0603553103
http://dx.doi.org/10.1063/1.2968610
http://dx.doi.org/10.1063/1.2968610
http://dx.doi.org/10.1073/pnas.1003293107
http://dx.doi.org/10.1073/pnas.202427399
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1063/1.2829861
http://dx.doi.org/10.1063/1.472727
http://dx.doi.org/10.1103/PhysRevB.66.052301
http://dx.doi.org/10.1063/1.1533783
http://dx.doi.org/10.1063/1.2013256
http://dx.doi.org/10.1063/1.2432340
http://dx.doi.org/10.1002/prot.340170408
http://dx.doi.org/10.1002/wcms.1099
http://dx.doi.org/10.1021/jp068587c
http://dx.doi.org/10.1007/s00894-008-0343-7
http://dx.doi.org/10.1038/386299a0
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.1126/science.290.5500.2319
http://dx.doi.org/10.1137/070696325
http://dx.doi.org/10.1063/1.3569857
http://dx.doi.org/10.1073/pnas.1108486108
http://dx.doi.org/10.1109/T-C.1969.222678
http://dx.doi.org/10.1146/annurev-physchem-040412-110006
http://dx.doi.org/10.1063/1.3574394
http://dx.doi.org/10.1073/pnas.1201152109
http://dx.doi.org/10.1063/1.3660208
http://dx.doi.org/10.1016/j.cma.2013.04.007
http://dx.doi.org/10.1002/nme.4403
http://dx.doi.org/10.1073/pnas.1213977109
http://dx.doi.org/10.1073/pnas.1213977109
http://dx.doi.org/10.1039/b509983h
http://dx.doi.org/10.1073/pnas.1011511107
http://dx.doi.org/10.1021/ja200461n
http://dx.doi.org/10.1021/ja200461n
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1002/jcc.20291
http://dx.doi.org/10.1016/j.cpc.2009.05.011
http://dx.doi.org/10.1016/j.cpc.2009.05.011
http://dx.doi.org/10.1021/ci0302916
http://dx.doi.org/10.1021/ci0302916
http://dx.doi.org/10.1021/ja803652f
http://dx.doi.org/10.1021/ja803652f
http://dx.doi.org/10.1103/PhysRevLett.68.2696
http://dx.doi.org/10.1103/PhysRevLett.98.028102
http://dx.doi.org/10.1016/0167-2789(83)90298-1
http://dx.doi.org/10.1002/nme.1534
http://dx.doi.org/10.1002/nme.2793
http://dx.doi.org/10.1016/j.jcp.2007.10.009
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1073/pnas.100127697
http://dx.doi.org/10.1021/jp973084f
http://dx.doi.org/10.1021/jp973084f
http://dx.doi.org/10.1063/1.470117
http://dx.doi.org/10.1002/wcms.1103
http://dx.doi.org/10.1021/jp0455430
http://dx.doi.org/10.1140/epjp/i2013-13010-8
http://dx.doi.org/10.1021/ct3010563
http://dx.doi.org/10.1007/3-540-45054-8_36

