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Abstract

Fault-tolerant systems are often modeled using (homogeneous) continuous time Markov chains (CTMCs).
Computation of the distribution of the interval availability, i.e. of the distribution of the fraction of time in
a time interval in which the system is operational, of a fault-tolerant system modeled by a CTMC is an
important problem which has received attention recently. However, currently available methods to perform
that computation are very expensive for large models and large time intervals. In this paper, we develop a new
method to compute the distribution of the interval availability which, for large enough models and large enough
time intervals, is signi3cantly faster than previous methods. In the method, a truncated transformed model,
which has with some arbitrarily small error the same interval availability distribution as the original model, is
obtained from the original model and the truncated transformed model is solved using a previous state-of-the-art
method. The method requires the selection of a “regenerative” state and its performance depends on that
selection. For a class of models, including typical failure/repair models of coherent fault-tolerant systems with
exponential failure and repair time distributions and repair in every state with failed components, a natural
selection for the regenerative state exists and theoretical results are available assessing the performance of
the method for that natural selection in terms of “visible” model characteristics. Those results can be used
to anticipate when the method can be expected to be competitive for models in that class. Numerical results
are presented showing that the new method can indeed be signi3cantly faster than a previous state-of-the-art
method and is able to deal with some large models and large time intervals in reasonable CPU times.
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1. Introduction

Fault-tolerant systems are often modeled using (homogeneous) continuous time Markov chains
(CTMCs). Many fault-tolerant systems can be seen as operational, i.e. performing properly, or down,
i.e. not performing at all, and dependability measures are appropriate to quantify those systems. The
distribution of the interval availability, i.e. the distribution of the fraction of time in a time interval in
which the system is operational, is a dependability measure of both practical and theoretical interest.
This is mainly because that distribution tends to achieve its asymptotic shape (interval availability
equal to the steady-state availability with probability one) very slowly and, then, the steady-state
availability may be a poor measure of the behavior of the system over a 3nite time interval. Com-
puting the interval availability distribution of a fault-tolerant system modeled by a CTMC is a
challenging problem for which methods have been developed quite recently [1–9]. The 3rst eFort is
reported in [1], where a closed form integral expression is obtained for a two-state model. In [3],
randomization is used to obtain the distribution of the operational time in a time interval of the same
two-state model. The 3rst method able to deal with general 3nite CTMC models was developed by
de Souza e Silva and Gail using randomization [9]. Goyal and Tantawi [2] developed a numerical
approximate method, but they did not obtain bounds for the approximation error. Sericola [7] devel-
oped a closed form solution in terms of growing size matrices. Rubino and Sericola [4] developed
an eHcient algorithm to compute the distribution of the interval availability for the particular case
in which operational and down periods are independent one by one and of each other, which is
based on the analysis of the distributions of the durations of consecutive operational periods. In
[5], Rubino and Sericola developed two algorithms which reduce the computational requirements
of the randomization-based method developed in [9]. The 3rst of such algorithms reduces the time
requirements; the second one reduces the storage requirements. This second algorithm was reviewed
in [6] as algorithm A, where it was taken as starting point to develop another algorithm (algorithm
B), which is competitive when the number of operational states of the model is small and, fur-
thermore, can deal with some class of CTMC models with denumerable in3nite state spaces. In [8]
closed-form expressions for the distribution of the occupation time in a subset of a CTMC were
reviewed and those expressions were generalized to the joint distribution of the occupation times
in diFerent subsets. All currently available general methods for the computation of the distribution
of the interval availability using CTMCs are computationally very expensive for large models and
large time intervals, making of great interest the development of more eHcient methods able to deal
with large models and large time intervals in reasonable CPU times.

In this paper, we will consider a particular but quite wide class of CTMC models and will develop
a new method for the computation of the interval availability distribution for models of that class.
As we shall illustrate, the method will be able to deal in reasonable CPU times with some large
models of that class and large time intervals. Formally, we will consider CTMCs with 3nite state
space �= S or �= S ∪ {f}; |S|¿ 2, where f is an absorbing state, and will assume that (C1)
either all states in S are transient or X has a single trapping component C ⊂ S 1 and (C2) all states

1 Two states of a CTMC i; j are strongly connected if there are paths in the state transition diagram of the CTMC from
i to j and from j to i; a state is strongly connected with itself; a component is a maximal subset of strongly connected
states; a component is trapping if no state of the component has transition rates to states outside the component. States
in non-trapping components are transient.
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are reachable (from some state with nonnull initial probability). The method requires the selection
of a regenerative state r ∈ S. It will also be assumed that (C3) if X has a single trapping component
C ⊂ S; r ∈C. 2 The set of states � is assumed partitioned into two subsets: the set of operational
(up) states U and the set of down states D. It will be assumed U �= ∅ and D �= ∅. The interval
availability at time t; IAV(t), is de3ned as the fraction of time in the time interval [0; t] in which
the system is operational (up), i.e.

IAV(t)=
1
t

∫ t

0
IX (�)∈U d�;

where Ic denotes the indicator function returning the value 1 if condition c is satis3ed and the value
0 otherwise. Then, the problem is to compute the interval availability complementary distribution

IAVCD(t; p)=P[IAV(t)¿p];

where 0¡p¡ 1. We will use the notation S ′= S − {r}; US =U ∪ S; DS =D ∪ S; U ′
S =US − {r},

and D′
S =DS − {r}. In addition, we will let �i=P[X (0)= i] and, being B ⊂ �, �B=

∑
i∈B �i.

Technically, to simplify the discussion, we will also assume that, being �i the output rate of X
from state i, (C4) maxi∈U �i ¿ 0 and maxi∈D �i ¿ 0, (C5) if U ′

S �= ∅; X has some transition
rate from r to U ′

S , and (C6) if U ′
S �= ∅; �D′

S
¿ 0 and �U ′

S
=0; X has some transition rate from

some state i∈D′
S with �i ¿ 0 to U ′

S . When maxi∈D �i = 0, all down states are absorbing and
IAVCD(t; p) = P[X (pt) ∈ U ]. Similarly, in the case maxi∈U �i = 0, we have IAVCD(t; p) =
P[X ((1 − p)t) ∈ U ]. Therefore, when condition C4 is not satis3ed, computation of IAVCD(t; p)
can be reduced to a simpler problem. Condition C5 can be easily circumvented in practice by
adding, in case U ′

S �= ∅ and X does not have any transition from r to U ′
S , a tiny transition rate

�6 10−10�=(2tmax) from r to some state in U ′
S , where � is the allowed computation error and

tmax is the largest time t at which IAVCD(t; p) has to be computed, with a negligible impact on
IAVCD(t; p) no greater than 10−10� for t6 tmax (see Lemma A1 in Appendix A) and small impact
on the performance of the method. Condition C6 can be circumvented in practice in a similar way.
The option �= S∪{f} is allowed to cover bounding models [10], which are useful when an “exact”
model has unmanageable size. In a lower bounding model, S would be a subset of the states of the
exact, complete model, X will enter f when the exact model exits S, the initial probability of f
would be the probability that initially the exact model is outside S, the subset of up states of
the lower bounding model will include the up states in S of the exact model, and IAVCD(t; p)
would lower bound the interval availability complementary distribution of the exact model. In an
upper bounding model, S would be a subset of the states of the exact model, X will enter f when

2 Given a CTMC with 3nite state space � and a potential regenerative state r ∈�, determination of whether conditions
C1 and C3 hold with either S =� or S =� − {f}; f being an absorbing state, and r ∈ S can be done as follows. If X
has no absorbing state, then S must be � and it is enough to check that X has a single trapping component C and r ∈C;
if X has a single absorbing state a and r �= a, then conditions C1 and C3 can only be satis3ed with S =� − {a}, and
it is enough to check that either all states in � − {a} are transient or X has a single trapping component C ⊂ � − {a}
and r ∈C; if X has a single absorbing state a and r= a; S must be � and it is enough to check that {a} is the only
trapping component of X ; if X has two absorbing states a; b and r is one of them, say a, then S must be �− {b} and
it is enough to check that {a} is the only trapping component of X in S; 3nally, if X has two absorbing states none
of which is r or X has more than two absorbing states, then conditions C1 and C3 cannot be satis3ed for any selection
of S.



810 J.A. Carrasco / Computers & Operations Research 31 (2004) 807–861

the exact model exits S, the initial probability of f would be the probability that initially the
exact model is outside S, the subset of up states of the upper bounding model will include the up
states in S of the exact model and f, and IAVCD(t; p) would upper bound the interval availability
complementary distribution of the exact model.

The new method requires the selection of a regenerative state r ∈ S and its performance depends
on that selection. The basic idea of the new method is to obtain a truncated transformed model, of
potentially smaller size than the original model, by characterizing with enough accuracy the behavior
of the original model from S ′ up to state r or, if existent, the absorbing state f, and from r until next
hit of r or, if existent, the absorbing state f, while keeping track of the amount of time spent in US ,
and solve the truncated transformed model using a state-of-the-art method (algorithm A of [6]). The
rest of the paper is organized as follows. Section 2 brieOy reviews algorithm A of [6]. In Section 3
we develop and describe the new method. Section 4 proves the so-called benign behavior of the new
method, which implies that, for large enough models and large enough time intervals, the method
will be signi3cantly faster than previous methods. Also, for a class of models, class C1, including
typical failure/repair models of coherent fault-tolerant systems with exponential failure and repair
time distributions and repair in every state with failed components, for which a natural selection for
the regenerative state exists, we will obtain stronger theoretical results assessing the performance of
the new method for that natural selection in terms of “visible” model characteristics. Those results can
be used to anticipate when the new method can be expected to be competitive for class C1 models.
Section 5 analyzes the performance of the method using a large class C1 model, showing that the
method can indeed be signi3cantly faster than algorithm A of [6] and is able to deal with some large
models and large time intervals in reasonable CPU times. Appendix A includes some proofs. In the
following, given a (homogeneous) discrete-time Markov chain (DTMC) Y = {Yk ; k =0; 1; 2; : : :}, we
will denote by Ym:nc the predicate which is true when Yk satis3es condition c for all k; m6 k6 n
(by convention Ym:nc will be true for m¿n), and by #(Ym:nc) the number of indices k; m6 k6 n,
for which Yk satis3es condition c. Also, given a matrix A; AB;C will denote the submatrix of A
including the elements with subindices in B×C, i.e. AB;C =(ai; j)i∈B;j∈C , and, given a vector x; xB

will denote the subvector of x including the elements with subindices in B.

2. Review of Algorithm A of [6]

Algorithm A of [6], as most of the currently proposed methods to compute the interval availability
distribution, is based on the randomization result. The method is applicable to any CTMC model X
with 3nite state space, �. Let �i; j; i; j∈�; j �= i denote the transition rate of X from state i to state j,
and let �i=

∑
j∈�−{i} �i; j; i∈� denote the output rate of X of state i. Consider any  ¿maxi∈� �i

and de3ne the DTMC X̂ = {X̂ k ; k =0; 1; 2; : : :} with same state space and initial probability distribu-
tion as X and transition probability matrix P=(Pi;j)i; j∈�, where Pi;j = �i; j= ; j �= i and Pi; i=1−�i= .
Let Q= {Q(t); t¿ 0} be a Poisson process with arrival rate  (P[Q(t)= k] = e− t( t)k =k!) inde-
pendent of X̂ . Then, X = {X (t); t¿ 0} is probabilistically identical to {X̂ Q(t); t¿ 0} (see, for
instance, [11, Theorem 4.19]). The DTMC X̂ is said to be the randomized DTMC of X with ran-
domization rate  ; the CTMC X is said to be the derandomized CTMC of X̂ with randomization
rate  . Using that result, we can interpret X as the composition of the Poisson process Q and the
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DTMC X̂ , in the sense that X (t) is the state of X̂ at the step given by the state in which Q is
at time t. Said in another way, we can see X as the result of associating with the state visiting
process X̂ visits durations independent among them and independent of the path followed by X̂ with
exponential distributions with parameter  .

Let U and D denote, respectively, the sets of up and down states, and let Yn;k =P[#(X̂ 0:n ∈U ¿k)].
Algorithm A of [6] is based on the following formulation for IAVCD(t; p):

IAVCD(t; p)=
∞∑
n=0

e− t
( t)k

k!

n∑
k =0

(
n

k

)
pkqn−kYn;k ; (1)

where q=1 − p. In the method, three truncations are performed on the summations of (1). Being
� an error control parameter, the truncations are de3ned by the parameters:

N =min

{
n¿ 0 :

∞∑
k = n+1

e− t
( t)k

k!
6
�
2

}
;

C ′′=




max

{
c : 06 c6N ∧

c∑
k =0

e− tq
( tq)k

k!
6
�
4

}
if e− tq6

�
4

−1 if e− tq ¿
�
4
;

C ′=




min

{
N;min

{
c¿ 0 :

∞∑
k = c+1

e− tq
( tq)k

k!
6
�
4

}}
if C ′′ �= −1

min

{
c¿ 0 :

∞∑
k = c+1

e− tq
( tq)k

k!
6
�
2

}
if C ′′= − 1:

This gives the approximated value for IAVCD(t; p):

IAVCDaN;C′ ;C′′(t; p)=
N∑
n=0

e− t
( t)n

n!

min{n;N−C′′−1}∑
k =max{0; n−C′}

(
n

k

)
pkqn−kYn;k ;

which satis3es

IAVCD(t; p)= IAVCDaN;C′ ;C′′(t; p) + eN;C′ ;C′′(t; p);

with 06 eN;C′ ;C′′(t; p)6 �.
Let Y in;k ; i∈� be the probability that a version of X̂ ; X̂ i, with initial state i has performed more

than k visits to U up to its nth transition, i.e. Y in;k =P[#(X̂
i
0:n ∈U )¿k], let Yn;k be the column vector

(Y in;k)i∈�, and let � be the initial probability distribution row vector of X (�=(�i)i∈�; �i=P[X (0)= i]).
We clearly have Yn;k = �Yn;k . Denoting by 0 and 1 column vectors of appropriate dimensions with all
elements equal to, respectively, 0 and 1, the vectors Yn;k in the domain of (n; k) pairs for which Yn;k
have to be obtained to compute IAVCDaN;C′ ;C′′(t; p) (illustrated in Fig. 1 for the case 06C ′′¡C ′)
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Fig. 1. Domain of (n; k) pairs for which Yn;k has to be computed in Algorithm A of [6] for the case 06C′′¡C′ (the
domain includes the points in the frontier).

can be computed column-wise using the recurrences

YUn;k =PU;�Yn−1; k−1; n¿ 0; 0¡k6 n;

YUn;0 = 1; n¿ 0;

YDn;k =PD;�Yn−1; k ; n¿ 0; 06 k ¡n;

YDn;n= 0; n¿ 0

with initial conditions

YU0;0 = 1;

YD0;0 = 0:

The computational cost of the method is mainly determined by the truncation parameters N and
C ′, which increase with  , implying that the computational cost of the method will roughly increase
with  and, therefore, that  should be taken equal to maxi∈� �i. For N�1; C ′; C ′′�N and not too
small models, the Oop count of the method is approximately equal to 2NC ′T , where T is the number
of transitions of X̂ . Using the well-known result [3, Theorem 3.3.5] that Q(t) has for  t → ∞ an
asymptotic normal distribution with mean and variance  t, it is easy to realize that for large  t
and ��1 the required N will be ≈  t and, then, the method will be very costly for large models
and large time intervals. The other proposed methods able to deal with general 3nite CTMCs [2,5,9]
have similar problems.

3. The method

3.1. Preliminaries

As in the previous section, we will denote by �i; j the transition rates of X and by �i the output
rates of X . Also, being B ⊂ �−{i}, we will denote by �i;B the transition rate from state i to subset
B, i.e. �i;B=

∑
j∈B �i; j.
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We will consider a DTMC X̂ obtained from X by randomizing X with rate  U¿maxi∈U �i in
the states i∈U and with rate  D¿maxi∈D �i in the states i∈D, where  U and  D can, in general,
be diFerent. The DTMC X̂ has the same state space and initial probability distribution as X and
transition probabilities Pi;j = �i; j= U ; i∈U , j �= i; Pi; i=1−�i= U ; i∈U , Pi;j = �i; j= D; i∈D; j �= i,
and Pi; i=1−�i= D; i∈D. Being B ⊂ �, we will use the notation Pi;B=

∑
j∈B Pi; j. Let P=(Pi;j)i; j∈�

denote the transition probability matrix of X̂ . We can interpret X as the result of associating with
the state visiting process X̂ visit durations independent among them and independent of the path
followed by X̂ with exponential distributions with parameter  U in the states i∈U and parameter
 D in the states i∈D. The correctness of that interpretation can be easily shown by noting that
states in X̂ are absorbing if and only if they are absorbing in X and, for non-absorbing states i,
computing, using the interpretation, the Markov kernel [12] of the resulting semi-Markov process
and checking that the kernel probabilities have values Qi;j(t)= �i; j=�i(1−e−�it), which coincide with
the kernel probabilities of X , seen as a semi-Markov process. We will say that X̂ is the randomized
DTMC of X with randomization rate  U in U and  D in D; X will be said to be the derandomized
CTMC of X̂ with randomization rate  U in U and  D in D.
To simplify the discussion, we will assume that  U and  D are taken slightly larger than, re-

spectively, maxi∈U �i and maxi∈D �i, i.e.  U =(1+&)maxi∈U �i ¿ 0 and  D=(1+&)maxi∈D �i ¿ 0,
where & is a small positive quantity, say &=10−4. This implies Pi; i ¿ 0, i∈�.

3.2. The transformation

In this section we will transform X into a (homogeneous) CTMC V with same interval avail-
ability distribution as X . The CTMC V has, in most cases, an in3nite state space; however, it will
be shown in the next section how its state space can be truncated to obtain a CTMC with 3nite
state space which has with some arbitrarily small error the same interval availability distribution as
X . The transformation follows ideas similar to those used in the regenerative randomization method
[13,14]. The basic idea to perform the transformation is to characterize the behavior of X from S ′
up to state r or, if existent, the absorbing state f, and from r until next hit of r or, if existent,
the absorbing state f, while keeping track of the amount of time spent in US . To avoid exces-
sive discussion, we will only consider explicitly the case �= S ∪ {f}. The developments carry
out immediately to the case �= S by eliminating the state f from de3nitions and sets. To con-
struct the transformed model V , two (homogeneous) DTMCs Z; Z ′ will have to be analyzed, in
general.

The DTMC Z = {Zn; n=0; 1; 2; : : :} follows X̂ from r till re-entry in r. Formally, considering a
version of X̂ ; X̂

′
, with initial probability distribution concentrated in state r,

Z0 = r;

Zn=

{
i∈ S ′ ∪ {f} if X̂ ′

1:n �= r ∧ X̂ ′
n = i;

a if #(X̂ ′
1:n= r)¿ 0;

n¿ 0: (2)

The DTMC Z has state space S∪{f; a}, where f and a are absorbing states and, given the assumed
properties for X , all states in S are transient, and its (possibly) non-null transition probabilities
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are

P[Zn+1 = j |Zn= i] =Pi;j; i∈ S; j∈ S ′ ∪ {f};

P[Zn+1 = a |Zn= i] =Pi;r ; i∈ S;

P[Zn+1 =f |Zn=f] =P[Zn+1 = a |Zn= a] = 1:

The second DTMC, Z ′= {Z ′
n; n=0; 1; 2; : : :}, follows X̂ until its 3rst visit to state r. Formally, Z ′

is de3ned as

Z ′
n=

{
i∈ S ′ ∪ {f} if X̂ 0:n �= r ∧ X̂n= i;
a if #(X̂ 0:n= r)¿ 0:

(3)

The DTMC Z ′ has state space S ′ ∪ {f; a}, where f and a are absorbing states and, given the
assumed properties for X , all states in S ′ are transient. The initial probability distribution of Z ′ is
P[Z ′

0 = i] = �i; i∈ S ′ ∪ {f}; P[Z ′
0 = a] = �r , and its (possibly) non-null transition probabilities are

P[Z ′
n+1 = j |Z ′

n= i] =Pi;j; i∈ S ′; j∈ S ′ ∪ {f};

P[Z ′
n+1 = a |Z ′

n= i] =Pi;r ; i∈ S ′;

P[Z ′
n+1 =f |Z ′

n=f] =P[Z
′
n+1 = a |Z ′

n= a] = 1:

Let )i(n; k)=P[Zn= i∧#(Z0:n ∈US)= k]; i∈ S and let )′i(n; k)=P[Z ′
n= i∧#(Z ′

0:n ∈U ′
S)= k]; i∈ S ′.

Denoting by 0 and 1 row vectors of appropriate dimensions with all its elements equal to, respec-
tively, 0 and 1, the row vectors �(n; k)= ()i(n; k))i∈S ; n¿ 0; 06 k6 n+ 1 can be obtained using
the recurrences

�(n; k)U
′
S = �(n− 1; k − 1)PS;U ′

S
; n¿ 1; 16 k6 n+ 1; (4)

�(n; k)D
′
S = �(n− 1; k)PS;D′

S
; n¿ 1; 06 k6 n (5)

and

)r(n; k)= 0; n¿ 1; 06 k6 n+ 1; (6)

)r(0; 0)= Ir∈DS ; (7)

)r(0; 1)= Ir∈US ; (8)

�(0; k)U
′
S = 0; 06 k6 1; (9)

�(n; 0)U
′
S = 0; n¿ 1; (10)
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�(0; k)D
′
S = 0; 06 k6 1; (11)

�(n; n+ 1)D
′
S = 0; n¿ 1: (12)

Similarly, the row vectors �′(n; k)= ()′i(n; k))i∈S′ ; n¿ 0; 06 k6 n+ 1 can be obtained using the
recurrences

�′(n; k)U
′
S = �′(n− 1; k − 1)PS′ ;U ′

S
; n¿ 1; 16 k6 n+ 1; (13)

�′(n; k)D
′
S = �′(n− 1; k)PS′ ;D′

S
; n¿ 1; 06 k6 n (14)

and

�′(0; 0)U
′
S = 0; (15)

�′(0; 1)U
′
S = �U

′
S ; (16)

�′(n; 0)U
′
S = 0; n¿ 1; (17)

�′(0; 0)D
′
S = �D

′
S ; (18)

�′(0; 1)D
′
S = 0; (19)

�′(n; n+ 1)D
′
S = 0; n¿ 1: (20)

To derive the transformed CTMC V , we will consider the discrete-time stochastic process
Ṽ = {Ṽ n; n=0; 1; 2; : : :} de3ned from X̂ as follows:

Ṽn=




sul;k if 06 l6 n ∧ X̂ n−l= r ∧ X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US;
sdl;k if 06 l6 n ∧ X̂ n−l= r ∧ X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈DS;
s′un;k if X̂ 0:n ∈ S ′ ∧ #(X̂ 0:n ∈U ′

S)= k ∧ X̂n ∈U ′
S ;

s′dn;k if X̂ 0:n ∈ S ′ ∧ #(X̂ 0:n ∈U ′
S)= k ∧ X̂n ∈D′

S ;

f if X̂n=f:

(21)

In words, Ṽn= sul;k if, by step n; X̂ has not left S, has made some visit to r, the last visit to r was
l steps before, k of the visits since then have been to states in US , and the current state is in US ;
Ṽn= sdl;k if, by step n, X̂ has not left S, has made some visit to r, the last visit to r was l steps
before, k of the visits since then have been to states in US , and the current state is in DS ; Ṽn= s′un;k
if, by step n; X̂ has not left S ′; k visits have been to states in U ′

S (US) and the current state is in
U ′
S (US); Ṽn= s′dn;k if, by step n; X̂ has not left S ′; k visits have been to states in U ′

S (US) and the
current state is in D′

S (DS); and Ṽn=f if, by step n, X̂ has been absorbed into state f. Note that,
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if r ∈US , Ṽn= su0;1 if and only if X̂n= r and, if r ∈DS , Ṽn= sd0;0 if and only if X̂n= r. To sim-
plify the notation, let s·0; · denote state su0;1 if r ∈US and state sd0;0 if r ∈DS . Since X̂ is a DTMC
and: (1) Ṽn= s·0; · if and only if X̂n= r, (2) Ṽn only depends on X̂ 0; X̂ 1; : : : ; X̂n, and (3) assum-
ing X̂ m = r, Ṽ m+n does not depend on X̂ 0; : : : ; X̂ m−1 and depends on X̂ m+1; : : : ; X̂ m+n as,
assuming X̂ 0 = r, Ṽ n depends on X̂ 1; : : : ; X̂ n, the steps at which Ṽ hits state s·0; · are regenera-
tion points of Ṽ . It follows from its de3nition that the state space of Ṽ is V�= {sun;k : �(n; k)US �=
0} ∪ {sdn;k : �(n; k)DS �= 0} ∪ {s′un;k : �′(n; k)U

′
S �= 0} ∪ {s′dn;k : �′(n; k)D

′
S �= 0} ∪ {f} 3 and its initial

probability distribution is

P[Ṽ 0 = s·0; ·] = �r;

P[Ṽ 0 = s′
u
0;1]= �U ′

S
;

P[Ṽ 0 = s′
d
0;0]= �D′

S
;

P[Ṽ 0 =f] = �f;

P[Ṽ 0 = i] = 0; i �∈ {s·0; ·; s′u0;1; s′d0;0; f}:
It is also clear that: (1) Ṽn ∈{sul;k ; 06 l6 n; 16 k6 n+1}∪{sdl;k ; 06 l6 n; 06 k6 n}∪{s′un;k ; 16 k
6 n+1}∪{s′dn;k ; 06 k6 n}∪{f}, (2) Ṽn=f implies Ṽn+1 =f, (3) both Ṽn= sul;k and Ṽn= sdl;k im-
ply Ṽn+1 ∈{s·0; ·; sul+1; k+1; s

d
l+1; k ; f}, and (4) both Ṽn= s′un;k and Ṽn= s′dn;k imply Ṽn+1 ∈{s·0; ·; s′un+1; k+1;

s′dn+1; k ; f}.
The discrete-time stochastic process Ṽ is not, in general, a DTMC. It satis3es, however, an

important property: that all non-null probabilities P[Ṽn+1 =y | Ṽn= x] which are well-de3ned, i.e.
such that P[Ṽn= x]¿ 0, only depend on x and y and are independent of n. This is established by
the following proposition.

Proposition 1. Let vul;k = (
∑

i∈US )i(l; k)Pi;f) =
∑

i∈US )i(l; k), vdl;k = (
∑

i∈DS )i(l; k)Pi;f) =∑
i∈DS )i(l; k), q

u
l;k = (

∑
i∈US )i(l; k)Pi;r)=

∑
i∈US )i(l; k), q

d
l;k = (

∑
i∈DS )i(l; k)Pi;r)=

∑
i∈DS )i(l; k),

wuul;k =(
∑

i∈US )i(l; k)Pi;U ′
S
)=
∑

i∈US )i(l; k), wudl;k = (
∑

i∈US )i(l; k)Pi;D′
S
)=
∑

i∈US )i(l; k), wdul;k =
(
∑

i∈DS )i(l; k)Pi;U ′
S
) =
∑

i∈DS )i(l; k), w
dd
l;k = (

∑
i∈DS )i(l; k)Pi;D′

S
) =
∑

i∈DS )i(l; k), v
′u
l; k =

3 We only include in V� reachable states. That f is reachable follows from f being reachable in X̂ and Ṽn=f
if and only if X̂n=f. That s·0; · is reachable follows from r being reachable in X̂ and Ṽn= s·0; · if and only if X̂n= r.
Both Ṽm= sun;k and Ṽm= sdn;k imply Ṽm−n= s·0; ·. Using the w̃u(n; k) and w̃d(n; k) de3ned in the proof of Proposition 2,
P[Ṽm= sun;k ] = w̃

u(n; k)P[Ṽm−n= s·0; ·] and P[Ṽm= s
d
n;k ] = w̃

d(n; k)P[Ṽm−n= s·0; ·]. This implies that are reachable exactly the
states sun;k with w̃u(n; k) �= 0 and the states sdn;k with w̃d(n; k) �= 0. But, it is shown in the proof of Proposition 2
that w̃u(n; k)=

∑
i∈US )i(n; k) and w̃d(n; k)=

∑
i∈DS )i(n; k) and, therefore, are reachable exactly the states sun;k with

�(n; k)US �= 0 and the states sdn;k with �(n; k)DS �= 0. Finally, Ṽ can only be at a state s′un;k or s′dn;k at step n. Using the
w̃′u(n; k) and w̃′d(n; k) de3ned in the proof of Proposition 2, P[Ṽn= s′

u
n;k ] = w̃

′u(n; k) and P[Ṽn= s′
d
n;k ] = w̃

′d(n; k). But, it
is shown in the proof of Proposition 2 that w̃′u(n; k)=

∑
i∈U ′

S
)′i (n; k) and w̃′d(n; k)=

∑
i∈D′

S
)′i (n; k) and, therefore, are

reachable exactly the states s′un;k with �′(n; k)U
′
S �= 0 and the states s′dn;k with �′(n; k)D

′
S �= 0.
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(
∑

i∈U ′
S
)′i(l; k)Pi;f) =

∑
i∈U ′

S
)′i(l; k), v′dl;k = (

∑
i∈D′

S
)′i(l; k)Pi;f) =

∑
i∈D′

S
)′i(l; k), q′ul; k =

(
∑

i∈U ′
S
)′i(l; k)Pi;r) =

∑
i∈U ′

S
)′i(l; k), q′dl;k = (

∑
i∈D′

S
)′i(l; k)Pi;r) =

∑
i∈D′

S
)′i(l; k), w′uu

l; k =

(
∑

i∈U ′
S
)′i(l; k)Pi;U ′

S
) =

∑
i∈U ′

S
)′i(l; k), w′ud

l;k = (
∑

i∈U ′
S
)′i(l; k)Pi;D′

S
) =

∑
i∈U ′

S
)′i(l; k), w′du

l;k =

(
∑

i∈D′
S
)′i(l; k)Pi;U ′

S
)=
∑

i∈D′
S
)′i(l; k), and w′dd

l;k =(
∑

i∈D′
S
)′i(l; k)Pi;D′

S
)=
∑

i∈D′
S
)′i(l; k).Then, the values

of the well-de8ned, non-null probabilities P[Ṽn+1 = y| Ṽn = x] are: P[Ṽn+1 = f | Ṽn= sul;k] = vul;k ,
P[Ṽn+1 = s·0; · | Ṽn = sul;k] = qul;k , P[Ṽn+1 = sul+1; k+1 | Ṽn = sul;k] = wuul;k , P[Ṽn+1 = sdl+1; k | Ṽn = sul;k] = wudl;k ,
P[Ṽn+1 =f | Ṽn= sdl;k] = vdl;k , P[Ṽn+1 = s·0; · | Ṽn = sdl;k] = qdl;k , P[Ṽn+1 = sul+1; k+1 | Ṽn = sdl;k] = wdul;k ,
P[Ṽn+1 = sdl+1; k | Ṽn= sdl;k] = wddl;k , P[Ṽn+1 = f | Ṽn = s′ul; k] = v′ul; k , P[Ṽn+1 = s·0; · | Ṽn = s′ul; k] = q′ul; k ,
P[Ṽn+1 = s′ul+1; k+1 | Ṽn= s′ul; k] =w′uu

l; k , P[Ṽn+1 = s′dl+1; k | Ṽn= s′ul; k] =w′ud
l;k , P[Ṽn+1 =f | Ṽn= s′dl;k] = v′dl;k ,

P[Ṽn+1 = s·0; · | Ṽn= s′dl;k] = q′dl;k , P[Ṽn+1 = s′ul+1; k+1 | Ṽn= s′dl;k] =w′du
l;k , P[Ṽn+1 = s′dl+1; k | Ṽn= s′dl;k] =w′dd

l;k ,
and P[Ṽn+1 =f | Ṽn=f] = 1.

Proof. See the Appendix A.

Consider now the (homogeneous) DTMC V̂ with same state space and initial probability distribu-
tion as Ṽ and (assuming P[V̂n= x]¿ 0) non-null transition probabilities P[V̂n+1 =y | V̂n= x] identical
to the non-null, well-de3ned transition probabilities P[Ṽn+1 =y | Ṽn= x] given by Proposition 1. Note
that the de3nition is correct because the well-de3ned transition probabilities P[Ṽn+1 =y | Ṽn= x] do
not depend on n (did they depend on n; V̂ would not be homogeneous). Fig. 2 depicts a feasible
state transition diagram for V̂ for the case r ∈US . Let the state space V� of Ṽ and V̂ be partitioned
as VU ∪ VD, where VU includes the states sun;k ; s

′u
n;k , and the state f if f∈U , and VD includes

the states sdn;k , s
′d
n;k , and the state f if f∈D. Note that Ṽn ∈ VU if and only if X̂n ∈U . Let V S be

the subset of V� including all states in V� except state f. Let VS ′= V S − {s·0; ·}, VUS = VU ∩ V S,
VDS = VD ∩ V S, VU ′

S =
VUS − {s·0; ·}, and VD′

S =
VDS − {s·0; ·}. We have the following result:

Proposition 2. P[#(V̂ 0:n ∈ VU )= k ∧ V̂n ∈ VU ] =P[#(Ṽ 0:n ∈ VU )= k ∧ Ṽn ∈ VU ]; 16 k6 n + 1 and
P[#(V̂ 0:n ∈ VU )= k ∧ V̂n ∈ VD] =P[#(Ṽ 0:n ∈ VU )= k ∧ Ṽn ∈ VD], 06 k6 n.

Proof. See the Appendix A.

The transformed CTMC V is the derandomized CTMC of V̂ with randomization rate  U in VU
and  D in VD. The state space and initial probability distribution of V are the same as those of V̂ .
Fig. 3 depicts a feasible state transition diagram of V for the case r ∈US . The following theorem
establishes the main result of this section.

Theorem 1. The interval availability complementary distribution of V with subset of up states VU
is equal to the interval availability complementary distribution of X .

Proof. Consider the interpretation of X as the derandomized CTMC of X̂ with randomization rate
 U in U and  D in D. Under that interpretation, let XUi be the random variable “duration of the
ith visit of X̂ to a state in U” and let XDi be the random variable “duration of the ith visit of X̂ to
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Fig. 2. A feasible state transition diagram of the DTMC V̂ for the case r ∈US .
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Fig. 3. A feasible state transition diagram of the CTMC V for the case r ∈US .
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a state in D”. We can formulate IAVCD(t; p) as

IAVCD(t; p) =
∞∑
n=0

(
n+1∑
k =1

P

[
#(X̂ 0:n ∈U )= k ∧ X̂n ∈U ∧

k−1∑
i=1

XUi +
n+1−k∑
i=1

XDi ¡ t

∧
k∑
i=1

XUi +
n+1−k∑
i=1

XDi ¿ t ∧ t −
n+1−k∑
i=1

XDi ¿pt

]

+
n∑

k =1

P

[
#(X̂ 0:n ∈U )= k ∧ X̂n ∈D ∧

k∑
i=1

XUi +
n−k∑
i=1

XDi ¡ t

∧
k∑
i=1

XUi +
n+1−k∑
i=1

XDi ¿ t ∧
k∑
i=1

XUi ¿pt

])
:

The random variables XUi and XDi are independent among them and independent of X̂ . Then, we
can formulate IAVCD(t; p) as

IAVCD(t; p)=
∞∑
n=0

(
n+1∑
k =1

FU (k; n+ 1− k; t; pt)WU
n;k +

n∑
k =1

FD(k; n+ 1− k; t; pt)WD
n;k

)
; (22)

where WU
n;k =P[#(X̂ 0:n ∈U )= k ∧ X̂n ∈U ], WD

n;k =P[#(X̂ 0:n ∈U )= k ∧ X̂n ∈D] and

FU (k; m; t; s)=P

[
k−1∑
i=1

XUi +
m∑
i=1

XDi ¡ t ∧
k∑
i=1

XUi +
m∑
i=1

XDi ¿ t ∧ t −
m∑
i=1

XDi ¿ s

]
;

FD(k; m; t; s)=P

[
k∑
i=1

XUi +
m−1∑
i=1

XDi ¡ t ∧
k∑
i=1

XUi +
m∑
i=1

XDi ¿ t ∧
k∑
i=1

XUi ¿ s

]
:

Since V can be interpreted as the derandomized CTMC of V̂ with randomization rate  U in VU
and  D in VD, a formulation similar to (22) can be derived for the interval availability complementary
distribution of V . Given the de3nition of Ṽ (21), Ṽn ∈ VU if and only if X̂n ∈U and Ṽn ∈ VD if and
only if X̂n ∈D. This implies #(Ṽ 0:n ∈ VU )= k ∧ Ṽn ∈ VU if and only if #(X̂ 0:n ∈U )= k ∧ X̂n ∈U and
#(Ṽ 0:n ∈ VU )= k ∧ Ṽn ∈ VD if and only if #(X̂ 0:n ∈U )= k ∧ X̂n ∈D and, then, using Proposition 2,

P[#(V̂ 0:n ∈ VU ) = k ∧ V̂n ∈ VU ] =P[#(Ṽ 0:n ∈ VU )= k ∧ Ṽn ∈ VU ]

= P[#(X̂ 0:n ∈U )= k ∧ X̂n ∈U ];

P[#(V̂ 0:n ∈ VU ) = k ∧ V̂n ∈ VD] =P[#(Ṽ 0:n ∈ VU )= k ∧ Ṽn ∈ VD]

= P[#(X̂ 0:n ∈U )= k ∧ X̂n ∈D];
which implies the theorem.
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3.3. Truncation of the transformed model

The transformed CTMC V can have an in3nite state space and, then, solving it exactly does not
seem feasible. In this section, we will show how the state space of V can be pruned to obtain
a truncated transformed model with always 3nite state space having the same interval availability
complementary distribution as V with error upper bounded by �=2, where � is an arbitrarily small error
control parameter. The method will then compute the interval availability complementary distribution
of the truncated transformed model with error upper bounded by �=2 using Algorithm A of [6],
yielding a total error in the computation of the interval availability complementary distribution of X
upper bounded by �. The fact that V̂ (and therefore V ) has an in3nite state space in the frequent case
U ′
S �= ∅ (which implies by condition C5 �r;U ′

S
¿ 0 and Pr;U ′

S
¿ 0) can be shown from Pi; i ¿ 0; i∈U ′

S

as follows. If r ∈US , then state su0;1 will belong to V̂ and Pr;U ′
S
¿ 0; Pi; i ¿ 0; i∈U ′

S implies the
existence in V̂ of the path su0;1 → su1;2 → su2;3 → su3;4 → · · ·, which has in3nitely many diFerent states.
If r ∈DS , then state sd0;0 will belong to V̂ and Pr;U ′

S
¿ 0; Pi; i ¿ 0; i∈U ′

S implies the existence in V̂
of the path sd0;0 → su1;1 → su2;2 → su3;3 → · · ·, which also has in3nitely many diFerent states. It is also
easy to show that, if �S′ ¿ 0 and U ′

S �= ∅; V has in3nitely many diFerent states s′un;k ; s′
d
n;k , for, if

�U ′
S
¿ 0; Pi; i ¿ 0; i∈U ′

S implies the existence in V of the path s′u0;1 → s′u1;2 → s′u2;3 → s′u3;4 → · · · and,
if �U ′

S
=0, which implies �D′

S
¿ 0 and, by condition C6, �i;U ′

S
¿ 0, Pi;U ′

S
¿ 0 for some i∈D′

S with
�i ¿ 0; Pi; i ¿ 0, i∈U ′

S implies the existence in V of the path s′d0;0 → s′u1;1 → s′u2;2 → s′u3;3 → · · ·.
We will perform two truncations, in general. The 3rst truncation yields a CTMC VC which is

obtained from V by deleting the states sun;k ; s
d
n;k ; s

′u
n;k , and s

′d
n;k with k6 n− C, where C¿ 1 is the

truncation parameter, and directing to an absorbing state a the transition rates to states sun;k ; s
d
n;k ; s

′u
n;k ,

and s′dn;k with k6 n − C. The state space of VC is �C ∪ {a}, where �C = {sun;k ; sdn;k ; s′un;k ; s′dn;k ∈ V� :
k¿ n − C + 1} ∪ {f} and its initial probability distribution is the same as that of V . 4 Formally,
VC can be de3ned from V as

VC(t)=

{
V (t) if V (�)∈�C for all �∈ [0; t];

a otherwise:

Note that, being C¿ 1, none of the states in the paths shown up in the previous paragraph will
be deleted, showing that, for U ′

S �= ∅; VC will have in3nitely many diFerent states sun;k ; s
d
n;k and,

if �S′ ¿ 0, in3nitely many diFerent states s′un;k ; s′
d
n;k . Let IAVCD

a
C(t; p) be the interval availability

complementary distribution of VC with subset of up states, VUC , including the states sun;k ; s
′u
n;k and

state f if f∈U , and let q=1−p. Let VDC denote the subset of down states of VC (VDC includes
the states sdn;k , s

′d
n;k , the state f if f∈D, and state a). Then, being  =max{ U ; D},

Theorem 2. IAVCD(t; p)= IAVCDaC(t; p) + e
1
C(t; p) with |e1C(t; p)|6

∑∞
n=C+1 e− tq( tq)n=n!.

4 VC may not have transition rates to state a, and, then, state a would be unreachable in VC . A situation in which this
would happen is when D′

S = ∅. However, this is not a problem.
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Proof. Consider the randomized DTMCs V̂
′
and V̂ ′

C of, respectively, V and VC with randomization
rate  in all states. The state transition diagram of V̂

′
is similar to the state transition diagram of

V̂ (illustrated in Fig. 2), with the diFerence that all states sun;k and all states s′un;k will have non-null
transition probabilities to themselves if  D¿ U and all states sdn;k and all states s′dn;k will have
non-null transition probabilities to themselves if  U ¿ D. Fig. 4 sketches a feasible state transition
diagram of V̂

′
for the case r ∈US and  U ¿ D. The state transition diagram of V̂ ′

C can be obtained
from the state transition diagram of V̂

′
by deleting the states sun;k ; s

d
n;k , s

′u
n;k and s′dn;k with k6 n−C,

and directing to an absorbing state a the transitions to states sun;k ; s
d
n;k ; s

′u
n;k and s′dn;k with k6 n−C.

V̂ ′
C can be de3ned from V̂

′
as

(V̂ ′
C)n=

{
V̂ ′
n if V̂ ′

0:n ∈�C;
a otherwise:

(23)

Using the formulation (1) for the interval availability complementary distribution on which Algorithm
A of [6] is based, we have

IAVCD(t; p) =
∞∑
n=0

e− t
( t)n

n!

n∑
k =0

(
n

k

)
pkqn−kYn;k

=
∞∑
k =0

∞∑
n= k

e− t
( t)n

n!

(
n

k

)
pkqn−kYn;k ; (24)

IAVCDaC(t; p)=
∞∑
k =0

∞∑
n= k

e− t
( t)n

n!

(
n

k

)
pkqn−kY an;k ; (25)

with Yn;k =P[#(V̂ ′
0:n ∈ VU )¿k] and Y an;k =P[#((V̂

′
C)0:n ∈ VUC)¿k]. But, given the state transition

diagram of V̂
′
and the fact that its initial probability distribution is concentrated in states su0;1,

sd0;0; s
′u
0;1; s

′d
0;0, and f, the fact that V̂

′
has entered by step n a state sul;k , a state sdl;k , a state s′ul; k

or a state s′dl;k implies #(V̂ ′
0:n ∈ VD)¿ l + 1 − k and, therefore, #(V̂ ′

0:n ∈ VU )6 n − l + k. Then,

#(V̂ ′
0:n ∈ VU )¿k implies that V̂

′
has not entered by step n a state sul;k′ , a state sdl;k′ , a state s′ul; k′ , or

a state s′dl;k′ with n − l + k ′6 k, and #(V̂ ′
0:n ∈ VU )= k ¿n − C implies that, by step n, V̂

′
has not

entered a state sul;k′ , a state sdl;k′ , a state s′ul; k′ or a state s′dl;k′ with n− l+ k ′6 n− C, i.e. k ′6 l− C,
that, by step n; V̂

′
has not left �C and (23) that #((V̂ ′

C)0:n ∈ VUC)= k. It can be similarly shown that
#((V̂ ′

C)0:n ∈ VUC)= k ¿n − C implies #(V̂ ′
0:n ∈ VU )= k. Then, for k ¿n − C, #((V̂ ′

C)0:n ∈ VUC)= k
if and only if #(V̂ ′

0:n ∈ VU )= k, which implies Y an;k =Yn;k for k¿ n − C (n6C + k). Then, using
(24), (25),

e1C(t; p)=
∞∑
k =0

∞∑
n=C+k+1

e− t
( t)n

n!

(
n

k

)
pkqn−k(Yn;k − Y an;k);
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Fig. 4. Sketch of a feasible state transition diagram of the DTMC V̂
′
for the case r ∈US and  U ¿ D.
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and, using 06Yn;k ; Y an;k6 1, which implies |Yn;k − Y an;k |6 1,

|e1C(t; p)|6
∞∑
k =0

∞∑
n=C+k+1

e− t
( t)n

n!

(
n

k

)
pkqn−k =

∞∑
k =0

e− tp
( tp)k

k!

∞∑
n=C+k+1

e− tq
( tq)n−k

(n− k)!

=
∞∑
k =0

e− tp
( tp)k

k!

∞∑
n=C+1

e− tq
( tq)n

n!
=

∞∑
n=C+1

e− tq
( tq)n

n!
:

In the particular case U ′
S = ∅, besides f; �C only includes states s′d0;0; s′

d
1;0; : : : ; s

′d
C−1;0 if �S′ ¿ 0,

state su0;1 if r ∈US , states sd1;1; sd2;1; : : : ; sdC;1 if r ∈US and �r;D′
S
¿ 0, state sd0;0 if r ∈DS , and states

sd1;0; s
d
2;0; : : : ; s

d
C−1;0 if r ∈DS and �r;D′

S
¿ 0. Therefore, in the case U ′

S = ∅; VC has always a 3nite
state space and, in that case, we do not perform a second truncation.

Assuming U ′
S �= ∅, the second truncation is performed over the CTMC VC and yields a CTMC

VC;K;L; K¿ 2; L¿ 2, if �C includes states s′un;k ; s′
d
n;k (which happens if �S′ ¿ 0) and a CTMC

VC;K ; K¿ 2, if �S′ =0 and �C does not include any state s′un;k ; s′
d
n;k . The CTMC VC;K;L is obtained

from VC by deleting the states sun;k ; s
d
n;k with k ¿K and the states s′un;k ; s′

d
n;k with k ¿L and directing

to an absorbing state b the transition rates from states sun;K ; s
d
n;K ; s

′u
n;L and s′dn;L. The CTMC VC;K

is obtained from VC by deleting the states sun;k ; s
d
n;k with k ¿K and directing to an absorbing

state b the transition rates from states sun;K , s
d
n;K . The state space of VC;K;L is �C;K;L ∪ {a; b}, where

�C;K;L= {sun;k ; sdn;k ∈ V� : k¿ n − C + 1 ∧ k6K} ∪ {s′un;k ; s′dn;k ∈ V� : k¿ n − C + 1 ∧ k6L} ∪ {f}
and its initial probability distribution is the same as that of V . Formally, VC;K;L can be de3ned
from VC as

VC;K;L(t)=

{
VC(t) if ; by time t; VC has not exited a state sun;K ; s

d
n;K ; s

′u
n;L or s′dn;L;

b otherwise:
(26)

The state space of VC;K is �C;K ∪{a; b}, where �C;K = {sun;k ; sdn;k ∈ V� : k¿ n−C+1∧k6K}∪{f}
and its initial probability distribution is the same as that of V . Formally, VC;K can be de3ned from
VC as

VC;K(t)=

{
VC(t) if ; by time t; VC has not exited a state sun;K or sdn;K ;

b otherwise:

For the case �S′ ¿ 0, let IAVCDaC;K;L(t; p) be the interval availability complementary distribution
of VC;K;L with subset of up states, VUC;K;L, including the states sun;k ; s

′u
n;k and state f if f∈U , and

let VDC;K;L denote the subset of down states of VC;K;L (VDC;K;L includes the states sdn;k ; s
′d
n;k , state f

if f∈D, and states a and b). For the case �S′ =0, let IAVCDaC;K(t; p) be the interval availability
complementary distribution of VC;K with subset of up states, VUC;K , including the states sun;k and
state f if f∈U , and let VDC;K denote the subset of down states of VC;K (VDC;K includes the states
sdn;k , state f if f∈D, and states a and b). We have
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Proposition 3. Assume U ′
S �= ∅. For the case �S′ ¿ 0, IAVCDaC(t; p)= IAVCDaC;K;L(t; p) +

e2C;K;L(t; p) with |e2C;K;L(t; p)|6P[VC;K;L(t)= b]. For the case �S′ =0; IAVCDaC(t; p)=
IAVCDaC;K(t; p) + e

2
C;K(t; p) with |e2C;K(t; p)|6P[VC;K(t)= b].

Proof. Consider the case �S′ ¿ 0, let A(t) be the proposition “by time t; VC has not exited a state
sun;K , s

d
n;K ; s

′u
n;L or s′dn;L” and let A(t) denote the negated proposition of A(t). Conditioning on VC(t)

and whether or not A(t) holds, and using the fact that A(t) implies VC(t)∈�C;K;L ∪ {a}:

IAVCDaC(t; p) =
∑

i∈�C;K;L∪{a}
P[VC(t)= i ∧ A(t)]P

[∫ t

0
IVC (�)∈VUC d�¿pt |VC(t)= i ∧ A(t)

]

+
∑

i∈�C∪{a}
P[VC(t)= i ∧ A(t)]P

[∫ t

0
IVC (�)∈VUC d� |VC(t)= i ∧ A(t)

]
:

Similarly, conditioning on VC;K;L(t):

IAVCDaC;K;L(t; p) =
∑

i∈�C; K; L∪{a}
P[VC;K;L(t)= i] P

[∫ t

0
IVC;K; L(�)∈VUC;K; L d�¿pt |VC;K;L(t)= i

]

+P[VC;K;L(t)= b] P
[∫ t

0
IVC;K; L(�)∈VUC;K; L d�¿pt |VC;K;L(t)= b

]
:

But, according to (26), VC;K;L(t)∈�C;K;L∪{a} if and only if A(t) holds and, in that case, VC;K;L(�)=
VC(�); �∈ [0; t]. This together with VUC;K;L= VUC ∩ �C;K;L implies P[VC;K;L(t)= i] =P[VC(t)= i∧
A(t)]; i∈�C;K;L ∪ {a} and P[

∫ t
0 IVC;K; L(�)∈VUC;K; L d�¿pt |VC;K;L(t)= i] =P[

∫ t
0 IVC (�)∈VUC d�¿pt |

VC(t)= i ∧ A(t)], i∈�C;K;L ∪ {a}, and, then,

e2C;K;L(t; p) = IAVCDaC(t; p)− IAVCDaC;K;L(t; p)

=
∑

i∈�C∪{a}
P[VC(t)= i ∧ A(t)]P

[∫ t

0
IVC (�)∈VUC d�¿pt |VC(t)= i ∧ A(t)

]

−P[VC;K;L(t)= b] P
[∫ t

0
IVC;K; L(�)∈VUC;K; L d�¿pt |VC;K;L(t)= b

]
:

But, since VC;K;L(t)= b if and only if A(t) holds, P[VC;K;L(t)= b] =
∑

i∈�C∪{a} P[VC(t)= i ∧ A(t)]
and, using 06P[

∫ t
0 IVC (�)∈VUC d�¿pt |VC(t)= i ∧ A(t)]; P[

∫ t
0 IVC;K; L(�)∈VUC;K; L d�¿pt |VC;K;L(t)= b]

6 1, it is easy to show |e2C;K;L(t; p)|6P[VC;K;L(t)= b]. The fact that |e2C;K(t; p)|6P[VC;K(t)
= b] for the case �S′ =0 can be proved similarly.

According to Proposition 3, the absolute error in the interval availability complementary distribu-
tion introduced by the second truncation can be upper bounded by upper bounding P[VC;K;L(t)= b], if
�S′ ¿ 0, and P[VC;K(t)= b], if �S′ =0. We will derive next upper bounds for those probabilities. For
the case �S′ ¿ 0, let V̂ C;K;L be the randomized DTMC of VC;K;L with randomization rate  U in VUC;K;L
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and  D in VDC;K;L. For the case �S′ =0, let V̂ C;K be the randomized DTMC of VC;K with random-
ization rate  U in VUC;K and  D in VDC;K . Consider 3rst the case �S′ ¿ 0 and let 7C;K;L(m) be
the probability that V̂ C;K;L enters b after m visits to states sun;k ; s

′u
n;k . Note that 7C;K;L(m)= 0 for

m¡min{K; L}. Using the interpretation of VC;K;L as randomized CTMC of V̂ C;K;L with randomiza-
tion rate  U in VUC;K;L and  D in VDC;K;L and taking into account that the probability that the sum
of k independent exponential random variables with parameter  U is 6 t is

∑∞
n= k e

− U t( Ut)n=n!,
it is clear that

P[VC;K;L(t)= b]6
∞∑

k =min{K; L}
7C;K;L(k)

∞∑
n= k

e− U t
( Ut)n

n!
: (27)

Let bC;L(k) be the probability that V̂ C;K;L has entered b through a state s′un;L or a state s′dn;L after no
more than k visits to states sun; l; s

′u
n; l. Let cC;K;L(k) be the probability that V̂ C;K;L has entered b through

a state sun;K or a state sdn;K after no more than k visits to states sun; l; s
′u
n; l. Note that bC;L(k)= 0 for

k ¡L and cC;K;L(k)= 0 for k ¡K . Also, 7C;K;L(k)= bC;L(k)−bC;L(k−1)+ cC;K;L(k)− cC;K;L(k−1),
k ¿ 0. Then, using (27),

P[VC;K;L(t) = b]

6
∞∑

k =min{K;L}
(bC;L(k)− bC;L(k − 1) + cC;K;L(k)− cC;K;L(k − 1))

∞∑
n= k

e− U t
( Ut)n

n!

=
∞∑
k = L

bC;L(k)
∞∑
n= k

e− U t
( Ut)n

n!
−

∞∑
k = L

bC;L(k)
∞∑

n= k+1

e− U t
( Ut)n

n!

+
∞∑
k =K

cC;K;L(k)
∞∑
n= k

e− U t
( Ut)n

n!
−

∞∑
k =K

cC;K;L(k)
∞∑

n= k+1

e− U t
( Ut)n

n!

=
∞∑
k = L

bC;L(k)e− U t
( Ut)k

k!
+

∞∑
k =K

cC;K;L(k)e− U t
( Ut)k

k!
: (28)

For the case �S′ =0; V̂ C;K does not include states s′un;k ; s′
d
n;k . In that case, it can be proved similarly

that

P[VC;K(t)= b]6
∞∑
k =K

cC;K(k)e− U t
( Ut)k

k!
; (29)

where cC;K(k) is the probability that V̂ C;K has entered b after no more than k visits to states sun; l.
At this point, it is useful to clarify the domain of (n; k) pairs for which some state sun;k or s

d
n;k may

belong to �C;K;L (�C;K) and the domain of (n; k) pairs for which some state s′un;k or s′dn;k may belong
to �C;K;L. The 3rst domain is obtained by imposing n− C + 16 k6 n+ 1; n¿ 0 and 06 k6K
and is shown in Fig. 5. The second domain is obtained by imposing n− C + 16 k6 n+ 1; n¿ 0
and 06 k6L and is identical to the 3rst one with K replaced by L.
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Fig. 5. Domain of (n; k) pairs for which some state sun;k or sdn;k may belong to �C;K;L (�C;K) (the domain includes the
points in the frontier).

Given the structure of the state transition diagram of V̂ C;K;L and its initial probability distribution,
V̂ C;K;L can only enter b through a state s′un;L or a state s′dn;L following L visits to states sun;k ; s

′u
n;k ,

and this will happen with the probability that V̂ C;K;L ever visits a state s′un;L or a state s′dn;L, equal
to the probability thatV̂ C ever visits a state s′un;L or a state s′dn;L, equal to the probability, P, that
V̂ ever visits a state s′un;L or a state s′dn;L, n − C + 16L6 n + 1, i.e. L − 16 n6L + C − 1.
Since V̂ can only be at a state s′un;k or a state s′dn;k at step n, using the de3nition of V̂ (21)
and the de3nition of Z ′ (3), P6

∑L+C−1
n= L−1 P[X̂ 0:n ∈ S ′ ∧ #(X̂ 0:n ∈U ′

S)=L] =
∑L+C−1

n= L−1 P[Z
′
n ∈ S ′ ∧

#(Z ′
0:n ∈U ′

S)=L] =
∑L+C−1

n= L−1

∑
i∈S′ )

′
i(n; L). Then,

bC;L(k)6 Ik¿La′C(L); (30)

with a′C(L)=
∑L+C−1

n= L−1

∑
i∈S′ )

′
i(n; L). The following proposition gives simple upper bounds for

cC;K;L(k) and cC;K(k).

Proposition 4. Assume U ′
S �= ∅. Let aC(K)=

∑K+C−1
n=K−1

∑
i∈S )i(n; K). Then, for the case �S′ ¿ 0,

cC;K;L(k)6 Ik¿K−1�S(k−K+2)aC(K) and, for the case �S′ =0, cC;K(k)6 Ik¿K−1�S(k−K+2)aC(K).

Proof. See the Appendix A.

Proposition 3, (28)–(30) and the upper bounds for cC;K;L(k) and cC;K(k) given by Proposition 4
yield simple upper bounds for the error introduced by the second truncation:

Theorem 3. AssumeU ′
S �=∅.Let aC(K)=

∑K+C−1
n=K−1

∑
i∈S )i(n; K) and a

′
C(L)=

∑L+C−1
n=L−1

∑
i∈S′ )

′
i(n; L).

Then, for the case �S′ ¿ 0, |e2C;K;L(t; p)|6 a′C(L)
∑∞

k = Le
− U t( Ut)k =k! + �SaC(K)

∑∞
k =K (k − K +

2)e− U t( Ut)k =k! and, for the case �′S =0; |e2C;K(t; p)|6 �SaC(K)
∑∞

k =K (k−K+2)e− U t( Ut)k =k!.

Using Theorems 2 and 3, the truncation parameters C; K and L can be selected as follows, guar-
anteeing that the truncated transformed model will have the same interval availability complementary
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distribution as X with error upper bounded by �=2. For C, we can take

C =min

{
c¿ 1 :

∞∑
k = c+1

e− tq
( tq)k

k!
6
�
2

}
if U ′

S = ∅

and

C =min

{
c¿ 1 :

∞∑
k = c+1

e− tq
( tq)k

k!
6
�
4

}
if U ′

S �= ∅:

Then, assuming U ′
S �= ∅, for the case �S′ ¿ 0, we can take

K =min

{
n¿ 2 : �SaC(n)

∞∑
k = n

(k − n+ 2)e− U t
( Ut)k

k!
6
�
8

}
;

L=min

{
n¿ 2 : a′C(n)

∞∑
k = n

e− U t
( Ut)k

k!
6
�
8

}
;

and, for the case �S′ =0, we can take

K =min

{
n¿ 2 : �SaC(n)

∞∑
k = n

(k − n+ 2)e− U t
( Ut)k

k!
6
�
4

}
:

3.4. Algorithmic description and implementation details

Figs. 6–8 give an algorithmic description of the method for the computation of the interval avail-
ability complementary distribution developed in this paper. The algorithm has as inputs the CTMC
X , an absorb variable which has the value true when the state space of X has to be seen as
�= S ∪ {f} and the value false when has to be seen as �= S, the subset of up states U , the
initial probability distribution row vector �, the regenerative state r ∈ S, the allowed computation
error �, the number n of pairs (t; p) at which IAVCD(t; p) has to be computed, and the (t; p) pairs,
(t1; p1); (t2; p2); : : : ; (tn; pn). The outputs of the algorithm are the computed values of IAVCD(t; p),
]IAVCD(t1; p1); ]IAVCD(t2; p2); : : : ; ]IAVCD(tn; pn), at the given (t; p) pairs. It is assumed that, if

�= S ∪ {f}, state f has been identi3ed and that X satis3es the required conditions with the given
selection for the regenerative state r. The truncated transformed model, called V in the algorithmic
description, is generated by adding states and transition rates to the initially empty CTMC V using
the functions add state(s; x) and add transition(s; s′; �). The 3rst function adds a state s with initial
probability x to V ; the second function adds to V a transition rate � from state s to state s′. The
required truncation parameter C increases with tq= t(1−p) and, therefore, that parameter is selected
using the largest value of tq for which IAVCD(t; p) has to be computed. Once the required C has
been determined and for the case U ′

S �= ∅, the CTMC V is constructed by adding 3rst states sun;k ; s
d
n;k ,

max{0; k − 1}6 n6 k + C − 1 (see Fig. 5), for increasing k, controlling the error associated with
the truncation parameter K for t= tmax =max16i6n ti, since the model truncation error upper bounds
associated with that parameter given by Theorem 3 increase with t. After that, if �S′ ¿ 0, states
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Fig. 6. Algorithmic description of the method.
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Fig. 7. Algorithmic description of the method (continuation).
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Fig. 8. Algorithmic description of the method (continuation).
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s′un;k ; s′
d
n;k are added in a similar way, with the truncation error associated with the parameter L being

controlled for t= tmax, since the model error truncation upper bound associated with L also increases
with t. The particular case U ′

S = ∅ receives a special treatment. In that case, besides state a and
state f, if �= S ∪ {f}, the truncated transformed model includes the state su0;1, if r ∈US , the state
sd0;0, if r ∈DS , the states sd1;1; : : : ; s

d
C;1, if r ∈US and �r;D′

S
¿ 0, the states sd1;0; : : : ; s

d
C−1;0, if r ∈DS

and �r;D′
S
¿ 0, and the states s′d0;0; s′

d
1;0; : : : ; s

′d
C−1;0, if �S′ ¿ 0. Besides the storage required to hold the

transition probability matrix P of the randomized DTMC, the storage requirements of Algorithm A
of [6] are basically C ′ + 2 vectors of size |�|, necessary to compute recurrently the vectors Yn;k .
Regarding our method, in the case U ′

S �= ∅, vectors �(n; k) and �′(n; k) can be computed over C +3
vectors of size |S| and C will have a value typically identical to the value of the truncation parameter
C ′ of Algorithm A of [6]. Then, in the case U ′

S �= ∅, the storage overhead of our method, during its
3rst phase, with respect to Algorithm A of [6] includes approximately three vectors of size |S| (our
method needs two vectors of size |S| to hold Pi;U ′

S
and Pi;D′

S
; i∈ S) and the storage required to hold

the truncated transformed model. In the case U ′
S = ∅, the required vectors �(n; k) and �′(n; k) can be

computed over two vectors of size |S| and the storage requirements of our method in its 3rst phase
will tend to be smaller than the storage requirements of Algorithm A of [6]. In the second phase, the
storage consumption of our method can be smaller or greater than the storage consumption of Algo-
rithm A of [6], depending basically on the relative sizes of the truncated transformed model and X .

The method requires the computation of Poisson probabilities e−��k=k!. Our implementation uses
the method described in [15, pp. 1028–1029], which has good numerical stability. Finally, the method
requires the computation of summations of the form S�(m)=

∑∞
k =m+1 e−��k=k! and S ′′′� (m)=

∑∞
k =m

(k − m + 2)e−��k=k! for increasing values of m. An eHcient and numerically stable procedure to
compute S�(m) for increasing values of m which can be embedded in the method is described
in [13]. It is also described in [13] an eHcient and numerically stable procedure to compute
S ′�(m)=

∑∞
k =m+1 (k − m)e−��k=k! for increasing values of m; that procedure can easily be adapted

to obtain an eHcient and numerically stable procedure to compute S ′′′� (m) for increasing values of
m which can be embedded in the method.

4. Theoretical properties

A salient feature of the method proposed in this paper is that, for the case U ′
S �= ∅, the truncation

parameters K and L are smooth functions of t:

Theorem 4. Assume U ′
S �= ∅. For the case �S′ ¿ 0, the truncation parameters K and L are

O(log( Ut=�)). For the case �′S =0, the truncation parameter K is O(log( Ut=�)).

Proof. See the Appendix A.

Consider the case U ′
S �= ∅. Then, the fact that, as asserted by Theorem 4, the truncation parameters

K and L are smooth functions of t is called benign behavior and implies that for large enough models
and large enough t, the proposed method will be signi3cantly faster than Algorithm A of [6] (and
all other previously proposed general methods). To see this, note that, for not too small models, the
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computational cost (number of Ooating point operations) of the 3rst phase of the proposed method
is, for the case �S′ ¿ 0, roughly the sum of a component proportional to K and C and a component
proportional to L and C, and is, for the case �S′ =0, roughly proportional to K and C, while the
computational cost of Algorithm A of [6] is roughly proportional to the truncation parameters N and
C ′ of that method, where N is approximately proportional to t for large t and C ′ ≈ C. This fact,
with Theorem 4, implies that, for not too small models and large enough t, the computational cost
of the 3rst phase of the proposed method will be signi3cantly smaller than the computational cost
of Algorithm A of [6]. Since the maximum output rate of the truncated transformed model is 1 + &
times the maximum output rate of X , where & is very small, the truncation parameters of Algorithm
A of [6] applied to the solution of the truncated transformed model will be approximately equal
to the truncation parameters of that method applied to the solution of the original model X and,
then, the ratio between the computational cost of the second phase of the proposed method and the
computational cost of Algorithm A of [6] will be roughly equal to the ratio between the number
of transitions of the randomized DTMC of the truncated transformed model with randomization rate
max{ U ; D} and the number of transitions of the randomized DTMC of X with randomization rate
maxi∈S�i, implying that the computational cost of the second phase of the proposed method will be
signi3cantly smaller than the computational cost of Algorithm A of [6] for large enough X .

For the case U ′
S = ∅, the truncated transformed model has at most 2C + 3 states, and it is clear

that for large enough models and large enough t, the proposed method will be signi3cantly faster
than Algorithm A of [6] (and all other previously proposed general methods).

The performance of the proposed method depends on the selection of the regenerative state r,
since that selection inOuences the behavior of aC(n) and a′C(n). Ideally, state r should be selected
so that aC(n) and a′C(n) decrease as fast as possible. For as wide class of models as covered by the
method, automatic selection of r does not seem to be easy in general, and, then, the method relies
on the user’s intuition to make an appropriate selection. We will consider next a class of models
C1 for which a natural selection for the regenerative state exists, and, for models in that class and
that natural selection, will obtain stronger theoretical results than the benign behavior asserted by
Theorem 4 assessing the performance of the method in terms of “visible” model characteristics.

The model class C1 includes all CTMCs X with the properties described in Section 1 and
|US |¿ 2 5 for which a partition U0 ∪ U1 ∪ · · · ∪ UNC for US exists satisfying the following two
properties:

P1. U0 = {o} (i.e. |U0|=1).
P2. max06k6NC maxi∈Uk �i;Uk−{i}∪Uk+1∪···∪UNC∪DS is signi3cantly smaller than

min0¡k6NC mini∈Uk �i;U0∪···∪Uk−1∪{f}¿ 0.

Class C1 includes failure/repair models of coherent fault-tolerant systems with exponential failure
and repair time distributions and repair in every state with failed components when failure rates are
signi3cantly smaller than repair rates (the typical case). For those models, a partition for which prop-
erties P1 and P2 are satis3ed is Uk = {up states with k failed components}. Models of non-coherent

5 In the case |US |=1, the selection r= o makes U ′
S = ∅, and the number of states of the truncated transformed model

would be 2 plus 1, if �= S ∪ {f}, plus C, if �r;D′
S
¿ 0, plus C, if �S′ ¿ 0, and the performance of the method is also

easy to predict.
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systems may not belong to class C1, because in those models there may be fast “repair” transitions
taking the system down and, thus, going from US to DS . Repair times with acyclic phase-type dis-
tributions [16] (which can be used to 3t distributions of non-exponential positive random variables
[17]) can, however, be allowed.

Since, for class C1 models, X moves “fast” to state o or, if existent, to state f, a natural selection
for the regenerative state for those models is r= o. Consider a class C1 model and a partition
U0 ∪ · · · ∪ UNC for US satisfying properties P1 and P2, and let

:=
max06k6NC maxi∈Uk�i;Uk−{i}∪Uk+1∪···∪UNC∪DS

min0¡k6NC mini∈Uk�i;U0∪···∪Uk−1∪{f}
:

The parameter : can be seen as a “rarity” parameter measuring how strongly property P2 is satis3ed.
In terms of the rarity parameter :, we can model the transition rates from i∈Uk to j∈Uk − {i} ∪
Uk+1 ∪ · · · ∪ UNC ∪ DS , 06 k6NC as �i; j = i;j:, where  i;j are constants, and the remaining
transition rates as constants, and study the behavior of the method with the selection r= o as :→ 0.
Let Pi;j(:) denote the transition probabilities of X̂ as a function of the rarity parameter :. Note that,
for i∈Uk , j∈Uk − {i} ∪ Uk+1 ∪ · · · ∪ UNC ∪ DS , 06 k6NC , lim:→0 Pi;j(:)= 0 and that

lim
:→0

Pi; i(:)= 1− �i;U0∪···∪Uk−1∪{f}
(1 + &)max06k6NC maxi∈Uk �i;U0∪···∪Uk−1∪{f}

; i∈Uk; 0¡k6NC:

Let P(:) denote the transition probability matrix of X̂ as a function of :, let P′
US ;US (:) be the

matrix obtained from PUS ;US (:) by making null the entries (i; r), i∈US and let P1(:)=P′
US ;US (:) +

PUS ; DS (:)P
−1
DS ; DSPDS ;US , P2(:)=PU ′

S ;U
′
S
(:)+PU ′

S ; DS (:)P
−1
DS ; DSPDS ;U ′

S
. Note that the submatrices PDS ; DS ,

PDS ;US and PDS ;U ′
S
of P(:) do not depend on : and that, being PDS ;DS a diagonal submatrix of the

restriction to S of the transition probability matrix of Z and being all states in S transient in Z , P−1
DS ; DS

exists. Then, denoting by ;(A) the spectral radius of matrix A, we have the following result: 6

Theorem 5. For class C1 models and the selection r= o, aC(n)6 (C + 1)h(n) and a′C(n)6
�S′(C + 1)h′(n), where, for n → ∞, h(n) ∼ B(:)( n−1

p(:)−1);(P1(:)T)n, B(:)¿ 0, p(:) integer ¿ 1

and h′(n) ∼ B′(:)( n−1
p′(:)−1);(P2(:)T)n, B′(:)¿ 0, p′(:) integer ¿ 1, with lim:→0 ;(P1(:)T)

= lim:→0 ; (P2(:)T)= ;,

;=1− min0¡k6NC mini∈Uk �i;U0∪···∪Uk−1∪{f}
(1 + &)max06k6NC maxi∈Uk �i;U0∪···∪Uk−1∪{f}

:

Proof. Let b(k) be the probability that Z has made k or more visits to US . We have, for n¿ 0 and
06 k6 n+ 1,∑

i∈S
�i(n; k)=

∑
i∈S

P[Zn= i ∧ #(Z0:n ∈US)= k]6P[#(Z0:n ∈US)= k]6 b(k)

6 x(k) ∼ y(k) for k → ∞ denotes limk→∞ x(k)=y(k)= 1.



J.A. Carrasco / Computers & Operations Research 31 (2004) 807–861 835

and

aC(k)=
k+C−1∑
n= k−1

∑
i∈S
�i(n; k)6

k+C−1∑
n= k−1

b(k)= (C + 1)b(k):

Let qi(n), i∈US be the probability that Z has made n or more visits to US and that the nth of such
visits has been to state i. Trivially, b(n)=

∑
i∈US qi(n). Let q(n) be the row vector (qi(n))i∈US . Tak-

ing into account Z0 = r ∈US , we have q(1)= (Ii= r)i∈US and ‖q(1)T‖1 = 1. Also, from the de3nition
of P1(:), q(n)T = (P1(:)T)n−1q(1)T. Then,

b(n)= ‖q(n)T‖16 ‖(P1(:)T)n−1‖1‖q(1)T‖1 = ‖(P1(:)T)n−1‖1 = h(n):
We have [18, Theorem 3.1] that, for n→∞, ‖(P1(:)T)n−1‖1 ∼ B(:)( n−1

p(:)−1);(P1(:)T)n, B(:)¿ 0,
p(:) integer ¿ 1. Also, since the eigenvalues of a matrix are continuous functions of the elements
of the matrix [19, Theorem 3.13], lim:→0 ;(P1(:)T)= ;(P1(0)T). But PUS ; DS (0)= 0, where 0 is a
matrix of zeroes, and, then, P1(0)T =P′

US ;US (0)
T. Also, with the ordering of states U0; U1; : : : ; UNC , the

elements in the lower triangular portion of P′
US ;US (0)

T are 0 and the diagonal elements have values
0 and values 1− �i;U0∪···∪Uk−1∪{f}=((1 + &)max06k6NCmaxi∈Uk�i;U0∪···∪Uk−1∪{f}), i∈Uk , 0¡k6NC
and, then, ;(P1(0)T)= ;(P′

US ;US (0)
T)= ;.

Let b′(k) be the probability that Z ′ has made k or more visits to U ′
S . We have, for n¿ 0 and

06 k6 n+ 1,∑
i∈S′

�′i(n; k)=
∑
i∈S′

P[Z ′
n= i ∧ #(Z ′

0:n ∈U ′
S)= k]6P[#(Z ′

0:n ∈U ′
S)= k]6 b′(k)

and

a′C(k)=
k+C−1∑
n= k−1

∑
i∈S′

�′i(n; k)6
k+C−1∑
n= k−1

b′(k)= (C + 1)b′(k):

Let q′i(n), i∈U ′
S be the probability that Z ′ has made n or more visits to U ′

S and that the nth of such
visits has been to state i. Trivially, b′(n)=

∑
i∈U ′

S
q′i(n). Let q′(n) be the row vector (q′i(n))i∈U ′

S
. Tak-

ing into account P[Z ′
0 ∈ S ′] = �S′ and that the states in S ′ are transient in Z ′, we have ‖q′(1)T‖16 �S′ .

Also, from the de3nition of P2(:), q′(n)T = (P2(:)T)n−1q′(1)T. Then,

b′(n)= ‖q′(n)T‖16 ‖(P2(:)T)n−1‖1‖q′(1)T‖16 �S′‖(P2(:)T)n−1‖1 = �S′h′(n);
with h′(n)= ‖(P2(:)T)n−1‖1. As before, for n → ∞, ‖(P2(:)T)n−1‖1 ∼ B′(:)( n−1

p′(:)−1);(P2(:)T)n,
B′(:)¿ 0, p′(:) integer ¿ 1, and lim:→0 ;(P2(:)T)= ;(P2(0)T). Since PU ′

S ; DS (0)= 0, P2(0)T =
PU ′

S ;U
′
S
(0)T. But, with the ordering of states U1; U2; : : : ; UNC , the elements in the lower triangular

portion of PU ′
S ;U

′
S
(0)T are 0 and the diagonal elements have values 1 − �i;U0∪···∪Uk−1∪{f}=((1 + &)

max06k6NC maxi∈Uk �i;U0∪···∪Uk−1∪{f}), i∈Uk , 0¡k6NC and, then, ;(P2(0)T)= ;(PU ′
S ;U

′
S
(0)T)= ;.

According to Theorem 5, both aC(n) and a′C(n) decay asymptotically by a factor ;. For class
C1 models and the selection r= o, because of property P2, min0¡k6NC mini∈Uk �i;U0∪···∪Uk−1∪{f} ≈
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mini∈U ′
S
�i and, taking into account &� 1, (1+&)max06k6NC maxi∈UK �i;U0∪···∪Uk−1∪{f} ≈ maxi∈US �i.

Then, letting R=maxi∈US �i=mini∈U ′
S
�i, we have ;≈ 1−1=R, and the values of the truncation param-

eters K and L will be mainly determined by R: the smaller R, the smaller K and L. In fact, we
can roughly approximate h(n) and h′(n) by (1− 1=R)n and roughly approximate aC(n) by h(n) and
a′C(n) by h′(n) and, then, it is easy to show that, for R� 1, K and L would be proportional to R.
As a rule of thumb (see [13]), K and L can be roughly upper bounded by 30R. We note that R is
a “visible” characteristic of the model (one that can be easily computed/estimated). Then, since the
truncation parameter C of our method and the truncation parameters of Algorithm A of [6] can be
easily computed, the previous rule of thumb can be used in practice to anticipate when our method
can be expected to be signi3cantly faster than Algorithm A of [6] for class C1 models with the
selection r= o.

5. Numerical analysis

In this section we will illustrate the application of the method developed in this paper and com-
pare it with algorithm A of [6] using a parametric example belonging to class C1. The exam-
ple is the fault-tolerant database system whose block diagram for the case 4 disk sets is given
in Fig. 9. The system is made up of two processing subsystems, each including one processor
P and two memories M, a set of controllers with two controllers, and D sets of disks, each
with four disks. The system is operational if at least one processor and one memory connected
to it are operational, one controller is operational, and three disks of each set are operational.
Processors fail with rate �P = 2 × 10−5 h−1; a processor failure is soft with probability SP = 0:8
and hard with probability 1 − SP = 0:2. Memories fail with rate �M =2 × 10−4 h−1. Controllers
fail with rate �C =2 × 10−4 h−1. Disks fail with rates �D =3 × 10−4 h−1. A failure of a con-
troller is propagated to two disks of one set with probability 1 − CC =0:10. The disk set over
which the failure is propagated is taken at random. Components do not fail when the system is
down. There is an unlimited number of repairmen which perform restarts of processors in soft

Fig. 9. Block diagram of the example with 4 disk sets.
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Table 1
Number of states, number of transitions and steady-state unavailability for the example as a function of D

D States Transitions UAV

4 8096 36,109 4:48218× 10−5

8 211,456 1,364,173 4:93011× 10−5
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Fig. 10. IAVCD(t; 1 − q) as a function of q for several t for the example with D=4 and initial state the state with all
components unfailed.

failure with rate >PS = 0:5 h−1. The other repair actions are performed by another repairman with 3rst
priority given to disks, next to controllers, next to processors and next to memories. Components with
the same repair priority are chosen at random. The repair rates are >PH = 0:2 h−1 for processors in
hard failure mode, >M =0:2 h−1 for memories, >C =0:5 h−1 for controllers, and >D =1 h−1 for disks.
Table 1 gives the number of states and transitions of the model and the steady-state unavailability
UAV for D=4 and 8.

We start by analyzing the behavior of the interval availability complementary distribution. Fig. 10
plots IAVCD(t; 1−q) as a function of q, around the steady-state unavailability UAV=4:48218×10−5,
for several values of t (0.5, 1, 2, and 5 years), for the example with D=4 and initial state the
state with all components unfailed. We can note how as t increases IAVCD(t; 1 − q) tends to
its asymptotic shape (0 for q¡UAV and 1 for q¿UAV). However, the asymptotic behavior is
reached very slowly, which implies that the measure could be of interest for very large t. Since
the computational eFort of the algorithms to compute the distribution of the interval availability
increases with t, this fact stresses the need for eHcient algorithms.
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Fig. 11. CPU times in seconds required by the proposed method and Algorithm A of [6] for the computation of the
distribution of the interval availability for the example with D=4 and p=0:99999 as a function of the mission time t
in hours.

We compare next, in terms of required CPU times, the method developed in this paper with
algorithm A of [6]. The example belongs to the class of models C1 and, for our method, we will
take the natural selection for the state r, i.e. we will take as regenerative state r the state in which
all components are unfailed. We will also assume that state to be the initial state of the model. All
CPU times given here were obtained in a workstation with a Sun-Blade-1000 processor and 4 GB of
memory. All the CPU times given for our method were measured. However, since for large t and the
large example (D=8), the CPU times required by algorithm A of [6] are enormous, we estimated
them using an approximate Oop count for that method. All measurements or estimations were done
for �=10−5. We give in Figs. 11–14 the CPU times of the 3rst phase of our method (trans), the
CPU times of the second phase (sol), the total CPU times of our method, and the CPU times of
algorithm A of [6]. We take two values for p (p=0:99999 and p=0:9999) and vary t from 100
to 20; 000 h. Memory usage for the large example was about 65 MB. The required C in our method
increases as t increases and p gets smaller. The required K is independent of p and, according to
Theorem 4, increases logarithmically with t. As an illustration of the dependence of C on t and
p and the dependence of K on t, Table 2 gives the required values for C and K for the large
example as a function of t and, for the truncation parameter C, as a function of p. Regarding the
values of K , we can note that the rule of thumb given in the previous section is rather pessimistic,
since that rule predicts values of K of 30R ≈ (30)(7:5)=225, since R is approximately equal to
7:5 for the example. That pessimism can be attributed to the fact that the required error, �, is rather
large (�=10−5). In all cases, our method is faster. The speedups are smaller for the small example
(D=4) and larger for the large example (D=8). For that large example and large t, the speedups
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Fig. 12. CPU times in seconds required by the proposed method and Algorithm A of [6] for the computation of the
distribution of the interval availability for the example with D=4 and p=0:9999 as a function of the mission time t in
hours.

Fig. 13. CPU times in seconds required by the proposed method and Algorithm A of [6] for the computation of the
distribution of the interval availability for the example with D=8 and p=0:99999 as a function of the mission time t
in hours.
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Fig. 14. CPU times in seconds required by the proposed method and Algorithm A of [6] for the computation of the
distribution of the interval availability for the example with D=8 and p=0:9999 as a function of the mission time t in
hours.

Table 2
Required values of the truncation parameters C and K for the example with D=8 as a function of t and p

C

t (h) K p=0:99999 p=0:9999

100 78 2 3
200 86 2 4
500 94 3 4
1000 100 3 5
2000 105 4 7
5000 112 4 10

10,000 117 5 13
20,000 123 7 16

are important (for t=20; 000 h, the speedup is 215 for p=0:99999 and 166 for p=0:9999). The
speedups have practical signi3cance, since algorithm A of [6] takes for t=20; 000 h more than 16 h
for p=0:99999 and more than 36 h for p=0:9999, whereas our method only takes about 4 min
for p=0:99999 and about 13 min for p=0:9999. It is also interesting to note that for small t the
CPU time of our method is dominated by the CPU time of the 3rst phase, whereas for larger t the
second phase becomes also important and can even dominate the total CPU time when the model
is of moderate size (D=4).



J.A. Carrasco / Computers & Operations Research 31 (2004) 807–861 841

6. Conclusions

We have developed a new method for the computation of the distribution of the interval avail-
ability of fault-tolerant systems modeled by CTMCs which is based on a model transformation
approach. Like previously proposed randomization-based methods, the new method is numerically
stable and, apart from roundoF errors, which should be negligible due to the numerical stabil-
ity of the method, computes the measure with well controlled and speci3able-in-advance error.
The basic idea of the method is to obtain a truncated transformed model having, with some ar-
bitrarily small error, the same interval availability distribution as the original model and solve the
truncated transformed model using a state-of-the-art algorithm. The method requires the selection
of a regenerative state and its performance depends on that selection. Due to its “benign” be-
havior, for large enough models and long enough mission times the new method is guaranteed
to be signi3cantly faster than previously proposed methods. For a class of models, class C1, in-
cluding typical failure/repair models of coherent fault-tolerant systems with exponential failure and
repair time distributions and repair in every state with failed components, a natural selection for
the regenerative state exists and theoretical results are available assessing the performance of the
method for that natural selection in terms of “visible” model characteristics. Those results can be
used to anticipate when the new method can be expected to be signi3cantly faster than previous
methods.
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Appendix A.

Lemma A1. Let X = {X (t); t¿ 0} be a CTMC with 8nite state space �=U ∪D, where the states
in U are up states and the states in D are down states, and let X ′ be a CTMC di=ering from
X only in that the transition rate of X from some state i to some state j has been increased
by �¿ 0. Let IAVCD(t; p) be the interval availability complementary distribution of X and let
IAVCD′(t; p) be the interval availability complementary distribution of X ′. Then |IAVCD′(t; p)−
IAVCD(t; p)|6 2�t.

Proof. The proof is done using the formulation (1) for IAVCD(t; p) on which Algorithm A of [6]
is based. We will reuse the notation introduced in Section 2, where that method has been reviewed,
with  ¿maxi∈� �i + � so that both X and X ′ can be randomized with rate  . In addition, we
will denote using a prime the quantities referred to the CTMC X ′, e.g. P′ will denote the transition
probability matrix of the randomized DTMC of X ′ with randomization rate  .
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Using the recurrences for the vectors Yn;k given in Section 2, for n¿ 0 and 0¡k6 n, we have

Y′U
n;k − YUn;k = P′

U;�Y
′
n−1; k−1 − PU;�Yn−1; k−1

= P′
U;�(Y

′
n−1; k−1 − Yn−1; k−1) + (P′

U;� − PU;�)Yn−1; k−1;

from which

‖Y′U
n;k − YUn;k‖∞6 ‖P′

U;�‖∞‖Y′
n−1; k−1 − Yn−1; k−1‖∞ + ‖P′

U;� − PU;�‖∞‖Yn−1; k−1‖∞;
and using ‖P′

U;�‖∞=1, ‖P′
U;� − PU;�‖∞6 2�= and ‖Yn−1; k−1‖∞6 1:

‖Y′U
n;k − YUn;k‖∞6 ‖Y′

n−1; k−1 − Yn−1; k−1‖∞ +
2�
 
; n¿ 0; 0¡k6 n: (A.1)

For n¿ 0, Y′U
n;0 =YUn;0 = 1, and

‖Y′U
n;0 − YUn;0‖∞=0; n¿ 0: (A.2)

For n¿ 0 and 06 k ¡n,

Y′D
n;k − YDn;k = P′

D;�Y
′
n−1; k − PD;�Yn−1; k

= P′
D;�(Y

′
n−1; k − Yn−1; k) + (P′

D;� − PD;�)Yn−1; k ;

from which

‖Y′D
n;k − YDn;k‖∞6 ‖P′

D;�‖∞‖Y′
n−1; k − Yn−1; k‖∞ + ‖P′

D;� − PD;�‖∞‖Yn−1; k‖∞;
and, using ‖P′

D;�‖∞=1, ‖P′
D;� − PD;�‖∞6 2�= and ‖Yn−1; k‖∞6 1,

‖Y′D
n;k − YDn;k‖∞6 ‖Y′

n−1; k − Yn−1; k‖∞ +
2�
 
; n¿ 0; 06 k ¡n: (A.3)

Finally, for n¿ 0, Y′D
n;n=YDn;n= 0, and

‖Y′D
n;n − YDn;n‖∞=0; n¿ 0: (A.4)

Summarizing (A.1)–(A.4) and using ‖Y′
n;k−Yn;k‖∞=max{‖Y′U

n;k − YUn;k‖∞; ‖Y′D
n;k − YDn;k‖∞},

we can write

max
06k6n

‖Y′
n;k − Yn;k‖∞6 max

06k6n−1
‖Y′

n−1; k − Yn−1; k‖∞ +
2�
 
;

which with ‖Y′
0;0 − Y0;0‖∞=0 (because Y′U

0;0 =YU0;0 = 1 and Y′D
0;0 =YD0;0 = 0) gives

max
06k6n

‖Y′
n;k − Yn;k‖∞6 n

2�
 
; n¿ 0

and

‖Y′
n;k − Yn;k‖∞6 n

2�
 
; n¿ 0; 06 k6 n:
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But

Y ′
n;k − Yn;k = �Y′

n;k − �Yn;k = �(Y′
n;k − Yn;k);

which, using ‖�‖∞=1, implies

|Y ′
n;k − Yn;k |6 ‖Y′

n;k − Yn;k‖∞6 n
2�
 
; n¿ 0; 06 k6 n

and

|IAVCD′(t; p)− IAVCD(t; p)|6
∞∑
n=0

e− t
( t)n

n!

n∑
k =0

(
n

k

)
pkqn−k |Y ′

n;k − Yn;k |

6
∞∑
n=0

e− t
( t)n

n!

n∑
k =0

(
n

k

)
pkqn−kn

2�
 

=
2�
 

∞∑
n=0

ne− t
( t)n

n!

=
2�
 

∞∑
n=1

e− t
( t)n

(n− 1)!
=

2�
 
 t

∞∑
n=0

e− t
( t)n

n!
= 2�t:

Proof of Proposition 1. We will take into account that: (1) Ṽn ∈{sul;k ; 06 l6 n; 16 k6 n+1} ∪
{sdl;k ; 06 l6 n; 06 k6 n} ∪ {s′un;k ; 16 k6 n+ 1} ∪ {s′dn;k ; 06 k6 n} ∪ {f}, (2) Ṽn=f implies
Ṽn+1 =f, (3) both Ṽn= sul;k and Ṽn= s

d
l;k imply Ṽn+1 ∈{s·0; ·; sul+1; k+1; s

d
l+1; k ; f}, and (4) both Ṽn= s′un;k

and Ṽn= s′dn;k imply Ṽn+1 ∈{s·0; ·; s′un+1; k+1; s
′d
n+1; k ; f}. From (2), it is clear that the only well-de3ned,

non-null probability P[Ṽn+1 =y | Ṽn= x] for x=f is P[Ṽn+1 =f | Ṽn=f] = 1. We will consider next
the remaining cases for x: (a) x= sul;k , 06 l6 n, 16 k6 n+ 1, (b) x= sdl;k , 06 l6 n, 06 k6 n,
(c) x= s′un;k , 16 k6 n+ 1, and (d) x= s′dn;k , 06 k6 n.
Case a (P[Ṽn= sul;k]¿ 0, 06 l6 n, 16 k6 n+1, which implies (21) P[X̂ n−l= r]¿ 0): Using the

de3nition of Ṽ (21), remembering that X̂
′
is a version of X̂ with initial state r, using the de3nition

of Z (2), and that Zn �= r for n¿ 0:

P[Ṽn+1 = sul+1; k+1 | Ṽn= sul;k]

=
P[Ṽn= sul;k ∧ Ṽn+1 = sul+1; k+1]

P[Ṽn= sul;k]

=
P[X̂ n−l= r ∧ X̂ n−l+1:n+1 ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US ∧ X̂n+1 ∈US]

P[X̂ n−l= r ∧ X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US]

=
P[X̂ n−l+1:n+1 ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US ∧ X̂n+1 ∈US | X̂ n−l= r]

P[X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US | X̂ n−l= r]
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=
P[X̂

′
1:l+1 ∈ S ′ ∧ #(X̂

′
0:l ∈US)= k ∧ X̂ ′

l ∈US ∧ X̂ ′
l+1 ∈US]

P[X̂
′
1:l ∈ S ′ ∧ #(X̂

′
0:l ∈US)= k ∧ X̂ ′

l ∈US]

=
P[#(Z0:l ∈US)= k ∧ Zl ∈US ∧ Zl+1 ∈U ′

S]
P[#(Z0:l ∈US)= k ∧ Zl ∈US] =

∑
i∈US )i(l; k)Pi;U ′

S∑
i∈US )i(l; k)

=wuul;k ;

P[Ṽn+1 = sdl+1; k | Ṽn= sul;k]

=
P[Ṽn= sul;k ∧ Ṽn+1 = sdl+1; k]

P[Ṽn= sul;k]

=
P[X̂ n−l= r ∧ X̂ n−l+1:n+1 ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US ∧ X̂n+1 ∈DS]

P[X̂ n−l= r ∧ X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US]

=
P[X̂ n−l+1:n+1 ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US ∧ X̂n+1 ∈DS | X̂ n−l= r]

P[X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US | X̂ n−l= r]

=
P[X̂

′
1:l+1 ∈ S ′ ∧ #(X̂

′
0:l ∈US)= k ∧ X̂ ′

l ∈US ∧ X̂ ′
l+1 ∈DS]

P[X̂
′
1:l ∈ S ′ ∧ #(X̂

′
0:l ∈US)= k ∧ X̂ ′

l ∈US]

=
P[#(Z0:l ∈US)= k ∧ Zl ∈US ∧ Zl+1 ∈D′

S]
P[#(Z0:l ∈US)= k ∧ Zl ∈US] =

∑
i∈US )i(l; k)Pi;D′

S∑
i∈US )i(l; k)

=wudl;k ;

P[Ṽn+1 = s·0; · | Ṽn= sul;k]

=
P[Ṽn= sul;k ∧ Ṽn+1 = s·0; ·]

P[Ṽn= sul;k]

=
P[X̂ n−l= r ∧ X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US ∧ X̂n+1 = r]

P[X̂ n−l= r ∧ X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US]

=
P[X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US ∧ X̂n+1 = r | X̂ n−l= r]

P[X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US | X̂ n−l= r]

=
P[X̂

′
1:l ∈ S ′ ∧ #(X̂

′
0:l ∈US)= k ∧ X̂ ′

l ∈US ∧ X̂ ′
l+1 = r]

P[X̂
′
1:l ∈ S ′ ∧ #(X̂

′
0:l ∈US)= k ∧ X̂ ′

l ∈US]

=
P[#(Z0:l ∈US)= k ∧ Zl ∈US ∧ Zl+1 = a]

P[#(Z0:l ∈US)= k ∧ Zl ∈US] =

∑
i∈US )i(l; k)Pi;r∑
i∈US )i(l; k)

= qul;k ;
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P[Ṽn+1 =f | Ṽn= sul;k] =
P[Ṽn= sul;k ∧ Ṽn+1 =f]

P[Ṽn= sul;k]

=
P[X̂ n−l= r ∧ X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US ∧ X̂n+1 =f]

P[X̂ n−l= r ∧ X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US]

=
P[X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US ∧ X̂n+1 =f | X̂ n−l= r]

P[X̂ n−l+1:n ∈ S ′ ∧ #(X̂ n−l:n ∈US)= k ∧ X̂n ∈US | X̂ n−l= r]

=
P[X̂

′
1:l ∈ S ′ ∧ #(X̂

′
0:l ∈US)= k ∧ X̂ ′

l ∈US ∧ X̂ ′
l+1 =f]

P[X̂
′
1:l ∈ S ′ ∧ #(X̂

′
0:l ∈US)= k ∧ X̂ ′

l ∈US]

=
P[#(Z0:l ∈US)= k ∧ Zl ∈US ∧ Zl+1 =f]

P[#(Z0:l ∈US)= k ∧ Zl ∈US] =

∑
i∈US )i(l; k)Pi;f∑
i∈US )i(l; k)

= vul;k :

Case b (P[Ṽn= sdl;k]¿ 0, 06 l6 n, 06 k6 n): The developments are very similar to those for
case a. The results are:

P[Ṽn+1 = sul+1; k+1 | Ṽn= sdl;k] =
∑

i∈DS )i(l; k)Pi;U ′
S∑

i∈DS )i(l; k)
=wdul;k ;

P[Ṽn+1 = sdl+1; k | Ṽn= sdl;k] =
∑

i∈DS )i(l; k)Pi;D′
S∑

i∈DS )i(l; k)
=wddl;k ;

P[Ṽn+1 = s·0; · | Ṽn= sdl;k] =
∑

i∈DS )i(l; k)Pi;r∑
i∈DS )i(l; k)

= qdl;k ;

P[Ṽn+1 =f | Ṽn= sdl;k] =
∑

i∈DS )i(l; k)Pi;f∑
i∈DS )i(l; k)

= vdl;k :

Case c (P[Ṽn= s′un;k]¿ 0, 16 k6 n + 1): Using the de3nition of Ṽ (21) and the de3nition
of Z ′ (3):

P[Ṽn+1 = s′
u
n+1; k+1 | Ṽn= s′un;k] =

P[Ṽn= s′un;k ∧ Ṽn+1 = s′un+1; k+1]

P[Ṽn= s′un;k]

=
P[X̂ 0:n+1 ∈ S ′ ∧ #(X̂ 0:n ∈U ′

S)= k ∧ X̂n ∈U ′
S ∧ X̂n+1 ∈U ′

S]

P[X̂ 0:n ∈ S ′ ∧ #(X̂ 0:n ∈U ′
S)= k ∧ X̂n ∈U ′

S]

=
P[#(Z ′

0:n ∈U ′
S)= k ∧ Z ′

n ∈U ′
S ∧ Z ′

n+1 ∈U ′
S]

P[#(Z ′
0:n ∈U ′

S)= k ∧ Z ′
n ∈U ′

S]
=

∑
i∈U ′

S
)′i(n; k)Pi;U ′

S∑
i∈U ′

S
)′i(n; k)

=w′uu
n;k ;
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P[Ṽn+1 = s′
d
n+1; k | Ṽn= s′un;k] =

P[Ṽn= s′un;k ∧ Ṽn+1 = s′dn+1; k]

P[Ṽn= s′un;k]

=
P[X̂ 0:n+1 ∈ S ′ ∧ #(X̂ 0:n ∈U ′

S)= k ∧ X̂n ∈U ′
S ∧ X̂n+1 ∈D′

S]

P[X̂ 0:n ∈ S ′ ∧ #(X̂ 0:n ∈U ′
S)= k ∧ X̂n ∈U ′

S]

=
P[#(Z ′

0:n ∈U ′
S)= k ∧ Z ′

n ∈U ′
S ∧ Z ′

n+1 ∈D′
S]

P[#(Z ′
0:n ∈U ′

S)= k ∧ Z ′
n ∈U ′

S]
=

∑
i∈U ′

S
)′i(n; k)Pi;D′

S∑
i∈U ′

S
)′i(n; k)

=w′ud
n;k ;

P[Ṽn+1 = s:0; : | Ṽn= s′un;k] =
P[Ṽn= s′un;k ∧ Ṽn+1 = s:0; :]

P[Ṽn= s′un;k]

=
P[X̂ 0:n ∈ S ′ ∧ #(X̂ 0:n ∈U ′

S)= k ∧ X̂n ∈U ′
S ∧ X̂n+1 = r]

P[X̂ 0:n ∈ S ′ ∧ #(X̂ 0:n ∈U ′
S)= k ∧ X̂n ∈U ′

S]

=
P[#(Z ′

0:n ∈U ′
S)= k ∧ Z ′

n ∈U ′
S ∧ Z ′

n+1 = a]
P[#(Z ′

0:n ∈U ′
S)= k ∧ Z ′

n ∈U ′
S]

=

∑
i∈U ′

S
)′i(n; k)Pi;r∑

i∈U ′
S
)′i(n; k)

= q′un;k ;

P[Ṽn+1 =f | Ṽn= s′un;k] =
P[Ṽn= s′un;k ∧ Ṽn+1 =f]

P[Ṽn= s′un;k]

=
P[X̂ 0:n ∈ S ′ ∧ #(X̂ 0:n ∈U ′

S)= k ∧ X̂n ∈U ′
S ∧ X̂n+1 =f]

P[X̂ 0:n ∈ S ′ ∧ #(X̂ 0:n ∈U ′
S)= k ∧ X̂n ∈U ′

S]

=
P[#(Z ′

0:n ∈U ′
S)= k ∧ Z ′

n ∈U ′
S ∧ Z ′

n+1 =f]
P[#(Z ′

0:n ∈U ′
S)= k ∧ Z ′

n ∈U ′
S]

=

∑
i∈U ′

S
)′i(n; k)Pi;f∑

i∈U ′
S
)′i(n; k)

= v′un;k :

Case d (P[Ṽn= s′dn;k]¿ 0, 06 k6 n): The developments are very similar to those of case c. The
results are:

P[Ṽn+1 = s′
u
n+1; k+1 | Ṽn= s′dn;k] =

∑
i∈D′

S
)′i(n; k)Pi;U ′

S∑
i∈D′

S
)′i(n; k)

=w′du
n;k ;

P[Ṽn+1 = s′
d
n+1; k | Ṽn= s′dn;k] =

∑
i∈D′

S
)′i(n; k)Pi;D′

S∑
i∈D′

S
)′i(n; k)

=w′dd
n;k ;
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P[Ṽn+1 = s:0; : | Ṽn= s′dn;k] =
∑

i∈D′
S
)′i(n; k)Pi;r∑

i∈D′
S
)′i(n; k)

= q′dn;k ;

P[Ṽn+1 =f | Ṽn= s′dn;k] =
∑

i∈D′
S
)′i(n; k)Pi;f∑

i∈D′
S
)′i(n; k)

= v′dn;k :

Proof of Proposition 2. Assuming P[Ṽm= s·0; ·]¿ 0, let (note that the de3nitions are correct because
the steps at which Ṽ hits state s·0;· are regeneration points)

ṽ(n; k)=P[Ṽm+n=f ∧ Ṽm+1:m+n−1 ∈ VS ′ ∧ #(Ṽm:m+n−1 ∈ VUS)= k | Ṽm= s·0; ·]; (A.5)

q̃(n; k)=P[Ṽm+n= s·0; · ∧ Ṽm+1:m+n−1 ∈ VS ′ ∧ #(Ṽm:m+n−1 ∈ VUS)= k | Ṽm= s·0; ·];

w̃u(n; k)=P[Ṽm+1:m+n ∈ VS ′ ∧ #(Ṽm:m+n ∈ VUS)= k ∧ Ṽm+n ∈ VUS | Ṽm= s·0; ·]; (A.6)

w̃d(n; k)=P[Ṽm+1:m+n ∈ VS ′ ∧ #(Ṽm:m+n ∈ VUS)= k ∧ Ṽm+n ∈ VDS | Ṽm= s·0; ·];
and let

ṽ′(n; k)=P[Ṽn=f ∧ Ṽ 0:n−1 ∈ VS ′ ∧ #(Ṽ 0:n−1 ∈ VU ′
S)= k]; (A.7)

q̃′(n; k)=P[Ṽn= s·0; · ∧ Ṽ 0:n−1 ∈ VS ′ ∧ #(Ṽ 0:n−1 ∈ VU ′
S)= k];

w̃′u(n; k)=P[Ṽ 0:n ∈ VS ′ ∧ #(Ṽ 0:n ∈ VU ′
S)= k ∧ Ṽn ∈ VU ′

S]; (A.8)

w̃′d(n; k)=P[Ṽ 0:n ∈ VS ′ ∧ #(Ṽ 0:n ∈ VU ′
S)= k ∧ Ṽn ∈ VD′

S]:

Assuming P[Ṽm= s·0; ·]¿ 0, let

’̃i(n; k) = P[Ṽm+n= s·0; · ∧ Ṽm+1:m+n−1 ∈ V S ∧ #(Ṽm:m+n−1 ∈ VUS)= k

∧ #(Ṽm+1:m+n−1 = s·0; ·)= i | Ṽm= s·0; ·]:

Using the fact that the steps at which Ṽ hits state s·0;· are regeneration points, the probabilities
’̃i(n; k), 06 i6 n− 1 can be computed recursively using:

’̃0(n; k)= q̃(n; k);

’̃i(n; k)=
n−1∑
m= i

min{k;m}∑
l=0

’̃i−1(m; l)q̃(n− m; k − l); i¿ 1:



848 J.A. Carrasco / Computers & Operations Research 31 (2004) 807–861

Let

7̃ui (n; k)=P[#(Ṽ 0:n ∈ VU )= k ∧ #(Ṽ 0:n= s·0; ·)= i ∧ Ṽn ∈ VU ];

7̃di (n; k)=P[#(Ṽ 0:n ∈ VU )= k ∧ #(Ṽ 0:n= s·0; ·)= i ∧ Ṽn ∈ VD]:

We clearly have

P[#(Ṽ 0:n ∈ VU )= k ∧ Ṽn ∈ VU ] =
n+1∑
i=0

7̃ui (n; k);

P[#(Ṽ 0:n ∈ VU )= k ∧ Ṽn ∈ VD] =
n+1∑
i=0

7̃di (n; k):

Furthermore, the probabilities 7̃ui (n; k) and 7̃di (n; k), 06 i6 n + 1 can be computed from ṽ(n; k),
q̃(n; k), w̃u(n; k), w̃d(n; k), ṽ′(n; k), q̃′(n; k), w̃′u(n; k), w̃′d(n; k), and ’̃i(n; k), i¿ 0 using:

7̃u0(n; k)=



w̃′u(n; k) +

n∑
m=max{0; n+1−k}

ṽ′(m; k + m− n− 1) if f∈U;

w̃′u(n; k) if f∈D;

7̃d0(n; k)=



w̃′d(n; k) if f∈U;

w̃′d(n; k) +
n∑

m= k

ṽ′(m; k) if f∈D;

7̃u1(n; k)=




n∑
m1 = 1

min{k;m1}∑
l=max{0; k+m1−n−1}

q̃′(m1; l)


w̃u(n− m1; k − l)

+
n−m1∑

m2 =max{1; n+l+1−k−m1}
ṽ(m2; k + m1 + m2 − n− l− 1)




+ �r


w̃u(n; k) + n∑

m1 =max{1; n+1−k}
ṽ(m1; k + m1 − n− 1)


 if f∈U;

n∑
m1 = 1

min{k;m1}∑
l=max{0; k+m1−n−1}

q̃′(m1; l)w̃u(n− m1; k − l) + �rw̃u(n; k) if f∈D;
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7̃d1(n; k)=




n∑
m1 = 1

min{k;m1}∑
l=max{0; k+m1−n}

q̃′(m1; l)w̃d(n− m1; k − l) + �rw̃d(n; k) if f∈U;

n∑
m1 = 1

min{k;m1}∑
l=max{0; k+m1−n}

q̃′(m1; l)


w̃d(n− m1; k − l)

+
n−m1∑

m2 =max{1; k−l}
ṽ(m2; k − l)




+ �r


w̃d(n; k) + n∑

m1 =max{1; k}
ṽ(m1; k)


 if f∈D

and, for i¿ 2,

7̃ui (n; k)=




n∑
m1 = 1

min{k;m1}∑
l1 =max{0; k+m1−n−1}

n−m1∑
m2 = i−1

min{k−l1 ;m2}∑
l2 =max{0; k+m1+m2−n−l1−1}

q̃′(m1; l1)’̃i−2(m2; l2)


w̃u(n− m1 − m2; k − l1 − l2)

+
n−m1−m2∑

m3 =max{1; n+l1+l2+1−k−m1−m2}
ṽ(m3; k + m1 + m2 + m3 − n− l1 − l2 − 1)




+ �r
n∑

m1 = i−1

min{k;m1}∑
l=max{0; k+m1−n−1}

’̃i−2(m1; l)


w̃u(n− m1; k − l)

+
n−m1∑

m2 =max{1; n+l+1−k−m1}
ṽ(m2; k + m1 + m2 − n− l− 1)


 if f∈U;

n∑
m1 = 1

min{k;m1}∑
l1 =max{0; k+m1−n−1}

n−m1∑
m2 = i−1

min{k−l1 ;m2}∑
l2 =max{0; k+m1+m2−n−l1−1}

q̃′(m1; l1)’̃i−2(m2; l2)w̃u(n− m1 − m2; k − l1 − l2)

+ �r
n∑

m1 = i−1

min{k;m1}∑
l=max{0; k+m1−n−1}

’̃i−2(m1; l)w̃u(n− m1; k − l) if f∈D;
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7̃di (n; k)=




n∑
m1 = 1

min{k;m1}∑
l1 =max{0; k+m1−n}

n−m1∑
m2 = i−1

min{k−l1 ;m2}∑
l2 =max{0; k+m1+m2−n−l1}

q̃′(m1; l1)’̃i−2(m2; l2)w̃d(n− m1 − m2; k − l1 − l2)

+ �r
n∑

m1 = i−1

min{k;m1}∑
l=max{0; k+m1−n}

’̃i−2(m1; l)w̃d(n− m1; k − l) if f∈U;

n∑
m1 = 1

min{k;m1}∑
l1 =max{0; k+m1−n}

n−m1∑
m2 = i−1

min{k−l1 ;m2}∑
l2 =max{0; k+m1+m2−n−l1}

q̃′(m1; l1)’̃i−2(m2; l2)


w̃d(n− m1 − m2; k − l1 − l2)

+
n−m1−m2∑

m3 =max{1; k−l1−l2}
ṽ(m3; k − l1 − l2)




+ �r
n∑

m1 = i−1

min{k;m1}∑
l=max{0; k+m1−n}

’̃i−2(m1; l)


w̃d(n− m1; k − l)

+
n−m1∑

m2 =max{1; k−l}
ṽ(m2; k − l)


 if f∈D:

The developments made so far formalize P[#(Ṽ 0:n ∈ VU )= k ∧ Ṽn ∈ VU ] and P[#(Ṽ 0:n ∈ VU )= k ∧
Ṽn ∈ VD] in terms of ṽ(n; k), q̃(n; k), w̃u(n; k), w̃d(n; k), ṽ′(n; k), q̃′(n; k), w̃′u(n; k), and w̃′d(n; k).
Assuming P[V̂m= s·0; ·]¿ 0, let

v̂(n; k)=P[V̂m+n=f ∧ V̂m+1:m+n−1 ∈ VS ′ ∧ #(V̂m:m+n−1 ∈ VUS)= k | V̂m= s·0; ·]; (A.9)

q̂(n; k)=P[V̂m+n= s·0; · ∧ V̂m+1:m+n−1 ∈ VS ′ ∧ #(V̂m:m+n−1 ∈ VUS)= k | V̂m= s·0; ·];

ŵu(n; k)=P[V̂m+1:m+n ∈ VS ′ ∧ #(V̂m:m+n ∈ VUS)= k ∧ V̂m+n ∈ VUS | V̂m= s·0; ·];

ŵd(n; k)=P[V̂m+1:m+n ∈ VS ′ ∧ #(V̂m:m+n ∈ VUS)= k ∧ V̂m+n ∈ VDS | V̂m= s·0; ·];
and let

v̂′(n; k)=P[V̂n=f ∧ V̂ 0:n−1 ∈ VS ′ ∧ #(V̂ 0:n−1 ∈ VU ′
S)= k]; (A.10)

q̂′(n; k)=P[V̂n= s·0; · ∧ V̂ 0:n−1 ∈ VS ′ ∧ #(V̂ 0:n−1 ∈ VU ′
S)= k];
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ŵ′u(n; k)=P[V̂ 0:n ∈ VS ′ ∧ #(V̂ 0:n ∈ VU ′
S)= k ∧ V̂n ∈ VU ′

S];

ŵ′d(n; k)=P[V̂ 0:n ∈ VS ′ ∧ #(V̂ 0:n ∈ VU ′
S)= k ∧ V̂n ∈ VD′

S]:

It is possible to formalize P[#(V̂ 0:n ∈ VU )= k ∧ V̂n ∈ VU ] and P[#(V̂ 0:n ∈ VU )= k ∧ V̂n ∈ VD] in
terms of v̂(n; k), q̂(n; k), ŵu(n; k), ŵd(n; k), v̂′(n; k), q̂′(n; k), ŵ′u(n; k), and ŵ′d(n; k) in a sim-
ilar way. Therefore, to show that P[#(V̂ 0:n ∈ VU )= k ∧ V̂n ∈ VU ] =P[#(Ṽ 0:n ∈ VU )= k ∧ Ṽn ∈ VU ]
and P[#(V̂ 0:n ∈ VU )= k ∧ V̂n ∈ VD] =P[#(Ṽ 0:n ∈ VU )= k ∧ Ṽn ∈ VD], is suHces to prove that: (1)
ŵu(n; k)= w̃u(n; k), ŵd(n; k)= w̃d(n; k), (2) v̂(n; k)= ṽ(n; k), (3) q̂(n; k)= q̃(n; k), (4) ŵ′u(n; k)=
w̃′u(n; k), ŵ′d(n; k)= w̃′d(n; k), (5) v̂′(n; k)= ṽ′(n; k), and (6) q̂′(n; k)= q̃′(n; k). We will prove next
all those results. In the proofs we will use (assuming P[V̂m= s·0; ·]¿ 0):

ŵu(n; k)=P[V̂m+n= sun;k | V̂m= s·0; ·];

ŵd(n; k)=P[V̂m+n= sdn;k | V̂m= s·0; ·];

ŵ′u(n; k)=P[V̂n= s′
u
n;k];

ŵ′d(n; k)=P[V̂n= s′
d
n;k];

which easily follow from the de3nitions of ŵu(n; k), ŵd(n; k), ŵ′u(n; k), and ŵ′d(n; k) and the state
transition diagram of V̂ (illustrated in Fig. 2), taking into account that the up states of V̂ in V S
(states in VUS) are the states sul;k and s′ul; k and the down states of V̂ in V S (states in VDS) are the
states sdl;k and s′dl;k . Also, to avoid excessive discussion, we will conventionally assume that 0 by a
non-de3ned quantity is 0.

Proof of (1) (ŵu(n; k)= w̃u(n; k), ŵd(n; k)= w̃d(n; k)). The proof is by induction on n. For the base
case, n=0, we trivially have

ŵu(0; 0)= w̃u(0; 0)=0;

ŵu(0; 1)= w̃u(0; 1)=

{
1 if r ∈US;
0 if r ∈DS;

ŵd(0; 0)= w̃d(0; 0)=

{
0 if r ∈US;
1 if r ∈DS;

ŵd(0; 1)= w̃d(0; 1)=0:

Let us proceed with the induction step. First, using the de3nitions of w̃u(n; k) (A.6) and Ṽ (21),
remembering that X̂

′
is a version of X̂ with initial state r, and using the de3nition of Z (2), assuming

P[Ṽm= s·0; ·]¿ 0, which implies P[X̂m= r]¿ 0:

w̃u(n; k) =P[X̂m+1:m+n ∈ S ′ ∧ #(X̂m:m+n ∈US)= k ∧ X̂m+n ∈US | X̂m= r]
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=P[X̂
′
1:n ∈ S ′ ∧ #(X̂

′
0:n ∈US)= k ∧ X̂ ′

n ∈US]

=P[#(Z0:n ∈US)= k ∧ Zn ∈US] =
∑
i∈US

)i(n; k); : (A.11)

Similarly, assuming P[Ṽm= s·0; ·]¿ 0, which implies P[X̂m= r]¿ 0:

w̃d(n; k)=P[X̂m+1:m+n ∈ S ′ ∧ #(X̂m:m+n ∈US)= k ∧ X̂m+n ∈DS | X̂m= r]

=P[X̂
′
1:n ∈ S ′ ∧ #(X̂

′
0:n ∈US)= k ∧ X̂ ′

n ∈DS]

=P[#(Z0:n ∈US)= k ∧ Zn ∈DS] =
∑
i∈DS

)i(n; k): (A.12)

On the other hand, considering the state transition diagram of V̂ and using the induction hypothesis,
(A.11), (A.12), and (4)–(6), assuming P[V̂m= s·0; ·]¿ 0:

ŵu(n+ 1; k) = P[V̂m+n+1 = sun+1; k | V̂m= s·0; ·]

= P[V̂m+n+1 = sun+1; k | V̂m+n= sun;k−1]P[V̂m+n= s
u
n;k−1 | V̂m= s·0; ·]

+P[V̂m+n+1 = sun+1; k | V̂m+n= sdn;k−1]P[V̂m+n= s
d
n;k−1 | V̂m= s·0; ·]

= wuun;k−1ŵ
u(n; k − 1) + wdun;k−1ŵ

d(n; k − 1)

=

∑
i∈US )i(n; k − 1)Pi;U ′

S∑
i∈US )i(n; k − 1)

w̃u(n; k − 1) +

∑
i∈DS )i(n; k − 1)Pi;U ′

S∑
i∈DS )i(n; k − 1)

w̃d(n; k − 1)

=
∑
i∈US

)i(n; k − 1)Pi;U ′
S
+
∑
i∈DS

)i(n; k − 1)Pi;U ′
S
=
∑
i∈S

)i(n; k − 1)Pi;U ′
S

=
∑
i∈U ′

S

)i(n+ 1; k)=
∑
i∈US

)i(n+ 1; k)= w̃u(n+ 1; k);

ŵd(n+ 1; k)=P[V̂m+n+1 = sdn+1; k | V̂m= s·0; ·]

=P[V̂m+n+1 = sdn+1; k | V̂m+n= sun;k]P[V̂m+n= sun;k | V̂m= s·0; ·]

+P[V̂m+n+1 = sdn+1; k | V̂m+n= sdn;k]P[V̂m+n= sdn;k | V̂m= s·0; ·]

=wudn;k ŵ
u(n; k) + wddn;k ŵ

d(n; k)

=

∑
i∈US )i(n; k)Pi;D′

S∑
i∈US )i(n; k)

w̃u(n; k) +

∑
i∈DS )i(n; k)Pi;D′

S∑
i∈DS )i(n; k)

w̃d(n; k)
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=
∑
i∈US

)i(n; k)Pi;D′
S
+
∑
i∈DS

)i(n; k)Pi;D′
S
=
∑
i∈S

)i(n; k)Pi;D′
S

=
∑
i∈D′

S

)i(n+ 1; k)=
∑
i∈DS

)i(n+ 1; k)= w̃d(n+ 1; k):

Proof of (2) (v̂(n; k)= ṽ(n; k)). Using the de3nitions of ṽ(n; k) (A.5) and Ṽ (21), remembering that
X̂

′
is a version of X̂ with initial state r and using the de3nition of Z (2), assuming P[Ṽm= s·0; ·]¿ 0,

which implies P[X̂m= r]¿ 0:

ṽ(n; k) = P[X̂m+n=f ∧ X̂m+1:m+n−1 ∈ S ′ ∧ #(X̂m:m+n−1 ∈US)= k | X̂m= r]

= P[X̂
′
n=f ∧ X̂ ′

1:n−1 ∈ S ′ ∧ #(X̂
′
0:n−1 ∈US)= k]

= P[Zn=f ∧ Z0:n−1 ∈ S ∧ #(Z0:n−1 ∈US)= k] =
∑
i∈S

)i(n− 1; k)Pi;f:

On the other hand, using the de3nition of v̂(n; k) (A.9), considering the state transition diagram of
V̂ and using result (1), (A.11) and (A.12), assuming P[V̂m= s·0; ·]¿ 0:

v̂(n; k)=P[V̂m+n=f ∧ V̂ n+1:m+n−1 ∈ VS ′ ∧ #(V̂m:m+n−1 ∈ VUS)= k | V̂m= s·0; ·]

=P[V̂m+n=f | V̂m+n−1 = sun−1; k]P[V̂m+n−1 = sun−1; k | V̂m= s·0; ·]

+P[V̂m+n=f | V̂m+n−1 = sdn−1; k]P[V̂m+n−1 = sdn−1; k | V̂m= s·0; ·]

= vun−1; k ŵ
u(n− 1; k) + vdn−1; k ŵ

d(n− 1; k)

=

∑
i∈US )i(n− 1; k)Pi;f∑
i∈US )i(n− 1; k)

w̃u(n− 1; k) +

∑
i∈DS )i(n− 1; k)Pi;f∑
i∈DS )i(n− 1; k)

w̃d(n− 1; k)

=
∑
i∈US

)i(n− 1; k)Pi;f +
∑
i∈DS

)i(n− 1; k)Pi;f=
∑
i∈S

)i(n− 1; k)Pi;f:

Proof of (3) (q̂(n; k)= q̃(n; k)). The developments are very similar to those of the proof of result (2).
Assuming P[Ṽm= s·0; ·]¿ 0, which implies P[X̂m= r]¿ 0:

q̃(n; k) = P[X̂m+n= r ∧ X̂m+1:m+n−1 ∈ S ′ ∧ #(X̂m:m+n−1 ∈US)= k | X̂m= r]

= P[X̂
′
n= r ∧ X̂ ′

1:n−1 ∈ S ′ ∧ #(X̂
′
0:n−1 ∈US)= k]

= P[Zn= a ∧ Z0:n−1 ∈ S ∧ #(Z0:n−1 ∈US)= k] =
∑
i∈S

)i(n− 1; k)Pi;r ;
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and, assuming P[V̂m= s·0; ·]¿ 0:

q̂(n; k) = P[V̂m+n= s·0; · ∧ V̂ n+1:m+n−1 ∈ VS ′ ∧ #(V̂m:m+n−1 ∈ VUS)= k | V̂m= s·0; ·]

= P[V̂m+n= s·0; · | V̂m+n−1 = sun−1; k]P[V̂m+n−1 = sun−1; k | V̂m= s·0; ·]

+P[V̂m+n= s·0; · | V̂m+n−1 = sdn−1; k]P[V̂m+n−1 = sdn−1; k | V̂m= s·0; ·]

= qun−1; k ŵ
u(n− 1; k) + qdn−1; k ŵ

d(n− 1; k)

=

∑
i∈US )i(n− 1; k)Pi;r∑
i∈US )i(n− 1; k)

w̃u(n− 1; k) +

∑
i∈DS )i(n− 1; k)Pi;r∑
i∈DS )i(n− 1; k)

w̃d(n− 1; k)

=
∑
i∈US

)i(n− 1; k)Pi;r +
∑
i∈DS

)i(n− 1; k)Pi;r =
∑
i∈S

)i(n− 1; k)Pi;r :

Proof of (4) (ŵ′u(n; k)= w̃′u(n; k), ŵ′d(n; k)= w̃′d(n; k)). The proof is by induction on n. For the
base case, n=0, we trivially have

ŵ′u(0; 0)= w̃′u(0; 0)=0;

ŵ′u(0; 1)= w̃′u(0; 1)= �U ′
S
;

ŵ′d(0; 0)= w̃′d(0; 0)= �D′
S
;

ŵ′u(0; 1)= w̃′u(0; 1)=0:

Let us proceed with the induction step. First, using the de3nitions of w̃′u(n; k) (A.8), Ṽ (21), and
Z ′ (3):

w̃′u(n; k) = P[X̂ 0:n ∈ S ′ ∧ #(X̂ 0:n ∈U ′
S)= k ∧ X̂n ∈U ′

S]

= P[#(Z ′
0:n ∈U ′

S)= k ∧ Z ′
n ∈U ′

S] =
∑
i∈U ′

S

)′i(n; k): (A.13)

Similarly:

w̃′d(n; k) = P[X̂ 0:n ∈ S ′ ∧ #(X̂ 0:n ∈U ′
S)= k ∧ X̂n ∈D′

S]

= P[#(Z ′
0:n ∈U ′

S)= k ∧ Z ′
n ∈D′

S] =
∑
i∈D′

S

)′i(n; k): (A.14)

On the other hand, considering the state transition diagram of V̂ and using the induction hypothesis,
(A.13), (A.14), (13), and (14):

ŵ′u(n+ 1; k) = P[V̂n+1 = s′
u
n+1; k]

= P[V̂n+1 = s′
u
n+1; k | V̂n= s′un;k−1]P[V̂n= s

′u
n;k−1]
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+P[V̂n+1 = s′
u
n+1; k | V̂n= s′dn;k−1]P[V̂n= s

′d
n;k−1]

= w′uu
n;k−1ŵ

′u(n; k − 1) + w′du
n;k−1ŵ

′d(n; k − 1)

=

∑
i∈U ′

S
)′i(n; k − 1)Pi;U ′

S∑
i∈U ′

S
)′i(n; k − 1)

w̃′u(n; k − 1) +

∑
i∈D′

S
)′i(n; k − 1)Pi;U ′

S∑
i∈D′

S
)′i(n; k − 1)

w̃′d(n; k − 1)

=
∑
i∈U ′

S

)′i(n; k − 1)Pi;U ′
S
+
∑
i∈D′

S

)′i(n; k − 1)Pi;U ′
S
=
∑
i∈S′

)′i(n; k − 1)Pi;U ′
S

=
∑
i∈U ′

S

)′i(n+ 1; k)= w̃′u(n+ 1; k);

ŵ′d(n+ 1; k) = P[V̂n+1 = s′
d
n+1; k]

= P[V̂n+1 = s′
d
n+1; k | V̂n= s′un;k]P[V̂n= s′un;k]

+P[V̂n+1 = s′
d
n+1; k | V̂n= s′dn;k]P[V̂n= s′dn;k]

= w′ud
n;k ŵ

′u(n; k) + w′dd
n;k ŵ

′d(n; k)

=

∑
i∈U ′

S
)′i(n; k)Pi;D′

S∑
i∈U ′

S
)′i(n; k)

w̃′u(n; k) +

∑
i∈D′

S
)′i(n; k)Pi;D′

S∑
i∈D′

S
)′i(n; k)

w̃′d(n; k)

=
∑
i∈U ′

S

)′i(n; k)Pi;D′
S
+
∑
i∈D′

S

)′i(n; k)Pi;D′
S
=
∑
i∈S′

)′i(n; k)Pi;D′
S

=
∑
i∈D′

S

)′i(n+ 1; k)= w̃′d(n+ 1; k):

Proof of (5) (v̂′(n; k)= ṽ′(n; k)). Using the de3nitions of ṽ′(n; k) (A.7), Ṽ (21) and Z ′ (3):

ṽ′(n; k) = P[X̂n=f ∧ X̂ 0:n−1 ∈ S ′ ∧ #(X̂ 0:n−1 ∈U ′
S)= k]

= P[Z ′
n=f ∧ Z ′

0:n−1 ∈ S ′ ∧ #(Z ′
0:n−1 ∈U ′

S)= k] =
∑
i∈S′

)′i(n− 1; k)Pi;f:

On the other hand, using the de3nition of v̂′(n; k) (A.10), considering the state transition diagram
of V̂ and using result (4), (A.13) and (A.14):

v̂′(n; k) = P[V̂n=f ∧ V̂ 0:n−1 ∈ VS ′ ∧ #(V̂ 0:n−1 ∈ VU ′
S)= k]

= P[V̂n=f | V̂ n−1 = s′
u
n−1; k]P[V̂ n−1 = s′

u
n−1; k]
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+P[V̂n=f | V̂ n−1 = s′
d
n−1; k]P[V̂ n−1 = s′

d
n−1; k]

= v′un−1; k ŵ
′u(n− 1; k) + v′dn−1; k ŵ

′d(n− 1; k)

=

∑
i∈U ′

S
)′i(n− 1; k)Pi;f∑

i∈U ′
S
)′i(n− 1; k)

w̃′u(n− 1; k) +

∑
i∈D′

S
)′i(n− 1; k)Pi;f∑

i∈D′
S
)′i(n− 1; k)

w̃′d(n− 1; k)

=
∑
i∈U ′

S

)′i(n− 1; k)Pi;f +
∑
i∈D′

S

)′i(n− 1; k)Pi;f=
∑
i∈S′

)′i(n− 1; k)Pi;f:

Proof of (6) (q̂′(n; k)= q̃′(n; k)). The developments are very similar to those of the proof of result
(5). We have:

q̃′(n; k) = P[X̂n= r ∧ X̂ 0:n−1 ∈ S ′ ∧ #(X̂ 0:n−1 ∈U ′
S)= k]

= P[Z ′
n= a ∧ Z ′

0:n−1 ∈ S ′ ∧ #(Z ′
0:n−1 ∈U ′

S)= k] =
∑
i∈S′

)′i(n− 1; k)Pi;r ;

and:

q̂′(n; k) = P[V̂n= s·0; · ∧ V̂ 0:n−1 ∈ VS ′ ∧ #(V̂ 0:n−1 ∈ VU ′
S)= k]

= P[V̂n= s·0; · | V̂ n−1 = s′
u
n−1; k]P[V̂ n−1 = s′

u
n−1; k]

+P[V̂n= s·0; · | V̂ n−1 = s′
d
n−1; k]P[V̂ n−1 = s′

d
n−1; k]

= q′un−1; k ŵ
′u(n− 1; k) + q′dn−1; k ŵ

′d(n− 1; k)

=

∑
i∈U ′

S
)′i(n− 1; k)Pi;r∑

i∈U ′
S
)′i(n− 1; k)

w̃′u(n− 1; k) +

∑
i∈D′

S
)′i(n− 1; k)Pi;r∑

i∈D′
S
)′i(n− 1; k)

w̃′d(n− 1; k)

=
∑
i∈U ′

S

)′i(n− 1; k)Pi;r +
∑
i∈D′

S

)′i(n− 1; k)Pi;r =
∑
i∈S′

)′i(n− 1; k)Pi;r :

Proof of Proposition 4. We will start by considering the case �S′ ¿ 0. Let c′C;K;L(k) be the probability
that V̂ C;K;L has entered state b through a state sun;K or a state sdn;K after no more than k visits to
states sun; l, s

′u
n; l, n¿ 0. Trivially, cC;K;L(k)6 c′C;K;L(k).

Consider the DTMC WC;K;L with the state transition diagram depicted in Fig. 15, initial probability
distribution P[(WC;K;L)0 = s0]= �r , P[(WC;K;L)0 = s′0]= �S′ , P[(WC;K;L)0 =f] = �f, and P[(WC;K;L)0
= i] = 0, i �∈ {s0; s′0; f}, and transition probabilities chosen so that (the selections are always
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Fig. 15. State transition diagram of the DTMC WC;K;L.

possible):

(1) �S′q′0 is the probability that V̂ C;K;L will make its next visit to s·0; · without performing any visit
to a state s′un;k , n¿ 0.

(2) �S′
∏k−1
i=0 w

′
iq

′
k , 16 k6L− 1 is the probability that V̂ C;K;L will make its next visit to s·0; · after

performing exactly k visits to states s′un;k , n¿ 0.
(3) �S′

∏L−1
i=0 w

′
i is the probability that V̂ C;K;L will enter a state s′un;L or s′dn;L (after performing L− 2

or L− 1 visits to states s′un;k , n¿ 0).
(4)

∏k−1
i=1 wiqk , 16 k6K − 1 is the probability that, starting at s·0; ·, V̂ C;K;L will make its next visit

to s·0; · after performing exactly k visits to states sun;k , n¿ 0.
(5)

∏K−1
i=1 wi is the probability that, starting at s·0; ·, V̂ C;K;L will enter a state sun;K or sdn;K (after

performing K − 2 or K − 1 visits to states sun;k , n¿ 0) without performing any further visit to
state s·0; ·.

Let c′′C;K;L(k) be the probability that WC;K;L will enter b through state sK after no more than k
visits to states s′n, sn, n¿ 0. By de3nition of WC;K;L and since state sK is visited just once when
WC;K;L enters b through sK and, in that case, s′L is not visited, we have c′C;K;L(k)6 c′′C;K;L(k + 1).
Let W̃C;K;L be the DTMC obtained from WC;K;L by substituting states s0, s′0 by instantaneous switches,
in a way similar as to how vanishing markings are eliminated in GSPNs [20]. Fig. 16 depicts
the state transition diagram of W̃C;K;L. The important point is that the transition probabilities of W̃C;K;L

from sk to sk+1 are identical to the respective transition probabilities of WC;K;L. Also, P[(W̃C;K;L)0 ∈
{s1; s′1}]6P[(WC;K;L)0 = s0]+P[(WC;K;L)0 = s′0]= �r+�S′ = �S . It is clear that c′′C;K;L(k) is the prob-
ability that W̃C;K;L will enter state b through state sK after no more than k visits to states s′n,
sn, n¿ 0, and, therefore, c′′C;K;L(k) is the probability that W̃C;K;L will have entered state b through
state sK by step k. Then, using Proposition 2 of [13], with the DTMC V̂ K;L of that proposition
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Fig. 16. State transition diagram of the DTMC W̃C;K;L.

being W̃C;K;L:

c′′C;K;L(k)6 Ik ¿K−1P[(W̃C;K;L)0 ∈{s1; s′1}](k − K + 1)
K−1∏
i=1

wi:

But, being
∏K−1
i=1 wi the probability that, starting at s·0; ·, V̂ C;K;L will enter a state sun;K or sdn;K without

performing any further visit to s·0; ·,
∏K−1
i=1 wi=

∑K+C−1
n=K−1

∑
i∈S )i(n; K). Then, using P[(W̃C;K;L)0 ∈

{s1; s′1}]6 �S , we have

cC;K;L(k)6 c′C;K;L(k)6 c′′C;K;L(k + 1)6 Ik¿K−1�S(k − K + 2)aC(K);

with aC(K)=
∑K+C−1

n=K−1

∑
i∈S )i(n; K).

The fact that, for the case �S′ =0, cC;K(k)6 Ik¿K−1�S(k −K +2)aC(K) can be proved similarly.

Proof of Theorem 4. Let )i(n)=P[Zn= i], i∈ S and )′i(n)=P[Z ′
n= i], i∈ S ′. We have

aC(n)=
n+C−1∑
m= n−1

∑
i∈S

)i(m; n)6 (C + 1)P(n);

where P(n) is the probability that Z will make n or more visits to states in US before entering the
absorbing state a, which is trivially not greater than the probability that Z will make n or more
visits to states in S before entering state a, which is equal to a(n)=

∑
i∈S )i(n). Then, we have

aC(n)6 (C + 1)a(n). It can be proved similarly, for the case �S′ ¿ 0, that a′C(n)6 (C + 1)a′(n),
with a′(n)=

∑
i∈S′ )

′
i(n). The states i∈ S are transient in Z and the states i∈ S ′ are transient in
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Z ′. Then [21, Theorem 4.3], a(n) and a′(n) decrease geometrically fast, i.e. there exist B; B′¿ 0,
0¡b; b′¡ 1 and n0; n′0¿ 0 such that

a(n)6Bbn; n¿ n0; (A.15)

a′(n)6B′b′n; n¿ n′0: (A.16)

The model truncation error upper bounds used to select K and L can be upper bounded, using
K; L¿ 2, as follows:

�SaC(K)
∞∑
k =K

(k − K + 2)e− U t
( Ut)k

k!
= �SaC(K)

∞∑
k =2

ke− U t
( Ut)K+k−2

(K + k − 2)!

6 �SaC(K)
∞∑
k =2

e− U t
( Ut)K+k−2

(K + k − 3)!
= �SaC(K) Ut

∞∑
k =2

e− U t
( Ut)K+k−3

(K + k − 3)!

= �SaC(K) Ut
∞∑

k =K−1

e− U t
( Ut)k

k!
¡�SaC(K) Ut6 �S(C + 1)a(K) Ut; (A.17)

a′C(L)
∞∑
k = L

e− U t
( Ut)k

k!
¡a′C(L)6 (C + 1)a′(L): (A.18)

We will show next that C =O( Ut=�). Since we are in the case U ′
S �= ∅, the exact value of C is

C =min

{
c¿ 1 :

∞∑
k = c+1

e− tq
( tq)k

k!
6
�
4

}
:

Let Qq(t) be a Poisson process with arrival rate  q. Then,
∑∞

k = c+1 e− tq( tq)k =k! =P[Qq(t)¿c].
For c¿ 1, using

E[Qq(t)]= qt=P[Qq(t)6 c]E[Qq(t) |Qq(t)6 c] + P[Qq(t)¿c]E[Qq(t) |Qq(t)¿c];

E[Qq(t) |Qq(t)6 c]¿ 0 and E[Qq(t) |Qq(t)¿c]¿c, we obtain

P[Qq(t)¿c]¡
 tq
c
:

Then, C is upper bounded by �x�+ 1, where x satis3es

 tq
x

=
�
4
;

x=
4 tq
�
:

Since, for a given CTMC,  and  U are constants and, in our analysis, q is a constant, this shows
that x and C are O( Ut=�).
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Consider the case �S′ ¿ 0. Using (A.17), the required K is upper bounded by the minimum integer
n satisfying �S(C+1)a(n) Ut6 �=8. Using (A.15), that integer is not greater than max{n0; l}, where
l is the minimum integer satisfying �S(C + 1)Bbl U t6 �=8. Then, to prove that the required K is
O(log( Ut=�)), it suHces to prove that l is O(log( Ut=�)). But l is not greater than �x�+1, where
x satis3es

�S(C + 1)Bbx U t=
�
8
:

Taking logarithms:

log �S + log(C + 1) + logB+ x log b+ log( Ut)= log
( �
8

)
;

x=
log(8 Ut=�) + log(C + 1) + log �S + logB

log(1=b)
:

This together with log(1=b)¿ 0 (because 0¡b¡ 1) and C =O( Ut=�) shows that x, l and the
required K are O(log( Ut=�)). Using (A.18), the required L is upper bounded by the minimum
integer n satisfying (C + 1)a′(n)6 �=8. Using (A.16), that integer is not greater than max{n′0; l},
where l is the minimum integer satisfying (C + 1)B′b′l6 �=8. Then, to prove that the required L is
O(log( Ut=�)), it suHces to prove that l is O(log( Ut=�)). But l is not greater than �x�+1, where
x satis3es

(C + 1)B′b′x=
�
8
:

Taking logarithms:

log(C + 1) + logB′ + xlog b′= log
( �
8

)
;

x=
log(8=�) + log(C + 1) + logB′

log(1=b′)
:

This together with log(1=b′)¿ 0 (because 0¡b′¡ 1) and C =O( Ut=�) shows that x, l and the
required L are O(log( Ut=�)).
The proof that, for the case �S′ =0, the required K is O(log( Ut=�)) follows the proof that, for the

case �S′ ¿ 0, the required K is O(log( Ut=�)) with � replaced by 2� (because the allocated model
truncation error is �=4 instead of �=8).
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