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Analytic model for the ballistic adsorption of polydisperse mixtures

Romualdo Pastor-Satorras*
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachuset

~Received 20 October 1998!

We study the ballistic adsorption of a polydisperse mixture of spheres onto a line. Within a mean-field
approximation, the problem can be analytically solved by means of a kinetic equation for the gap distribution.
In the mean-field approach, the adsorbed substrate is replaced by a set ofeffectiveparticles having thesame
size, equal to the average diameter of the spheres in the original mixture. The analytic solution in the case of
binary mixtures agrees quantitatively with direct Monte Carlo simulations of the model, and qualitatively with
previous simulations of a related model ind52. @S1063-651X~99!05705-0#

PACS number~s!: 68.45.Da, 81.15.2z, 82.70.Dd, 68.10.Jy
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I. INTRODUCTION

The adsorption of colloidal particles onto a surface is
subject of considerable interest due to its many practical
plications in fields as diverse as physics, chemistry, bioph
ics, medicine, etc.@1#. Several models have been proposed
far, in an attempt to understand the physical properties of
adsorbed phase. In the random sequential adsorption~RSA!
model @2–6#, the adsorbing particles are located at rand
positions on the surface. If an incoming particle overlap
previously adsorbed one, it is rejected; otherwise, it beco
irreversibly adsorbed. The RSA model does not consider
transport of the particles, and focuses only on the exclu
volume effects. It is thus a valid approximation when t
particles arrive at the surface purely by diffusion@5#. In the
ballistic model~BM! @7–9#, when an incoming particle fails
to reach the surface directly, it is allowed to roll down ov
the previously adsorbed ones, following the direction of
steepest descent, until it reaches an equilibrium position.
ticles that eventually rest on the surface are irreversibly
sorbed; otherwise, they are rejected. The BM is therefor
good approximation to describe adsorption in the presenc
strong interactions, attracting the particles towards the
face @10–12#.

In their original formulation, the aforementioned mode
as well as their main variations, consider essentially the
sorption of amonodispersesuspension, in which the adsorb
ing particles all have the same size. Real-life suspensi
however, always possess an unavoidable degree of poly
persity. For instance, in some experimental situations
standard deviation of the particle size distribution may be
to 5–10 % of the mean particle size@13,14#. Under such
conditions, the effects of polydispersity may be indeed i
portant.

The role of polydispersity has been studied in some de
in the RSA model. Theoretical works have dealt with bina
mixtures of particles with greatly differing diameters@15#,
power-law size distributions@16,17#, or general continuous
size distributions@18#. Numerical simulations, on the othe
hand, have been performed in a wider variety of conditio
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binary mixtures @19,20#, uniform size distributions@19#,
Gaussian distributions@14,19#, power-law distributions@17#,
etc.

In the context of the BM, it is worth noting the work o
Sengeret al. @10#, where the authors describe a Monte Ca
model for the adsorption of a two-component mixture
hard spheres onto a plane, where the particles are unde
simultaneous influence of diffusion and gravity. This is i
deed a mixed model, which reproduces the standard R
model in the limit of small particles, and the BM for larg
particles. The results reported by Sengeret al., for particles
large enough to be well inside the BM regime, are quali
tively similar to those found for the RSA of binary mixture
@19#: The maximum fraction of surface covered by the a
sorbed particles—thejamming limit u`—increases mono-
tonically with the concentrationp of large particles, with a
maximum in the limitp→12 ~i.e., 12p arbitrarily small,
but nonzero!. For p50 andp51, the coverage correspond
ing to monodisperse adsorption is recovered.

In this paper we present an analytic model for the ballis
adsorption of mixtures of spherical particles with differe
diameters. The model can be solved in a mean field appr
mation by studying the kinetics of the gap density functi
@8#. Within this approach, we are able to derive a gene
equation for an effective gap distribution. To test our equ
tion, we solve it explicitly in the simplest case of a bina
mixture. The analytic results obtained for the density at ja
ming u` match the findings of direct Monte Carlo simula
tions of the model. Moreover, the qualitative behavior ofu`

predicted by our model is the same as that reported by S
ger et al. @10#.

II. MODEL

Our model considers the adsorption onto a line of a po
disperse mixture whose degree of polydispersity is charac
ized, in general, by a continuous distribution of sizesr(s).
The quantityr(s)ds is defined as the fraction~bulk concen-
tration in the infinite reservoir from which the particles a
drawn! of spheres with diameter betweens ands1ds. We
assumer to be normalized to 1. Thus, for a monocompone
solution of particles of sizes0 , we haver(s)5d(s2s0).
The particles arrive at the line at ratesk(s) per unit length
per unit time. Assuming that the adsorbed substrate inter
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5702 PRE 59ROMUALDO PASTOR-SATORRAS
with the incoming particles only through excluded volum
effects, we can select the appropriate units of time and
k(s)[r(s). Under these conditions, the problem transla
into the sequential adsorption of particles of sizes, selected
with a probability densityr(s).

When an incoming particle lands on a preadsorbed on
exactly the same size, the adsorption rules are identical to
standard BM@8#. Figure 1 depicts the possible configuratio
involving particles of different diameterss1 and s2, with
s1,s2. When a small particle rolls over a large one, t
former finally falls on the surface and, after it is adsorb
the centers of both particles are separated a horizontal
tanceD5(s11s2)/2; Fig. 1~a! represents this case. When
large particle rolls over a small one, the rule adopted in
model is the one represented in Fig. 1~b!, in which, after
rolling, the centers of the two particles are also separate
distanceD.

The adoption of the rule pictured in Fig. 1~b! represents a
major simplification of the model. It could be possible
argue that, in a more realistic treatment, the final configu
tion involving a large particle rolling over a small one shou
be the one depicted in Fig. 1~c!. The surfaces of the particle
are tangent after adsorption in this case, and their center
separated a horizontal distanceDR5As1s2. Both rules can
be easily implemented in a numerical simulation. Howev
the prescription 1~c! imposes an essential asymmetry amo
particles of different sizes. First of all, in our model, as d
fined by rules 1~a! and 1~b!, the final result of an adsorptio
event involving two spheres of different diameters is ind
pendent of the order in which the particles reach the surfa
As a consequence, our model does not allow for ‘‘ov
hangs’’; this means that, ifn(s) is the density of adsorbe
particles of sizes, then the fraction of covered surfaceu is
simply given byu5*ds sn(s). This simple expression ob
viously does not hold in a model defined with the rule 1~c!.
These ‘‘Abelian’’ properties are eventually responsible
our model being analytically tractable.

III. GENERAL MEAN-FIELD EQUATION

The model defined in the preceding section can be a
lyzed by studying the density function of gaps—holes b
tween two consecutive adsorbed particles. Let us de
G(x,t)dx as the number of gaps with a length betweenx and
x1dx present at timet, per unit length of substrate. The tim
evolution ofG is obtained as a balance equation for the c

FIG. 1. Landing configurations for particles of different sizess1
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ation and destruction of gaps caused by a single adsorp
event@8#. GivenG, the fraction of covered surface is define
by

u~ t !512E
0

`

xG~x,t !dx, ~1!

and, from here, we obtain the jamming limit asu`

5 limt→`u(t).
In the case of the ballistic adsorption of a monodispe

solution of spheres of diameters0 , the equations for the
density of gaps are@8#

]G~x,t !

]t
52~x1s0!G~x,t !12s0G~x1s0 ,t !

12E
x1s0

`

G~y,t !dy for x.s0 , ~2!

]G~x,t !

]t
52s0G~x1s0 ,t !12E

x1s0

`

G~y,t !dy

for x,s0 . ~3!

The solution of Eqs.~2! and ~3! is

G~x,t !5e2~x1s0!tt2F~s0t !exp$2~12e2s0t!%

for x.s0 ;

G~x,t !52E
0

t

du u~11s0u!e2~x12s0!uF~s0u!

3exp$2~12e2s0u!% for x,s0 ,

where we have defined the auxiliary function

F~ t !5expH 22E
0

t12e2z

z
dzJ . ~4!

For a polydisperse mixture, the naive application of th
approach becomes considerably more involved. After a m
ment’s reflection, it is easy to realize that, in this case,
final configuration resulting from an adsorption event taki
place on a given gap depends on the sizes of the part
defining the boundaries of that gap. We should accordin
deal with a continuous set of functionsGs8,s9(x,t), defined
as the densities of gaps created between particles of sizs8
and s9, for s8,s9P@0,̀ #. An enumeration of all the pos
sible events occurring when adsorbing spheres of sizes at
rater(s), would lead to a system of exact coupled integr
differential equations for the magnitudesGs8,s9 that would
completely determine the dynamics of the process. The m
nitude of this task, especially when dealing with continuo
size distributionsr(s), seems to preclude any chance for
exact solution.

Fortunately, however, a great deal of insight can
gained by seeking amean-fieldtype of solution, based on th
following argument: When the particles are free in the s
pension, they aredistinguishableand interact differently
with the adsorbed phase, depending on their size. Howe
once they have been adsorbed, we can assume that the
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come indistinguishable, in the sense that the adsorbed p
ticles interact with the incoming particles as if the form
were all equal, with the same average diameters̄
5*sr(s)ds. In other words, we can approximate the a
sorbed phase with a set ofeffectiveparticles with the same
sizes̄, interacting with incoming particles of sizes. Assum-
ing this simplification, we need only a singleeffective gap
distribution G, defined by the gaps bounded by the adsorb
effective particles.

We note the important fact that the aforementioned me
field approximationdoes notimply at all that the density of
adsorbed particles is proportional to the bulk density,n(s)
}r(s). This relation, which can be true at the first stages
the adsorption process, does not hold close to the jam
state. This last statement is most easily seen in binary m
tures~see Sec. IV!.

The kinetic equation for the effective gap density can
written in the generic form

]G~x,t !

]t
52E

0

x

ds r~s!~x1s̄ !G~x,t !

12E
0

`

ds r~s!S s

2
1

s̄

2
DG~x1s,t !

12E
0

`

ds r~s!E
x1s

`

dy G~y,t !. ~5!

The origin of the different terms in Eq.~5! is the following:
The destruction of gaps of lengthx is due to the landing of a
particle of sizes on any point of an interval of lengthx
1s̄ centered on the gap. After averaging over the distri
tion of incoming particles of sizes,x, we obtain the first
term in Eq. ~5!. A gap of lengthx can be created by th
impact of particles of sizes on either of the particles o
effective sizes̄ defining a gap of lengthx1s. These events
which happen at rater(s), account for the second term i
Eq. ~5!. The last term is due to the averaged creation of g
of lengthx by direct deposition of a particle of sizes onto a
gap of lengthy.x1s. We remark again that Eq.~5! owes
its relatively simple form to the choice of the ‘‘Abelian’’ rule
1~b! in the definition of the model. A much more comple
expression would have been obtained with rule 1~c!.

Equation~5! can be expressed in a more compact way
integrating by parts its last term. Defining the distributi
function C(x)5*0

xr(s)ds, we obtain

]G~x,t !

]t
52C~x!~x1s̄ !G~x,t !

1E
0

`

ds@r~s!~s1s̄ !12C~s!#G~x1s,t !.

~6!

Equation ~6! is the final expression of the mean-fie
theory for our model of polydisperse ballistic adsorption.
a consistency check, we consider the trivial scenario o
monodisperse suspension. In this case, by settingr(s)
5d(s2s0) and C(x)5Q(x2s0), whereQ is the Heavi-
-
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ed
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side step function, we immediately recover the equations
a single-size distribution, as given by Eqs.~2! and ~3!.

IV. BINARY MIXTURES

In order to test the validity of our mean-field theory, w
now proceed to solve explicitly Eq.~6! in the case of a bi-
nary mixture, composed of particles of sizes151, which
adsorb onto the surface at ratef1, and particles of sizes2
5r .1, adsorbing at ratef r512f1. As an aside, in this
simple setting we can estimate the variations in the jamm
limit due to the adoption of rule 1~b! instead of 1~c!. One can
expect that, for small values ofr, the outcome of both mod
els should be similar. Indeed, numerical simulations sh
that, for values ofr ,2, the difference between prescription
is always less than 1%, for all values off r .

The density function for a binary mixture has the for
r(s)5f1d(s21)1f rd(s2r ), whereas the distribution
function is C(x)5f1Q(x21)Q(r 2x)1Q(x2r ), and the
average sizes̄5f11rf r . By inserting these expression
into Eq. ~5! or ~6!, we obtain the following set of equations

]G~x,t !

]t
52~x1s̄ !G~x,t !1f1~11s̄ !G~x11,t !

1f r~r 1s̄ !G~x1r ,t !12f1E
x11

`

G~y,t !dy

12f rE
x1r

`

G~y,t !dy for x.r ; ~7!

]G~x,t !

]t
52f1~x1s̄ !G~x,t !1f1~11s̄ !G~x11,t !

1f r~r 1s̄ !G~x1r ,t !12f1E
x11

`

G~y,t !dy

12f rE
x1r

`

G~y,t !dy for 1,x,r ; ~8!

]G~x,t !

]t
5f1~11s̄ !G~x11,t !

1f r~r 1s̄ !G~x1r ,t !12f1E
x11

`

G~y,t !dy

12f rE
x1r

`

G~y,t !dy for 0,x,1. ~9!

We observe that, for a binary mixture, one could in princip
try to solve the modelexactlyby determining the rate equa
tions for the densities of gaps delimited by particles of size
and r, namely,G1,1, Gr ,r , andG1,r . However, in this case
one would end up with a set of nine coupled equations. T
simplification achieved through the mean-field theory is e
dent here.

We consider in particular the case 1,r ,2. To solve the
kinetic equations, we seek in Eq.~7! a solution of the form
G(x,t)5e2(x1s̄)tH(t). With this substitution, we are led to
the equation forH(t):
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d ln H

dt
5f1F ~11s̄ !1

2

t Ge2t1f rF ~r 1s̄ !1
2

t Ge2rt .

~10!

The solution of Eq.~10!, with the initial conditionH(0)
50, is

H~ t !5t2 exp$f1~11s̄ !~12e2t!%

3exp$f r~r 1s̄ !~12e2rt !/r %@F~ t !#f1@F~rt !#fr,

~11!

whereF(t) is defined in Eq.~4!. Upon substituting this resul
into Eq. ~8!, we look for a solution of this equation of th
form G(x,t)5e2f1(x1s̄)tQ(x,t). The equation determining
Q is

]Q~x,t !

]t
5e2fr ~x1s̄ !t

dH~ t !

dt
, ~12!

from whichQ(x,t) is obtained by direct integration, togeth
with the initial conditionQ(x,0)50:

Q~x,t !5e2fr ~x1s̄ !tH~ t !1f r~x1s̄ !E
0

t

du e2fr ~x1s̄ !uH~u!.

~13!

Finally, by substituting the solutions of Eqs.~7! and~8! into
the appropriate range of values ofx in Eq. ~9! ~and taking
into account thatr ,2), we can directly integrate this equa
tion. Using Eq.~1!, and after performing some algebraic m
nipulations, we obtain the density of adsorbed particles a
function of time:

u~ t !5E
0

t

du H~u!F1~u!1f rE
0

t

du H~u!F2~f1t1f ru!

1f1f r~11s̄ !E
0

t

du H~u!E
u

t

dv F3~f1v1f ru!

12f1f rE
0

t

du H~u!E
u

t

dv F4~f1v1f ru!,

where we have introduced the auxiliary functions

F1~z!5
e2s̄z

z3
$@2f r1~11f r1f r s̄ !z1~ s̄11!z2#e2z

2@2f r1f r~r 1s̄ !z#e2rz%,

F2~z!5
e2s̄z

z3
$2@21~ s̄12!z1~ s̄11!z2#e2z

1@21~ s̄12r !z1r ~ s̄1r !z2#e2rz%,

F3~z!5
e2s̄z

z3
$2@21~ s̄11!z#e2z1@21~ s̄12r 21!z

1~r 21!~r 1s̄ !z2#e2rz%,
a

F4~z!5
e2s̄z

z4 H 2@31~ s̄11!z#e2z

1F31~ s̄13r 22!z1
1

2
~r 21!~3r 12s̄21!z2

1
1

2
~r 21!2~r 1s̄ !z3Ge2rzJ .

We can estimate the theoretical predictions of this me
field solution by numerically integrating the previous expre
sion in the limitt→`. Figure 2 shows in full lines the result
of the integration for different values ofr. The symbols rep-
resent data obtained from direct Monte Carlo simulations
the model on a line of length 1000 with periodic bounda
conditions. We observe that the predictions of the mean-fi
theory are in excellent agreement with the numerical sim
lations.

From Fig. 2 we conclude that, forf r,1, the jamming
limit is an increasing monotonic function of this variabl
For f r50 or f r51 ~only small or large particles, respec
tively!, we recover, for anyr, the prediction of the standar
BM model, u`

BM.0.808 @8#. For small values off r , u`

grows linearly,u`.u`
BM1a(r )f r , with a slopea(r ) that

increases withr. The value of the slope at the origin can b
easily estimated by Taylor expanding the expression
u(t). The jamming limit exhibits a maximum located atf r
→12, in qualitative agreement with the findings of Seng
et al. @10#. The actual value of the maximumu`

max(r) is an
increasing function ofr, with an apparent tendency to sat
rate at larger. In the limit f r→1, and for r @1, we can
estimate the limiting value ofu`

max(r) @19#: In this limit, the
large particles cover first a fraction of surfaceu`

BM of the
line, leaving free a surface 12u`

BM that is afterwards covered
until jamming by the small particles. The total coverage
therefore bounded byu`

max(r)<u`
BM1(12u`

BM)u`
BM5u`

BM(2
2u`

BM).0.96339. Monte Carlo simulations confirm this e

FIG. 2. Jamming limit as a function of the concentration fracti
f r of large particles, for different values of the diameter ratior.
Comparison between numerical simulations~hollow symbols! and
the mean-field prediction~full lines!.
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treme, yielding the valueu`
max50.96460.001 forr 520 and

f r50.99.

V. CONCLUSIONS

To sum up, in this paper we have presented an exten
of the classical ballistic model@7–9#, describing the ballistic
adsorption onto a line of a polydisperse mixture of spher
particles of different sizess, present with a bulk concentra
tion r(s). The model is solved by means of a mean-fie
equation, which approximates the adsorbed phase by a s
effective particles all having the same average diametes̄
5*ds sr(s), interacting with incoming particles of vari
able size. To check our mean-field approximation, we h
explicitly solved the case of a binary mixture. The perfe
match of the theoretical solution and the numerical simu
an

. G

H

on

l

t of

e
t
-

tions confirms the validity of the mean-field approximatio
at least for this particular case. Our findings agree also w
numerical simulations of a related model in two dimensio
@10#. On theoretical grounds, the proposed mean-field
proach could be a first step toward dealing with more co
plex situations, such as, for example, higher dimension
ties, where the assumption of an effective layer of adsor
particles would be more reasonable, or the case of adsorp
onto a substrate initially covered with impurities.
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