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Analytic model for the ballistic adsorption of polydisperse mixtures
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We study the ballistic adsorption of a polydisperse mixture of spheres onto a line. Within a mean-field
approximation, the problem can be analytically solved by means of a kinetic equation for the gap distribution.
In the mean-field approach, the adsorbed substrate is replaced by ae$tetctifeparticles having thsame
size, equal to the average diameter of the spheres in the original mixture. The analytic solution in the case of
binary mixtures agrees quantitatively with direct Monte Carlo simulations of the model, and qualitatively with
previous simulations of a related modeldr 2. [S1063-651X99)05705-0

PACS numbds): 68.45.Da, 81.15-z, 82.70.Dd, 68.10.Jy

I. INTRODUCTION binary mixtures[19,20, uniform size distributions[19],
Gaussian distributionjsl4,19, power-law distribution$17],

The adsorption of colloidal particles onto a surface is aetc.
subject of considerable interest due to its many practical ap- In the context of the BM, it is worth noting the work of
plications in fields as diverse as physics, chemistry, biophysSengetet al.[10], where the authors describe a Monte Carlo
ics, medicine, etd.1]. Several models have been proposed sgnodel for the adsorption of a two-component mixture of
far, in an attempt to understand the physical properties of th@ard spheres onto a plane, where the particles are under the
adsorbed phase. In the random sequential adsorRE®) simultaneous influence of diffusion and gravity. This is in-
model[2—6], the adsorbing particles are located at randonfleed a mixed model, which reproduces the standard RSA
positions on the surface. If an incoming particle overlaps @nodel in the limit of small particles, and the BM for large
previously adsorbed one, it is rejected; otherwise, it becomeBarticles. The results reported by Sengeal, for particles
irreversibly adsorbed. The RSA model does not consider th&rge enough to be well inside the BM regime, are qualita-
transport of the particles, and focuses only on the excludetively similar to those found for the RSA of binary mixtures
volume effects. It is thus a valid approximation when the[19]: The maximum fraction of surface covered by the ad-
particles arrive at the surface purely by diffusid. In the ~ sorbed particles—thgamming limit 6..—increases mono-
ballistic model(BM) [7—9], when an incoming particle fails tonically with the concentratiop of large particles, with a
to reach the surface directly, it is allowed to roll down overmaximum in the limitp—1~ (i.e., 1—p arbitrarily small,
the previously adsorbed ones, following the direction of thebut nonzerg. For p=0 andp=1, the coverage correspond-
steepest descent, until it reaches an equilibrium position. Pai2g to monodisperse adsorption is recovered.
ticles that eventually rest on the surface are irreversibly ad- In this paper we present an analytic model for the ballistic
sorbed; otherwise, they are rejected. The BM is therefore adsorption of mixtures of spherical particles with different
good approximation to describe adsorption in the presence éfiameters. The model can be solved in a mean field approxi-
strong interactions, attracting the particles towards the summation by studying the kinetics of the gap density function
face[10-12. [8]. Within this approach, we are able to derive a generic

In their original formulation, the aforementioned models, €quation for an effective gap distribution. To test our equa-
as well as their main variations, consider essentially the adion, we solve it explicitly in the simplest case of a binary
sorption of amonodisperssuspension, in which the adsorb- mixture. The analytic results obtained for the density at jam-
ing particles all have the same size. Real-life suspensiongping 6.. match the findings of direct Monte Carlo simula-
however, always possess an unavoidable degree of polydi§ons of the model. Moreover, the qualitative behaviomof
persity. For instance, in some experimental situations th@redicted by our model is the same as that reported by Sen-
standard deviation of the particle size distribution may be ugger et al. [10].
to 5-10% of the mean particle sizé¢3,14. Under such
conditions, the effects of polydispersity may be indeed im- Il. MODEL
portant.

The role of polydispersity has been studied in some detail Our model considers the adsorption onto a line of a poly-
in the RSA model. Theoretical works have dealt with binarydisperse mixture whose degree of polydispersity is character-
mixtures of particles with greatly differing diametdrg5],  ized, in general, by a continuous distribution of sig€s-).
power-law size distribution§16,17], or general continuous The quantityp(o)do is defined as the fractiofbulk concen-
size distributiond 18]. Numerical simulations, on the other tration in the infinite reservoir from which the particles are
hand, have been performed in a wider variety of conditionsdrawn of spheres with diameter betweenando+do. We

assume to be normalized to 1. Thus, for a monocomponent
solution of particles of sizery, we havep(o)=6(o—oy).
*Present address: The Abdus Salam ICTP, P.O. Box 586, 34100he particles arrive at the line at ratk6o) per unit length
Trieste, Italy. Electronic address: romu@ictp.trieste.it per unit time. Assuming that the adsorbed substrate interacts
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ation and destruction of gaps caused by a single adsorption
event[8]. GivenG, the fraction of covered surface is defined

by
o(t)=1—- foch(x,t)dx, (1)
0

and, from here, we obtain the jamming limit a&,
=lim;_ . 6(t).

In the case of the ballistic adsorption of a monodisperse
solution of spheres of diameter,, the equations for the
density of gaps arg8]

g1+

FIG. 1. Landing configurations for particles of different sizgs

ando,> 0. IG(xt)

ot

= _(X+ Uo)G(X,t)+20'0G(X+ (o) ,t)

with the incoming particles only through excluded volume .
effects, we can select the appropriate units of time and set +2f G(y,t)dy for x>0y, 2
k(o)=p(0). Under these conditions, the problem translates

into the sequential adsorption of particles of sizeselected

X+og

with a probability density(o). IG(x,t) »

When an incoming particle lands on a preadsorbed one of at =200G(x+00,1)+2 XMOG(y,t)dy
exactly the same size, the adsorption rules are identical to the
standard BM8]. Figure 1 depicts the possible configurations for x<op. 3

involving particles of different diameters; and o, with ) )
o,<0,. When a small particle rolls over a large one, the 1he solution of Eqs(2) and (3) is
former finally falls on the surface and, after it is adsorbed, o (xton)t2 -
the centers )cl)f both particles are separated a horizontal dis- G(x.)=e "t (oot exp2(1—e” 7))
tanceA = (o, + 0,)/2; Fig. 1(a) represents this case. When a for x>o0y;
large particle rolls over a small one, the rule adopted in our
model is the one represented in Figb)l in which, after t
rolling, the centers of the two particles are also separated a G(x,t)zzfodu U1+ aou)e” *F290UF (gqu)
distanceA.

The adoption of the rule pictured in Fig(l represents a xXexp[2(1—e 70} for x<oy,
major simplification of the model. It could be possible to
argue that, in a more realistic treatment, the final configurawhere we have defined the auxiliary function
tion involving a large particle rolling over a small one should B
be the one depicted in Fig(d. The surfaces of the particles F(t)zexp‘ —thl_e de]

4

are tangent after adsorption in this case, and their centers are
separated a horizontal distanag= \o,0,. Both rules can

be easily implemented in a numerical simulation. However, For a polydisperse mixture, the naive application of this
the prescription (c) imposes an essential asymmetry amongapproach becomes considerably more involved. After a mo-
particles of different sizes. First of all, in our model, as de-ment’s reflection, it is easy to realize that, in this case, the
fined by rules 1a) and Xb), the final result of an adsorption final configuration resulting from an adsorption event taking
event involving two spheres of different diameters is inde-place on a given gap depends on the sizes of the particles
pendent of the order in which the particles reach the surfacealefining the boundaries of that gap. We should accordingly
As a consequence, our model does not allow for “over-deal with a continuous set of functio®, ,~(x,t), defined
hangs”; this means that, ifi(o) is the density of adsorbed as the densities of gaps created between particles obsize
particles of sizer, then the fraction of covered surfageis  and o”, for o’,0" €[0,]. An enumeration of all the pos-
simply given byfd= [do on(o). This simple expression ob- sible events occurring when adsorbing spheres of sizt
viously does not hold in a model defined with the rule)l ratep(o), would lead to a system of exact coupled integro-
These “Abelian” properties are eventually responsible fordifferential equations for the magnitudés,. ,» that would

our model being analytically tractable. completely determine the dynamics of the process. The mag-
nitude of this task, especially when dealing with continuous
lIl. GENERAL MEAN-FIELD EQUATION size distributiong (o), seems to preclude any chance for an

exact solution.

The model defined in the preceding section can be ana- Fortunately, however, a great deal of insight can be
lyzed by studying the density function of gaps—holes be-gained by seeking mean-fieldype of solution, based on the
tween two consecutive adsorbed particles. Let us definéollowing argument: When the particles are free in the sus-
G(x,t)dx as the number of gaps with a length betweemd  pension, they ardlistinguishableand interact differently
x+dx present at timé, per unit length of substrate. The time with the adsorbed phase, depending on their size. However,
evolution of G is obtained as a balance equation for the cre-once they have been adsorbed, we can assume that they be-
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comeindistinguishable in the sense that the adsorbed par-side step function, we immediately recover the equations for
ticles interact with the incoming particles as if the formera single-size distribution, as given by Eq8) and (3).

were all equal with the same average diameter
=Jop(o)do. In other words, we can approximate the ad- IV. BINARY MIXTURES
sorbed phase with a set effectiveparticles with the same

sizeo, interacting with incoming particles of size Assum-
ing this simplification, we need only a singédfective gap n
distribution G defined by the gaps bounded by the adsorbe%dsorb onto the surface at rata, and particles of sizer,

effective particles. : . . .
) . =r> =1—¢,.
We note the important fact that the aforementioned mean- r>1, adsorbing at rate);=1-¢;. As an aside, in this

field approximatiordoes notimply at all that the density of simple setting we can estimate the variations in the jamming

; . . ) limit due to the adoption of rule(b) instead of 1c). One can
adsorbed particles is proportional to the bulk dengitfy) )
«p(a). This relation, which can be true at the first stages Ofexpect that, for small values of the outcome of both mod

the adsorption process. does not hold close to the iammedS should be similar. Indeed, numerical simulations show
b P C ; 0 he | S at, for values of <2, the difference between prescriptions
state. This last statement is most easily seen in binary mix-
is always less than 1%, for all values ¢éf .
tures(see Sec. V.

o . . . The density function for a binary mixture has the form
The kinetic equation for the effective gap density can be o
written in the ge%eric form 9ap y p(0)=¢16(c—1)+ ¢, 8(c—r1), whereas the distribution

function is\I’Q()=¢1®(x—1)®(r—x)+®(x—r), and the

In order to test the validity of our mean-field theory, we
now proceed to solve explicitly E@6) in the case of a bi-
ary mixture, composed of particles of sisg=1, which

IG(X,t) X _ average sizer=¢,+r¢,. By inserting these expressions
. —f do p(o)(x+0)G(x,t) into Eq. (5) or (6), we obtain the following set of equations:
0
“ o o PO+ 2)B( 1) + a1+ 0)G(x 18
+2f do p(0) E+;)G(X+a',t) ot X+ )G+ $o(1+0)G(x+11)
0
w & + ¢ (r+0)G(X+1,1)+2 fx G(y,t)d
+2f do p(a’)J dy G(y.1). 5) Hlrro)Glxtr+2d, | Gly.Hdy
0 X+a
The origin of the different terms in E@5) is the following: +2¢rfx+rG(y*t)dy for x>r; ™
The destruction of gaps of lenghis due to the landing of a
paLticIe of sizes on any point of an interval of lengtk IG(x,1) - -
+ o centered on the gap. After averaging over the distribu- (9t, =— ¢ (X+a)G(X,t)+ d1(1+0)G(x+1})

tion of incoming particles of size<<x, we obtain the first

term in Eq.(5). A gap of lengthx can be created by the — %

impact of particles of sizer on either of the particles of +¢r(r+o)G(x+r,t)+2¢lfx+lG(y,t)dy
effective sizes defining a gap of lengtk+ o. These events,

which happen at ratp(o), account for the second term in * )

Eq. (5). The last term is due to the averaged creation of gaps +2¢, XHG(y,t)dy for 1<x<r; ®)

of lengthx by direct deposition of a particle of sizeonto a
gap of lengthy>x+o. We remark again that E¢5) owes IG(X,t)

its relatively simple form to the choice of the “Abelian” rule =¢d1(1+0)G(x+1}t)
1(b) in the definition of the model. A much more complex at
expression would have been obtained with rule).1 _ w
Equation(5) can be expressed in a more compact way by + o (r +U)G(X+F,t)+2¢1f G(y.t)dy
integrating by parts its last term. Defining the distribution x+1
function ¥ (x) = [p(o)do, we obtain x
+2¢J G(y,t)dy for 0<x<1. 9)
IG(x,t) _ T
= =P (X)(x+a)G(X,t) _ _ o
ot We observe that, for a binary mixture, one could in principle
" try to solve the modetéxactlyby determining the rate equa-
+ f dolp(o)(o+0)+2¥(0)]G(X+0,t). tions for the densities of gaps delimited by particles of size 1
0

andr, namely,G, 1, G;,, andG,,. However, in this case
(6)  one would end up with a set of nine coupled equations. The
simplification achieved through the mean-field theory is evi-
Equation (6) is the final expression of the mean-field dent here.
theory for our model of polydisperse ballistic adsorption. As We consider in particular the case<t<2. To solve the
a consistency check, we consider the trivial scenario of &inetic equations, we seek in E(¥) a solution of the form
monodisperse suspension. In this case, by setti(g) G(x,t)=e~ *T9tH(t). With this substitution, we are led to
=8(o—o0g) and¥(x)=0(x—agy), where® is the Heavi- the equation foH (t):
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dinH

- 2
— — _t
at b1 (l—l—a')—l—t e '+ ¢,

— 2
(r+o)+ Je‘”.
(10

The solution of Eq.(10), with the initial conditionH(0)
=0, is

H(t)=t2exp{¢,(1+0)(1—e h)}

xexp{ ¢ (r + o) (1—e ")/IF(O]P[F(rt)]%,

(17)
whereF(t) is defined in Eq(4). Upon substituting this result
into Eq. (8), we look for a solution of this equation of the
form G(x,t)=e #1107 )Q(x,t). The equation determining
Qis

dQ(x,t) p=
ot

dH(t)

—e bt

dt '’

12

from whichQ(x,t) is obtained by direct integration, together

with the initial conditionQ(x,0)=0:

Q(x,t) =~ 4CF I (1) + b (x+ ) ftdu e HOF O (),
0
(13

Finally, by substituting the solutions of Eq¥) and(8) into
the appropriate range of values »fin Eq. (9) (and taking

into account that <2), we can directly integrate this equa-
tion. Using Eq.(1), and after performing some algebraic ma-
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FIG. 2. Jamming limit as a function of the concentration fraction
¢, of large particles, for different values of the diameter ratio
Comparison between numerical simulatighsllow symbol$ and
the mean-field predictioffull lines).

—0oZ

Ful2)= —[3+(oc+1)z]e?

Z4

+

_ 1 _
3+(oc+3r—2)z+ E(r—1)(3|r+20—1)z2

erz}

+%(r—1)2(r+;)z3

nipulations, we obtain the density of adsorbed particles as a

function of time:

t t
o) = fodu H(W) F1(w) + ¢ffod“ H(W) Fo( ot + )
_ t t
+ ¢4, (1+0) fodu H(U)fudv Fa(dhiv+ dru)

t t
+2¢1¢rJOdU H(U)fudv Fa(drv+u),

where we have introduced the auxiliary functions

—ozZ

F2)=— {[2¢+(1+ ¢+ o) 2+ (o +1)2%]e
~[2¢+ (1 +0)z]e "},
Fa(2)= ;jz{—[2+(;+2)2+(3+1)22]eZ
+[2+(a+2r)z+r(o+1)2]e "},
Fa(2)= 732{—[2+(;+1)z]e’z+[2+(;+2r—1)z

23

+(r—1)(r+o)z%e "%,

We can estimate the theoretical predictions of this mean-
field solution by numerically integrating the previous expres-
sion in the limitt—oo. Figure 2 shows in full lines the results
of the integration for different values of The symbols rep-
resent data obtained from direct Monte Carlo simulations of
the model on a line of length 1000 with periodic boundary
conditions. We observe that the predictions of the mean-field
theory are in excellent agreement with the numerical simu-
lations.

From Fig. 2 we conclude that, fap, <1, the jamming
limit is an increasing monotonic function of this variable.
For ¢,=0 or ¢,=1 (only small or large particles, respec-
tively), we recover, for any, the prediction of the standard
BM model, #2M=0.808[8]. For small values ofg,, 6.,
grows linearly, 6..= 62V + a(r) ¢, , with a slopea(r) that
increases withr. The value of the slope at the origin can be
easily estimated by Taylor expanding the expression for
6(t). The jamming limit exhibits a maximum located &t
—17, in qualitative agreement with the findings of Senger
et al. [10]. The actual value of the maximul}®{r) is an
increasing function of, with an apparent tendency to satu-
rate at larger. In the limit ¢,—1, and forr>1, we can
estimate the limiting value of{r) [19]: In this limit, the
large particles cover first a fraction of surfa¢" of the
line, leaving free a surface-162 that is afterwards covered
until jamming by the small particles. The total coverage is
therefore bounded by™{r)< M+ (1— 95M) 95M= 6EM(2
— 62M)=0.96339. Monte Carlo simulations confirm this ex-
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treme, yielding the valu@™®=0.964+0.001 forr=20 and  tions confirms the validity of the mean-field approximation,
#,=0.99. at least for this particular case. Our findings agree also with

numerical simulations of a related model in two dimensions
[10]. On theoretical grounds, the proposed mean-field ap-
proach could be a first step toward dealing with more com-
To sum up, in this paper we have presented an extensioplex situations, such as, for example, higher dimensionali-
of the classical ballistic mod¢V—9], describing the ballistic ties, where the assumption of an effective layer of adsorbed
adsorption onto a line of a polydisperse mixture of sphericaparticles would be more reasonable, or the case of adsorption
particles of different sizes, present with a bulk concentra- onto a substrate initially covered with impurities.
tion p(o). The model is solved by means of a mean-field
equation, which approximates the adsorbed phase by a set of

effective particles all having the same average diameter

=[do op(0), interacting with incoming particles of vari- This work was financially supported by a grant from the
able size. To check our mean-field approximation, we havéMinisterio de Educacio y Cultura(Spain. | would like to
explicitly solved the case of a binary mixture. The perfectthank Professor M. Rulfor helpful discussions and Dr. M.
match of the theoretical solution and the numerical simula<C. Miguel for a careful reading of the manuscript.

V. CONCLUSIONS
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