
Efficient Exploration of Availability Models

Guided by Failure distances*

Juan A. Carrasco, Javier Escrib4 and Angel Calderr5n

Depart ament d’Enginyeria Electrtmica

Universit at Polit6cnica de Catalunya

Diagonal 647, pita, 9, 0$028 Barcelcma, Spain

email: carrasco@eel.upc.es

Abstract

Recently, a method to bound the steady-state availability
using the failure dist ante concept hsa been proposed. In
this paper we refine that method by introducing state space
exploration techniques. In the methods proposed here, the
state space is incrementally generated based on the contri-
butions to the steady-state availability band of the states in

the frontier of the currently generated state space. Several
state space exploration algorithms are evaluated in terms of

bounds quality and memory and CPU time requirements.
The more efficient seems to be a waved algorithm which ex-

pands transition groups. We compare our new methods with
the method based on the failure distance concept without

state exploration and a method proposed by Souza e Silva
and Ochoa which uses state space exploration but does not
use the failure distance concept. Using typical examples we
show that the methods proposed here can be significantly

more efficient than any of the previous methods.

1 Introduction

The steady-state availability is an important dependability

measure for non mission-oriented repairable systems with
long lifetimes. Several techniques have been proposed to

analyze that measure: combinatorics analysis [1], closed-form
solution queue networks [10], and stochastic processes. Com-
binatorics analysis and closed-form solution queue networks
are very efficient techniques but have a relatively small scope

of application. In particular, they cannot support in a gen-
eral enough way important dependencies in the components’

behavior which realistic availability models have to consider.
These dependencies are caused by imperfect fault coverage,

impact of the system configuration on fault, fault/error han-
dling, and repair processes, and repair queuing. All these

dependencies can be incorporated using stochastic processes
[6]. Stochastic processes models can be solved using either

numerical methods or simulation. Numerical methods pro-
vide a reliable solution of the model, but suffer from the
well-known “state space explosion problem” and difficulties

“ Th]s work was supported by ‘iComis16n Intermmisterial de Cien-
cia y Tecnologfa (CICYT)” under the National Research Grant

TIC95–0707–C02–02.

Permission to make digital/hard copy of part or all of this work
for personal or classroom use IS granted without fee provided
thst copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication and
its data appaar, and notice IS given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMETRICS ’96 5/96 PA, USA
B 1996 ACM 0.8979 ~-793 -6/96 /OOO~.., $3. ~O

in dealing with non-exponential distributions, Simulation

with appropriate importance sampling techniques [4], [12]

can be made efficiently and can encompaas non-exponential
distributions [19], [20], but only provides an statistical aa-
seaament of the accuracy.

This paper is concerned with numerical solutions of Mar-
kov availability models. State pruning is an approach which

has been shown very effective to alleviate the state space
explosion problem. With state pruning, an approximated

solution of the model is obtained using a portion of the
complete state space. Of particular interest are the bound-

ing methods recently developed which also give bounds for
the measure. Using general results from Courtois and Semal

[7], [8], Muntz, Souza e Silva and Goyal proposed the first
bounding method for the steady-state availability [18], In
that method, all states with up to a given number of failed

components, K, are generated and the behavior in the non-
generated state space is modeled by a bounding submodel in
which all states with the same number of failed components

are aggregated. A problem of the method ia that it requires
the solution of a model for each return state of the generated

state space G. In order to keep the number of return states

small, a state cloning technique is proposed in [18], in which
clones of all states of G with more than F failed components

are added to the non-generated portion and aggregated in

the bounding aubmodel. This technique introduces some
looseness in the bounds. Based on [18], Lui and Muntz have
proposed an adaptive method [15] which increments K till
the specified error bound is achieved and reuses the solu-
tion obtained with smaller state spaces to avoid having to

solve the complete model each time K is incremented. This

reuse technique introduces some additional looseness in the

bounds. The looseness hex been reduced in a recent, more
elaborated version of the method [16]. Another interesting
elaboration of the original bounding method proposed in
[18], which is more related to the work reported here, is the

method developed by Souza e Silva and Ochoa [21]. In that
method F is set to O and the state space is generated incre-

mentally by expanding states in the frontier of the currently
generated state space. Two heuristics for the selection of
the state to be expanded are proposed in [21]. The more
efficient of them selects the state with maximum mean time
in each visit of the model to the currently generated state
space. State space exploration techniques have also been
proposed for combinatorics availability models [9], [13], [14],
[22] and probabilistic verification of communication proto-
cols [17]. Recently [5], it has been proposed a method to
bound the steady-state availability which differs from the
method proposed in [18] in the use of the failure distance
concept to bound the behavior out of the generated state
space less pessimistically than in [18].

242



In this paper we develop new state space exploration

algorithms specifically targeted to the bounding method de-

scribed in [5]. As in [21], we take F = O so that G has
only one return state, and generate incrementally the state

space based on approximated contributions to the steady-
state availability band associated to the st ates in the frontier

of the currently generated state space. As in the methods
proposed in [21] our basic state space exploration algorithms

have time requirements which grow’ quadratically with the
number of generated states. This is problematic when tens

of thousands of states have to be generated to achieve the

desired accuracy. In order to reduce the time requirements

we propose less precise but less costly state exploration id-

gorithms, which, as our examples illustrate, perform almost
as well as the more costly algorithms. Overall, the bound-
ing methods proposed here seem to be significantly more

efficient than both the bounding method proposed in [21]
and the failure distance based method without state space

exploration described in [5]. The rest of the paper is orga-
nized as follows. Section 2 summarizes the brwic bounding

method described in [5] with the detail required to under-
stand our state space exploration algorithms. Section 3 de-
scribes the state exploration algorithms. Section 4 discusses

implementation details which are important from a compu-

tational efficiency point of view. Section 5 evaluates the
state space exploration algorithms and compares the result-

ing bounding methods with the method proposed in [21] and
the basic method without state space exploration described
in [5]. Section 6 concludes the paper.

2 Preliminaries

We consider finite and irreducible (thus, ergodic) CTMC
availability models X = {X(t); t ~ O} of repairable fault-
tolerant systems made up of components with transitions
modeling failures and repairs. We assume that: 1) X has

a single state o without failed components, 2) repair transi-
tions involve one component (failure transitions are allowed
to involve more than one component), 3) there is at least

one outgoing repair transition from every state # o (i.e., at
least one component is repaired whenever some component

is failed), and 4) the operational/down state of the system is
determined by the unfailed/failed states of its components

through a coherent structure function [1]. The bounding

method described in [5] uses the concept of failure event. A
failure event is a bag of components which can fail simul-
taneously. We assume known: a) the failure events of the

model, b) for each failure event e, an upper bound &b(e)
for the sum of the rates of all failure transitions involving

exactly the components in e from any state of the model,
and c) a lower bound g > 0 for the repair rate from any

state # o of the model. We will denote by E the set of fail-
ure events of the model and by E, the set of failure events
of the model with cardinality i. The class of models under

consideration is quite large and encompasses, for instance,
all the models which can be speeified with the SAVE mod-

eling language [11]. Let fl be the state space of X and let
D be the subset of down states of X. Since X is ergodic,

pi = limt-.~ P[X(t) = i] is well-defined. The steady-state
availability is given by:

A= ~ pi.

iEf2-D

Figure 1: Structure of the modified CTMC X.

Since A is typically very close to 1, we will use the steady-

state unavailabtity:

UA=l_A=~pi.

:ED

Let G and U be, respectively, the generated and non-
generated portion of Q. The bounding method proposed in
[5] with F = O can be justified by considering the regenera-
tive behavior of a modified CTMC X, taking as regeneration
points the times at which the modified X enters o from U.
The modified X is obtained from the original X by adding;
to U clones of the states s E G – {O}, accounting for the
visits to the cloned states between exit from G and hit tc~

o. The modified X has the structure depicted in Figure 1,
where uk includes the states in U with exactly k failed corn-

ponents and, because of assumption 2), X haa a nearest,
neighbor structure in U. In the following we will refer tc,
the modified X simply as X. Also, we will denote by Aij
the transition rate from state i to state j, by Ai = ~j Ai,j

the output rate of state i, by k,B = ~,=H Aij the trans~tion—,. -
rate from state i to the subset of states B, and by 1(c) the
indicator function returning value 1 if c is true and O if c is
false.

Let TG and TU be the contributions of G and U to the
mean time between regenerations of X; let CG and G be
the respective contributions to the mean down time. Using,
regenerative theory [6], we can write:

UA=GG+CU

7zTiF.

Assume that upper bounds for Tu and Cv, [Tu].b and

[Cu]at,, are available. The bounding method described in [5]
uses the following bounds for UA:

[~~]w= TG +~Tu].b ‘

CG + [cIJ].b[uA]h = TG + [c~].b “

(1)

(2)

The lower bound (1) is as in [18]; the upper bound (2) is

different from the one used in [18], which is:

[UA].t, =
CG + [Tu].b

TG + [Tu]ub “

It is easy to prove [5) that [ UA]&b < [ ~A].b if [CU].b <

[Tu]tib and that [UA]ub < [UA]~b if [cU].b < [Tu]+ A

[Cv].b < [Tu]~~ and, typically, < [Tu].b is developed in [5]
using the failure dist ante concept as will be explained next.

TG and CG can be computed from the mean times to ab-
sorption vector of the transient CTMC YG with initial state
o obtained by directing to the absorbing state the transitions
of X from states in G to U. Denoting by AG = (aij )i,j~G the

243



Figure 2: State transition diagram of the bounding sub

model Y;.

,.
restriction of the tranmtlon rate matrix of X to G (~tj = Jij,
t#j, CCii= -2/) and by q = (6i@)t~G the initial probability
row vector of YG, the mean times to absorption row vector
of YG, -r= (~i)ieG, can be obtained by solving:

TAG = -~. (3)

From r, TG and CG can be obtained as:

(4)

(5)

Let N denote the number of components of the system.
The upper bound [Tu]ub is computed using the same sub-
model, Y;, as in [18], shown in Figure 2, where each ag-

gregate state u~ accounts for the subset uk and -f: (k) =

~(k + i < N) ~ee~i Lb(e). Let T(k) denote the mean time

to absorption of Y; with initizd state ~k (see [5] for an effi-
cient computational procedure). The probability that X
exits G folIowing a transition from i c G to some state in
uk can be computed as:

$i,k = r* A:, uk . (6)

Let

.,= ~vi>k (7)

i~G

be the conditional exit distribution from G of X through
the subsets Uk.. Then:

[~U].b = ~ mkT(k).
k

(8)

The procedure to compute [cU].b is based on the failure
distance concept. The failure distance from a states, d(s), is
defined as the minimum number of components which have
to fail in addition to those already failed in s to take the

system down. For down states, d(s) = O. For operational
states, d(s) can be computed assuming the knowledge of the

minimal cuts 1 of the structure function of the system [I] as
follows. Let MC be the set of minimal cuts and let us denote
by F(s) the bag of failed components in s. Since a state s’
is down if and only if m c f’(s’) for some m ~ Mc:

cl(s) = Jginc Irn – F’(S)I (9)

Let Uk,d be the subset of U including the states with k
failed components and failure distance d. [Cu]ub is obtained

1A minimal cut is a minimal collection of components whose fail-
ure implies the failure (down state) of the system. We allow compo-

nent classes with indistinguishable instances and, thus, collections of

components are represented as bags.

from upper bounds C(k, d) for G’u conditioned to exit of G
through Uk,d. The probability that X exits G following a

transition from i to some State in Uk,d can be computed as:

‘@i,k,d = Ti~i,Uk,d. (lo)

Let

(11)

be the conditional exit distribution from G through the sub-
sets Uk,d. Then:

[c~].b = ~ Tk,&’(k, d). (12)

k,d

The bounds C(k, d) are obtained using an iterative im-
provement procedure which starts with C(k, d) = C(k),

where C(k) upper bounds CU conditioned to exit of G

through Uk. Let L = d(o) be the redundancy level of the sys-
tem, i.e., the minimum number of components which have
to be failed for the system to be down. Then, C(k) is com-

puted as the mean reward to absorption of Y; with initial
state u~ with the reward rate structure ~(~k) = I(k ~ L).

At each iterative step, the C(k, d) bounds are revised follow-
ing increasing values of k and, for each k, increasing values
of d. For each (k, d) pair, a new bound C’(k, d) is computed
using the available C(k, d)’s and C’(k, d) is accepted as new
C(k, d) if C’(k, d) < C(k, d). The iterations continue till
no bound C(k, d) experiences significant improvement. The
bounds C’(k, d) are computed using bounding failure rate
structures ~,,j (k, d) which are defined as follows, Let FC be
the set of different cardinalities of the failnre events of the

model and let F(k, d, i, r), i E FC be upper bounds for the
sum of failure transition rates involving i components from

any State in Uk,d to States with failure dist ante < r. Let

w = min{i, d}, then fi,j(k, d) are defined by:

fi,j(k, ~) = F(k, d,i, d-j) -F(k, d,i, d-j-1), O ~j < W,

f,,u,(k, d) = F(k, d, i, d – w),

Using fi,j(~j d), C’(k, d) is computed as:

C’(k, d) = ~~(d = 0) +max{C(k – l,d), C(k - 1,$+ 1)}

w

+$~ ~ fc,j(k,d)c(k + i,d – j).
:EFC j=O

The iterative procedure considers only feasible (k, d) pairs,
i.e., pairs satisfying 1 < k ~ N, max{O, L - k} < d <
min{.L, N – k}. Also, in the expression for CT(k, d),
C(k’, d’) = O for unfeasible pairs (k’, d’) in the right-hand
side.

The correctness of the procedure to obtain the bounds
C(k, d) was proved [5] assuming F(k, d, i, r) decreasing on
d. Bounds F(k, d, i, r) satisfying the requirement which can
be computed with moderate effort are obtained in [5] using
the concepts of import ante Imp(e) and activity Act(e) of a
failure event, defined as:

Imp(e) =
m.M8%..+1m-e[’

244



Then:

F(k, d,i, ?-) =
E

~“b(e), r < d,

eGE1,A(e)~d-r,I( e)<k+r

~(k, d, i, d) = ~ ~“b(e).

eGE,

3 State space exploration algorithms

The more efficient state space exploration algorithm pro-
posedin [Zl]selects for expansion thestate with the largest

mean time to absorption in the transient CTMC YG. For
the method reviewed in the last section, the large impact

of the failure distance parameter d on G(k, d) suggests the

use of more sophisticated state exploration techniques. We
start by finding anapproximated expression fortheunavail-
ability band [UA]ba.~ = [~A]&b - [UA][b and approximate
the band as a sum of contributions associated to the states

in the frontier of G.
Using (l), (2):

[~&.d = [ ~A]jb- [~A]tb
cG+[cIJ]ub _ cG

= TG+[cCJ]ub TG + [Tu]ub

= cG/TG + [cu].b/Ta _ CG/TG

1 + [Cu]ub/TG 1 + [Tu]ub/Ta
. (13)

Assuming [Tu].b ~ TQ and noting that [Cu].b < [Tv].b, we

can approximate (13) by its first-order Taylor expansion on
the variables [~u].b/~G, [Cu]ub/TG, obtaining:

[ uA]band =f [uA]band,app

= ~[Tu]tib+ ‘GficG [Cu]ub. (14)
G

Using, respectively, (6), (7), (8) and (10), (11), (12) we

Then, combining with (14), noting that Ai,uk = Ed Ai,lJ,,a :

[uA]bwzd,app

with:

~:= Dw,. [&(~)+‘G; CGC(W] } (Iv
k,d

G G

~;(k,d) = Ai,U~,d

[

*W) + ~G 1‘G-CGC(k,d) . (18)
G

Thus, we can approximate the unavailability band as a
sum of contributions associated to either the states in the
frontier of G (~i~i) or transition groups from states in the

frontier of G to states in subsets Uk:. (~i~i (k, d)). This is
the basis for the state space exploration algorithms.

The availability models considered in this paper have a

probability distribution which typically is highly skewed ac-

cording to the parameter k (number of failed components),
and the sum of the mean times to absorption r~ of the states

reached from a given state i through failure transitions is
typically much smaller than r,. Then, the impact on the
unavailability band of the expansion of a state i or a transi-
tion group (i, k, d) is almost the removal of the contribution

due to that state or transition group. This justifies the ba-
sic state exploration algorithms CONT-S and CONT.TG. In
these rdgorithms, G is generated incrementally starting with
the state o by selecting the state in G or transition group

from G to U with the highest r,a, or ~,oi(k, d), respectively.
The algorithms are designed so that all transitions between

generated states are included in the generated portion of
X. The state expansion process ends when either a relative
band rlI = ([ UA]~b - [ UA]~b)/[ UA]lb smaller than or equa~

to reqd is achieved or a number of states greater than or

equal to rnaz-nfitates has been generated. Denoting by T
the subset of transitions included in the generated portion

of X, the algorithms can be described as follows. Note that
Ca and (1) [ UA]~b could be O. This will give rb = CO, a value

greater than any req-rb.

Al~orithm CONTS( rea.rb. rnaz-n-states)

Compute T(k)’s and C(k, d) ’s;
G= {o}, T= ~, ~.= l/A., TG = ~., CG = O;

Compute ~OaO using (17);

Compute rb = ([UA]~b - [UA]w)/[UA]m
using (15), (16), (l), (2);
while (rb > reg-rb && restates < rnasua.states) {

Pick the state s with largest r, CI,;
Let B be the set of successors ofs non included in G;

for (each 9’ G B){
Add to T all transitions from s’ to G;

Add to T all transitions from G to s’;

G= Gu{s’};
1

~ompute ~i, i c G solving (3) and TG, CG using (4), (5);

Compute ~i~,, i c G using (17);
Compute rb = ([UA]~b - [UA]~b)/[UA]m
using (15), (16), (l), (2);

}

Algorithm CONT-TG(req-rb, mazndates)

Compute T(k)’s and C(k, d) ’s;

G = {o}! T= ~, TO = l/h TG = To, cG = O;

Compute r./3.(k, d)’s using (18);
Compute rb = ([UA]~b - [UA]m)/[UA]n

using (15), (16), (l), (2);
while (rb > req-rb && n~tates < rnar.n~tates) {

Pick the transition group (s, k, d) with largest r~~,(k, d);
Let B be the set of successors of s with k failed

components and failure distance d non included in G;
for (each s’ E B){

Add to T all transitions from s’ to G;

Add to T all transitions from G to s’;
G = GU {S’};

}
Compute ~i, i E G solving (3) and TG, CG using (4), (5);
Compute ~,~i(k, d) ’s, i G G using (18);
Compute rb == ([ UA]~b - [ UA]w)/[ UA]w
using (15), (16), (l), (2);

}

245



Note that in both algorithms, the linear system (3) is

solved at each expansion stage. Thk is somehow desirable
because a expansion stage may aifect the contributions of
unexpanded states in the frontier of G. Having refreshed

values of the band contributions after each expansion stage
guarantees an accurate implementation of the expansion

heuristic, but compromises the time efficiency of the algo-
rithms. Being r the average number of states included in G
at each expansion stage and m the average number of transi-

tions from the states in G during the expansion process, the
solution of the linear systems (3) adds a term to the over-
all time complexity of the algorithm of order 0(lG12m/r).

This term is dominating and makes the algorithm very slow
in practice when G has of the order of thousands of states.
An approach to alleviate the problem is to reorganize the

expansion so that it is accomplished in waves. This means
that several states or transition groups are expanded with-
out recomputing the vector r, but taking care of changes

. .
@(k, d) resulting from changesin the contributions ~; a,, r, ,

in the transition rates Ai, uk,d. These revisions do not in-

troduce a significant overhead because they have time com-
plexity similar to the updates of the transition set T. At

an extreme, we can include in each wave the state or tran-

sition group expansions which are estimated necessary to
reduce the relative band rb below the required one reg.rb.
We can also be more conservative and allow only a band

reduction up to BR times the band before the wave, where
O S, BR < 1. Lower values of BR result in less solutions

of hnear systems (3) but less accurate state space explo-
rations. Higher values of B R give potentially more accurate

state space explorations, but involve more linear system so-
lutions. To clarify the discussion we show below the waved
version of CO NTJ2., called CO NTJ3.W. A similar version of
CONT-TG, CONT-TG-W, will be considered.

Ahzorithm CONTJLW( reumb. maz_n~tates\

Compute T(k)’s and C(k, d) ’s;
G = {O}, T= #, TO= l/& TQ = r., CG = O;

Compute T.aO using (17);

Compute rb = ([UA]~b - [UA]w)/[UA]lb
using (15), (16), (l), (2);
while (rb > req-rb && m.states < naaz.n.states){

Let appb be the current sum of
all band contributions r,a,;
target-appb = max{BR * appb, (reg-rb/rb) * appb};
while (appb > target-appb

&& n-states < maxm~tates){
Pick the state s with largest rsas;
Let B be the set of successors of s

non included in G;
for (each s’ ~ B){

Add to T all transitions from s’ to G
updating Qa, and appb;

Add to T all transitions from G to s’
updating ~:, i ~ G and appb;

G = GU {s’};

}

bompute ~i, i ~ G solving (3) and TG, CG using (4), (5);
Compute T,a,, i ~ G using (17);
Compute rb = ([ UA]~b - [UA]m)/[UA]ib;
using (15), (16), (l), (2);

}

4 Irrqdementation details

The state space exploration algorithms have been imple-

mented and integrated in METFAC [2]. The tool includes
a model specification language based on production rules.

Each production rule includes an action and may include
several responses, Actions have associated rates and res-
ponses have associated probabilities. Both have associated
guard expressions describing the conditions on the state un-

der which the action/response is active. The interface for
model generation includes several functions which are auto-

matically obtained from the formal model specification. One
of them, called actresp gives a list of the action/response

pairs which are active in a given state. Another called
successor gives the description (in terms of state variables)

of the state reached from another state following a certain
action /resDonse rmir. Other functions. called rate and mob

give r~spe~tively’ the value of the rate of an action an~ the
probability of a response in a particular state. Another

function called ar-act ive tells whether an action/response
pair is active in a particular state. That function is used
to reduce the computational complexity associated to the

maintenance of the set of transitions T among the gener-
ated states and the transition rates A, ,u& . . The problem is..._
that each time a new state s’ is added to G, it is necessary
to check whether the already generated states have tran-

sitions to s’ , add those transitions and subtract the rates
from the corresponding ~i,u~,~, To make that efficiently, we
have implemented hashing procedures based on the sets of
components failed in the states to efficiently select partially

expanded states which may have a transition to s’. For

each failure and repair event of the model we compute the
set of failed components corresponding to the states which

can be predecessors of s’ through a transition with that fail-
ure/repair event. Then, using hashing procedures, we deter-
mine the candldat e states associated to the event, for each

candidate, using ar~ct ive, we determine which of the ac-
tion/response pairs associated to the event are active in the
candidate, and for each active pair we find, using successor,
the description of the state reached from the candidate pre-

decessor through the action/response pair; if the description
matches the description of s’, the transition is added to T
and its rate subtracted from the corresponding Ai, ~kzd rate.

The preprocessor of METFAC was specifically modified so
that it included the function ar-act ive, which was not gen-
erated in the former version. The use of ar-act ive instead

of actresp provides a 3-fold reduction in the CPU times and
makes small the overhead associated to the maintenance of
the set T.

The implementation of the bounding method requires
the computation of the failure distance from the states in
the frontier of U. In addition, we also have to compute
the failure distances from the successors in U of the states

in the frontier of G (required to obtain the transition rates

~i,U~,~). A trivial computation of these failure distances

based on (9) can be time consuming if the number of min-

imal cuts is large. Most of the frontier transitions will be
typically of the failure type. To compute more efficiently

the failure distances associated to these failure transitions
we have introduced the concept of after minimal cut. The
after minimal cut associated to a minimal cut m and a
failure event e E E is m’ = m - e. Let AMCe be the
set of after minimal cuts associated to failure event e, i.e.,
AMC. = {m’lm’ =m—e, mEMC’, m~e #~). Then, the

failure distance from any state reached froms through a fail-
ure transition with failure event e, ad(s, e), can be obtained

246



as:
ad(s, e) = min{d(s), Imific= I?n - F(s)l}. (19)

Using (19) instead of (9), the number of distances to min-
imal cuts Im - I’(s)l which have to be computed to deter-

mine acl(.s, e), e c E, assuming d(s) is known, is reduced
from l~llhfCl to the typically much smaller ~eeE lAiVfC~l.

Further reduction in the number of minimal cut touches and

the associated overhead can be obtained as follows.
Assume that an upper bound ub for d(s) is known (for

instance, ub = L = d(o)). Since at most [1’(s) I components
can be failed in any minimal cut we only need to consider the

minimaf cuts m with Iml - 11’(s)[ < ub. Assume also that we
can access the minimaJ cuts indexed by order and selectors
(bags included in the minimal cut) of order ~ R. For Im -

l’(s)l < ub, m must contain a selector p with all components

failed and Iml - Ipl < ub, i.e., lpi ~ Inzl – ub -I- 1. Thus,
for each possible minimal cut order c we can restrict our

attention to the minimal cuts of order c containing selectors
p with all components failed and [pl = min{l?, c- ub+l} = r,

Possible selectors can be examined by generating all bags of

order r included in F(s). Actual selectors can be identified

easily if all selectors are kept in a hash table. The discussion
justifies the following algorithm for the computation of d(s):

Algorithm to compute d(s)

d(s) = L;
for (increasing minimal cut order c

while c < d(s)+ l~(s)l){
r = min{A!, c- d(S)+ 1};

Let P be the set of bags of order r included in F(s);

for (each p c P){
for (each minimaf cut m with Iml = c and p C m){

d(s) = min{d(s), [m - F(s)l};

}
}

}
A similar scheme can be used to compute ad(s, e), e 6

E, assuming knowledge of d(s). To reduce the overhead
associated to the control of the algorithm we use one bound
and index the selectors for all the failure events of the model

together. The bound is initialized using the after failure
distances from the state o with all components unfailed. The
algorithm is:

Algorithm to compute ad(s, e), e c E

for (each e c E) ad(s, e) = min{d(s), ad(o, e)};

adub = maxeizE{ad(s, e)};
for (increasing after minimaJ cut order c

while c < adub + IF(s) I){
r = min{lt, c– adub+ 1};
Let P be the set of bags of order T included in l’(s);
for (each p c P){

for (each after minimal cut m’ with Im’1 = c

and p C m’){

Let e be the failure event associated to m’;
ad(s, e) = min{ad(s, e), Im’ - F(s) l};

,}

These algorithms have been implemented and integrated
with the state space exploration algorithms. They are used
as follows. d(o) and ad(o, e), e 6 E are computed using (9)
and (19). The failure dktances from the generated states are
kept in the state descriptions. When a state is expanded,
failure distances from the new states reached through failure

transitions are computed using the algorithm for ad(s, e),

e c E; the failure distances from the new states reached

through repair transitions are computed using the algorithm

for d(s). Since typically most of the new states are reached

through failure transitions, the algorithm for ad(s, e), e ~ E

is invoked much more often than the other.

5 Analysis. and ccurqmrison

In this section we analyze the performance of the bound-
ing methods with state space exploration proposed here and,

compare them with the bounding method with state space
exploration proposed in [21] and the bounding method with-

out state space exploration described in [5]. We will also ex-
amine the performance of the state space exploration algo-

rithm described in [21] combined with our bounding method
[5]. The results were obtained in a SPARC1O workstation,

The linear systems were solved by Gauss-Seidel, using the
state cutting technique described in [3] for the linear systems

(3), taking o as the cut-off state. The technique improved

significantly the convergence of the iterative method.

The analysis and comparison will be made using two ex-
amples. The examples correspond to fault-tolerant systems

having several tens of components and yield state spaces
IO state5. we start considering the

with of the order of 10
large example of [18], a distributed fault-tolerant dat abase
system, whose block diagram is given in Figure 3. The sys-

tem includes two processor types (A and B), two sets of
dual-ported controllers with two controllers per set and six

disk clusters with four disks. Each set of controllers controls
three clusters. Each processor type has three spares. The

system is operational if at least one processor of any type is
unfailed, at least one controller in each set is unfailed and

at least three disks in each cluster are unfailed. Thus, the
redundancy level is L = 2. A failure in the active processor

A is propagated to the active processor B with probability
0.10. Processors and controllers fail with rate 1/2000, disks

fail with different rates from one cluster to another. These
rates are 1/6000, 1/8000, 1/10000, 1/12000, 1/14000, and
1/16000. Any component is failed in one of two modes with
equal probabilities. The repair rate is 1 for one mode and

0.5 for the other. Components are repaired by a single re-
pairman who chooses components at random from the bag

of failed components. Unfailed components continue to fail
when the system is down. The second example is a modi-

fied version of the first in which the number of controllers
in each set is increased to 3 and the disks in each cluster

to 5, without modifying any other aspect. The redundancy

level of the second example is L = 3. The unavailability of
the first example is 3.319 x 10-6; the unavailability of the
second one is 4.727 x 10–9.

Figures 4 and 5 show the behavior of the bounding me-
thod with state space exploration described in [21] and our

failure distance baaed bounding method with the state space
exploration algorithm proposed in [21] (called MT), CONTS

and CONT.TG. The relative band ([ VA]Lb – [ UA]~h)/[ UA]~h
is given as a function of the number of states in G. The re-
sults show that the failure distance based bounding method

with the state space exploration algorithms developed here
significantly outperforms the method proposed in [21], spe-
cially for the second example. Thus, the number of states
required to achieve a relative band of 10-3 for the exam-
ple with L = 2 with the failure distance based bound-
ing method under either CONTJ3 or CONT-TG is about
3 times smaller than the number of states required with
the method with state space exploration proposed in [21].

247



processors 0.1

brand

0.01

Figure 3: Block diagram of the first example.

relative
ba?kf

0.01.

1o-3-

0.1

~ [20]

—MT

~ CONT.S

~ CONT.TG

o 20Ml 4000 6000 8000 l(NOO

states

Figure 4: Behavior of the bounding method with state explo-

ration proposed in [21] and the failure distance based bound-

ing method with the state space exploration algorithms MT,
CONTJ3 and CONT.TG for the example with redundancy

level L = 2.

The difference in performance for the example with L = 3
is significantly greater, The state space exploration algo-
rithm MT is significantly less efficient than CONTfi and
CONT-TG for the failure distance baaed boundhg method.
We also experimented with the state space exploration algo-

rithms CONTJ3 and CONT.TG combined with the bound-
ing method proposed in [21] and found that their perfor-

mance was very similar to that of MT. Thus, the proposal

made in [21] is a good one for the basic bounding method
used there. Finally, CONT.TG outperforms CONTJ5, but
only slightly. This was a little blt surprising, since we ex-
pected a more pronounced difference between both algo-
rithms. Since, CONT’.TG has a more complex implement
tion than CONTJ3 this opens the issue of whether CONT-TG
really outperforms CONT~ in terms of the memory and
CPU time required to achieve a given relative band. This
issue will be explored next.

Tables 1 and 2 compare the fsilure distance baaed bound-
ing method without state space exploration with the method
with the state space exploration algorithms MT, CONTJ3

and CONT-TG. In the method without state space explo-

ration G includes all states with up to K failed compo-
nents. The values given in Table 1 correspond to the choices

k-
10.3 -

CONT_TG I

‘o”~
o 1000O 20000 3oooo

states -

Figure 5: Behavior of the bounding method with state explo-
ration proposed in [21] and the failure distance based bound-

ing method with the state space exploration algorithms MT,
CONT-S and CONT-TG for the example with redundancy

level L = 3.

K = 2,3,4; the values given in Table 2 correspond to the

choices K = 3, 4,5. Except for the case K = 2 of Table 1, the
methods with state space exploration with the algorithms

CONTJ3 and CONT.TG outperform the method without
state space exploration, The difference in the case in which
state space exploration gives higher number of states is small
and can be explained by the low accuracy of the approxi-
mated band contribution estimates which are available when
G contains a small number of states. The improvement given

by state space exploration is certainly moderate. However,
we should note that state space exploration allows to adjust

precisely the size of G (and thus the memory requirements
and CPU time) to the desired accuracy for the bounds. The

state space exploration algorithm MT is slightly worse than

the method without state space exploration.
We also analyzed the qualitative characteristics of the

state space exploration algorithms CONTS and CONT-TG.

Figure 6 gives the distribution of the number of states in G
according to the values of the parameters k, d aa the ex-
pansion progresses for the algorithm CONT.TG and the ex-
ample with L = 2. The states are included in G following
increasing values of k and increasing values of d. First, the

few states with k <3 are included. The next included states
are those with k = 3 and d = O, followed by those with k = 3

and d = 1, followed by the few states with k = 3 and d = 2.

Then, states with k = 4 are included, most of them having

d = 0. Only a few states with k = 5 are included at the end.
The actual behavior matches very well the intuition about
what should be a good behavior, thus supporting qualita-
tively the proposed state space exploration algorithms.

We noted in the previous section that the basic state
space exploration algorithms CONT-S and CO NT-TG are
expensive in terms of CPU time for large IGI because of
the large number of linear systems (3) which have to be
solved. Waved versions of those algorithms were proposed

to overcome the problem. It remains however to see if wav-
ing deteriorates significantly the state space exploration and

how the control parameter BR affects the efficiency of the

algorithm. These issues are explored in Tables 3 and 4
which give the number of states and CPU times required
to achieve several relative bands for the basic and waved

248



Table 1: Number of states required to achieve a given relative unavailability band for the example with redundancy level

L = 2 without state exploration and with the state space exploration algorithms MT, CONTJ3 and CONT.TG.

I rel. band I wo/ exp. MT CONT s CONT TG

0.0733 231 302 280 250-

1,526 I2.16!-!10-3 1,763 2,289 1,613

4.96 X 10-5 10,464 12,705 8,523 8,028 J

Table 2: Number of states required to achieve a given relative unavailability band for the example with redundancy level

L = 3 without state exploration and with the state space exploration algorithms MT, CONTJi and CONT.TG.

rel. band wo/ exp. MT CONTJI CON T-TG

0.169 1,771 2,429 1,267 1,199

6.15 X 10-3 10,616 14,309 7,617 6,979
1.76X 10-4 52,916 >60,000 40,100 36,207

4000I II d=2 Ad
❑ d=l A
❑ AO

3ooa AA

5000

2000-J

‘mi A

k=5

k=4

k=3

o~ ‘<3
o 1000 2000 3000 4000 5000

Figure 6: Evolution of the distribution of states according
to the parameters k and d in the state space exploration
algorithm CONT.TG for the example with redundancy level
L=2.

algorithms, We can note that the waved algorithms have
significantly smaller CPU times with almost identical state

space exploration quality. The differences in CPU times
and required states are small for the values of BR explored.

It seems that BR = 0.1 would be a sensible choice in gen-
eral. Regarding the relative performance of CONT-S-W and
CONT-TG-W we can note that the latter has smaller CPU
times. CONT-TG-W also gives smaller lG/, but has some

memory overhead over CONTJ3-W because of the largest
number of contributions per state in the frontier of G which

have to be kept during the expansion process. We analyzed
that overhead and found that it was significantly smaller

than the memory savings resulting from a smaller G. Thus,
in conclusion, the algorithm CONT-TG-W with BR = 0.1

seems to be a good choice.
Compared with the failure distance based bounding me-

thod without state space exploration [5], CONT-TG-W is
about 2 times slower for the same number of generated

states. This overhead can be regarded as reasonable tak-
ing into account the advantages of state space exploration.
Regarding the efficiency of the algorithms for failure dis-
tances computation, for the example with L = 2, algorithm

CONT-TG with BR = 0.1, and target relative band = 10-4
(6,249states), the totsJ number of minimal cut touches was

only 5,786 for R = 2, i.e., less than one touch per state.
A trivial computation of the failure distances based on (9)

would involve about 100 touches per state (the structure

function has 9 minimal cuts, the model hss 11 failure events

and 10 repair events, but only a few repair events have as-

sociated transitions when few components are failed). The

algorithms consumed a 0.9%of the total CPU time and the
part which depends on the number of minimal cuts only a
O.1%. Thus, we feel that models with many more minimal
cuts than the 9 of the example can be managed with small
overhead.

6 Conclusions

State space exploration is attractive because: 1) it allows a
precise adjustment of the size of the generated state space

to the accuracy requirements for the bounds, and 2) it can,
potentially, reduce the size of the required state space. Sev-
eral heuristics can be used to guide the state space explo-
ration. In this paper we have proposed and analyzed the

249



Table 3: Number of states (top) and CPU times in sees. (bottom) to achieve a given relative band for the steady-state
unavailability of the example with redundancy level L = 2 under several state space exploration algorithms.

relative band I 0.05 0.01 5 x 10-’ 10-3 5 x 10-4 10-4 J
CONTJ3 I 333 704 982 2,312 3,532 6,746 I

Table 4: Number of states (top) and CPU times in sees, (bottom) to achieve a given relative band for the steady-state
unavailability of the example with redundancy level L = 3 under several state space exploration algorithms.

relative band

CONT~

5.93 9.72 31.4 55.5 207 376

2.607 3.073 6.138 8.326 18.716 25.897
9.10 11.3 31.6 52.2 203 381 I
1,736 2,558 5,617 7,698 16,873 23,484
17,5 36.2 195 407 2,330 4>876
1,736 2,558 5,617 7,698 16,873 23,466
5.32 8.87 29.3 46.8 174 320
1,736 2,558 5,617 7,698 16,879 23,507
5.12 8.69 28.5 46.8 i74 308
2,509 2,930 5,657 7,730 16,915 23,511
8.70 10.3 27.9 44.4 168 306

250



performance of several state space exploration algorithms
targeted to a failure dktance based steady-state availability

bounding method recently developed. The algorithms are
different from previous proposals in that they are focused
directly to the reduction of the band with a minimum num-

ber of expansions, In order to reduce the CPU time require-

ments we have introduce the concept of waved expansion and
have shown its effectiveness. From the algorithms we have

considered, the waved transition group expansion algorithm
CONT.TG-W has consistently shown a better performance
both in memory and CPU time requirements, The failure
distance based bounding method combined with that state

space exploration algorithm significantly outperforms previ-
ous methods.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

R.E. Barlow and F. Proschan, Statistical Theory of Re-
liability and Life Te8ting. Probability Models, McArdle

press, silver Spring, 1981.

J. A. Carrasco and J. Figueras, “METFAC: Design and
Implementation of a Software Tool for Modeling and
EvsJuation of Complex Fault-Tolerant Computing Sys-
tems,” in Proc. 16th Int. Symp. on Fault- Tolemnt Com-
puting FTCS-16, 1986, pp. 424-429.

J. A. Carrssco, “Analysis of Sparse Numerical Methods

for Dependability Evaluation,” in Proc. 16th IA ESTED

Int. Conf. on Identification, Modeling and Simulation,

1987, pp. 437-441.

J. A. Carrasco, ‘Failure distance-based Simulation of

Repairable Fault-Tolerant Systems,” in Computer Per-
formance Evaluation, Elsevier, 1992, pp. 351-366.

J. A. Carrasco, ‘Improving Availability Bounds using
the Failure distance Concept”, in Dependable Com-
puting and Fault. Tolerant Systems, vol. 9, Springer-
Verlag, 1995,pp. 479497.

E. Qinlar, Introduction to Stochastic Processes, Pren-
tice-Hall, Inc., New Jersey, 1975,

P.J. Courtois and P. Semal, ‘Bounds for the positive
eigenvectors of nonnegative matrices and for their ap-

proximations,” Journal of the ACM, vol. 31, no. 4, pp.
804–825, October 1984.

P. J. Courtois and P. Semal, ‘Computable bounds for
conditional steady-state probabilities in large Markov

chains and queuing models,” IEEE J. of Selected Areas
in Communications, vol. SAC-4, no. 6, September 1986,

pp. 926-937.

S.-N. Chiou and V.O.K. Li, “Reliability AnsJysis of
a Communication Network with Multimode Compo-
nents.n IEEE J. of Selected Areas in Communications,
vol. SAC-4, no. 7, October 1986, pp. 1156–1161.

M. DsJ Cin, ‘Availability Analysis of a Fault-Tolerant
Computer System,” IEEE Trans. on Reliability, vol.

R-29, no. 3, August 1980, pp. 265-268.

A. Goyal, W. C. Carter, E. de Souza e Silva, and S.

S. Labenverg, ‘The System Availability Estimator,”
in Proc. 16th Int. Symp. on Fault-Tolerant Computing
F2T.%16, 1986, pp. 84–89.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A, Goyal, P. Shahabuddin, P. Heidelberger, V.F.

Nicola, and P. W. Glynn, “A Unified Framework for

Simulating Markovian Models of Highly Dependable
Systems,” IEEE Trans. on Computers, vol. 41, no. 1,

January 1992, pp. 36-51.

Y.F. Lam and V.O.K. Li, ‘An Improved Algorithm,
for Performance Analysis of Networks with Unreliable
Components,” IEEE Trans. on Communications, VOL

COM-34, no. 5, May 1986,pp. 496497.

V.O.K. Li and J.A. Silvester, “Performance Analysis of
Networks with Unreliable Components,” IEEE Trans.
on Communications, vol. COIkf-32, no. 10, October
1984, pp. 1105-1110.

J.C.S. Lui and R. Muntz, “Evaluating Bounds on
Steady-State Availability of Repairable Systems from

Markov Models,” in Numerical Solution of Markou

chains, Marcel Dekker, New York, pp. 435-454, 1991.

J.C.S. Lui and R. Muntz, “Computing Bounds on
Steady State Availability of Repairable Computer Sys-
tems,” Journal of the ACM, vol. 41, no. 4, July 1994,
pp. 676-707.

N.F. Maxemchuk and K. Sabnani, “Probabilistic Ver-
ification of Communication Protocols,” in Proc. of the

IFIF 7th Int. Con.f. on Protocol Specification, Testing,
and Verification, North-Holland, 1987, pp. 307-320.

R.R. Muntz, E. de Souza e Silva and A. Goyal, “Bound-
ing Availability of Repairable Computer Systems,”

IEEE Trans. on Computers, vol. 38, no. 12, pp. 1714-
1723, December 1989.

V.F. Nicola, M. Nakayama, P. Heidelberger and A.
Goyal, “Fast simulation of dependability models with
general failure, repair and maintenance processes,” in
Proc. 20th IEEE Int. Symp. on Fault-Tolerant Comput-
ing FTCS-20, 1990, pp. 491-498.

V.F. Nicola, P. Shahabuddin, P. Heidelberger, and

P.W. Glynn, “Fast simulation of steady-state availabil-
ity in non-markovian highly dependable systems,” in

Proc. 2Sth IEEE Int. Symp. on Fault. Tolerant Com-
puting FTCS-,?3, 1993, pp. 3847.

E. de Souza e Silva and P.M. Ochoa, “State Space Ex-
ploration in Markov Models,” Performance Evaluation
Review, vol. 20, no. 1, June 1992,pp. 152-166.

Ch.-L. Yang and P. Kubat, “Efficient Computation
of Most Probable States for Communication Networks
with Multimode Components,” IEEE Trans. on Com-
munications, vol. 37, no. 5, May 1989, pp. 535–538.

251


