
Model of the leaky bucket ATM generic flow control
mechanism: a case study on solving large cyclic models

J.A.Carrasco, V.Sutie, S.Mahevas and G.Rubino

Abstract: The authors describe and solve a Markov model of the leaky bucket ATM generic flow
control mechanism. The model has a space cardinality which grows quickly with its parameters and is
challenging to solve. Exploiting the cyclic nature of the model, the authors develop a methodology
which allows them to efficiently solve instances of the model with 3905 134 states and 53869532
transitions using 29.8Mbyte of memory and 222Mbyte of disc storage. The CPU utilisation is high
(between 70% and 90%). The methodology is new and can be easily extended to any kind of finite
cyclic Markov models.

1 Introduction

Communication networks based upon the asynchronous
transfer mode (ATM) provide high performance user/
network interfaces [l]. The high bit rates made available by
ATM allow several ATM connections to share a common
medium. Examples of such media are a bus, a dual bus, or
a ring. Generic flow control (GFC) mechanisms are needed
to arbitrate the access to the medium. Several GFC mecha-
nisms/protocols have heen proposed [2 4 . A simple and
popular one is the leaky bucket method [5]. In [6] the
performances of several GFC protocols are evaluated by
simulation. In this paper we evaluate the performances of
the leaky bucket protocol by numerically solving a discrete-
time Markov chain model. For typical model parameters,
the resulting Markov chains are large. In addition the char-
acterisation of the irreducible closed set in which the
steady-state regime is established is digcult. That charac-
terisation is necessary to solve the model efficiently. In this
paper we first characterise the irreducible closed set of the
Markov chain model. Then, we develop an ‘on-the-fly’
model generation methodology and an associated model
solution methodology, which exploit the cyclic structure of
the model to reduce memory requirements to a minimum.
This allows us to solve instances of the model with
3 905 134 states and 73 869 532 transitions using 29.8 Mbyte
of memory and 222Mbyte of disc storage with a CPU
utilisation between 70”/0 and 90% depending on model
parameters. Our model generation and model solution
methodologies can be used to solve any class of finite cyclic
Markov models.

0 IEE, 2001
ZEE Proceeditgs online no. 20010285
DO1 10.1049/ipcom:20010285
Paper first received 4th November 1999 and in revised form 13th December
2000
J.A. Carram and V. Sulk are with the Lkpartament d‘Enginyeria Elactrbnica,
Universitat Politknica de Catalunya, Diagonal 647, plta. 9,08028 Barcelona,
Spain
S . Mahevas is with FREMER, MAERHA Laboratory, Rue de l’ile &Yen,
BP 21105,44311 Nantes Cedex 03, France
G. Rubino is with IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

2 Model description

The purpose of the leaky bucket GFC protocol is to regu-
late traffic by limiting throughput and cell clumping. The
leaky bucket protocol has a parameter K equal to the maxi-
mum number of credits given to local cells. At the begin-
ning, the number of credits is equal to K. The number of
credits is decremented each time a local cell is put in the
medium. The number of credits is incremented up to Kat a
rate l/A (once every A slots). A local cell can only be put in
a free time slot (a slot not containing a cell from some
other station upstream) if there are credits. If there is a
waiting local cell when a free slot is received and there are
not credits available, that local cell is either lost, or
contained and it will wait until a credit is available, or it is
accepted but marked, meaning that it may be handled
differently from unmarked cells in the network. We will
focus on the first case. An appropriate selection of K then
allows a balance between local cell loss probability which
decreases with increasing K, and cell clamping, which
increases with increasing K. To reduce clamping, one
should use the smallest K giving a cell loss probability
smaller than or equal to the required value (for instance,

Fig. 1 shows a model of the leaky bucket protocol
(proposed to the authors by Guillemin and Dupuis [7]). A
first queue with infinite capacity and slotted deterministic
service time 1 models contention for the medium. The
queue has two incoming streams of cells: a global stream G
modelling the traffic generated by the upstream stations
and a local stream L modelling the traffic generated by the
station under consideration. The global stream is ‘discrete
Poisson’ with load parameter p (the probability that the
number of arriving cells during a time slot x is P(x) = @”/
x!)e-p). The local stream is assumed to be deterministic with
interarrival time equal to D slots. This corresponds to
assuming that the station under consideration has negoti-
ated a traffic with peak rate 1/D and putting ourselves in
the worst case scenario in which the station under consider-
ation generates a cell to be put in the medium every D
slots. Cells from the global stream (called global) have
priority over cells from the local stream (called local). This
models the fact that local cells can be put in the medium
only in free time slots. A cell from the global stream

10-6).

IEE Proc -Commun., Vol 148. No 3, June 2001 188

departing from the first queue models the fact that the
current slot is filled with a cell coming from the upstream
stations. A local cell departing from the upstream models
the fact that the current slot is empty and an existing local
cell in the buffer of the station under consideration can be
put in the medium. However, whether the local cell will be
put or not in the medium is determined by the leaky bucket
protocol. The leaky bucket protocol is modelled by the
second queue. The number of credits available at a given
time in the leaky bucket protocol is K minus the number of
cells in that queue. The queue has a server with determinis-
tic service time A, modelling the fact that the number of
credits is incremented up to K once every A slots. Local
cells departing from the first queue are diverted to the
second queue. If the second queue is not full, this means
that there are credits available and the local cell will be put
in the medium. The resulting decrease by one in the
number of credits is modelled by putting the local cell in
the second queue. If the second queue is full there are not
credits available and the local cell will be thrown away.
Thus, cell losses in the local stream diverted to the second
queue due to that queue being full are cell losses in the
local stream caused by the leaky bucket protocol, and local
cells entering the second queue correspond to accepted
local cells. The parameter A establishes an upper bound l/A
for the average local traffic put into the medium and, there-
fore, l/A should be as close as possible to the negotiated
peak rate 1/D. In addition, to have a small cell loss proba-
bility in the local stream, A should be strictly less than D.
This leads to a typical selection A = D - 1.

K .

G -
L

Fig. 1 Queue model ojlenky bucket bused GFCprotocol

The behaviour of the model can be described by a dis-
crete time Markov chain (DTMC), whose generic state is
the state of the queueing network defined at the beginning

Table 1: Some generation rules of II,

of time slots. That state can be described by the vector (ATG,
NL, d, k, s), where NG and NL are the number of cells of,
respectively, the global stream and the local stream in the
first queue, d is the counter of the local stream source (1 I
d 5 D and a cell arrives when d = D), k is the number of
cells in the second queue, and S is the counter of the service
time of the second queue (6 = 0 when k = 0, 1 I 6 5 A
when k > 0, and a cell leaves the queue when 6 = A).

Since the first queue has infinite capacity, the model
described previously has infinitely many states. This makes
an exact solution of the model extremely difficult, if not
impossible (solution techniques for models with infinite
state spaces require a certain regularity in the state space
and the model lacks that structure). Therefore, we decided
to give to the model an approximate solution obtained by
solving for increasing values of C, models with the first
queue of finite capacity C, monitoring the convergence of
the solution, and stopping when some appropriate conver-
gence condition is satisfied. We decided to start with C = 4
and increase C by increments of two. We found this an
appropriate tradeoff between reducing the number of
models which are solved and minimising the size of the
largest model solved. Let IIc be the DTMC modelling the
queueing network with a first queue of finite capacity C.
To generate TIc we use a function which for a given state
description (NG, NL, d, k, s) of a state s gives the state
descriptions of the successors of s and the associated transi-
tion probabilities. This function is eficiently implemented
using 28 generation rules. Each generation rule has a
precondition on the state variables and specifies the succes-
sors and transition probabilities which apply when the
precondition is satisfied. As an illustration, we give several
generation rules in Table 1. Transitions with probabilities
smaller than are discarded.

3 Model generation and solution

The measure we want to compute is the cell loss probabil-
ity. We took three criteria for convergence with respect to
C. Let E be a small relative tolerance parameter. The first
such criterion is to have a relative difference between the
cell loss probabilities computed in successive iterations
smaller than or equal to E; the second criterion is to have a
relative error for the probability that the server of the first
queue is serving a local cell (which is equal to 1/D) smaller
than or equal to E; the last criterion is to have a relative
error for the average number of global cells in the first
queue at the beginning of time slots, which is equal to p(2 -
p)/(2(1 - p)) as it easily follows using well-known results for

Rule Precondition Transition
probability Successors

1 N G = O A N L = O A ~ # D

7 NG=OA N L = O A ~ # D

A k = O

A k= K A 6 # A
13 NG>OAd#DAk=l

A S = A
18 NG>OAd=D/ \k> l

A ~ = A

20 NG=OA N L > O A ~ = D
A k > O A k < K A 6 # A

(x, 0, d, + 1,0,0)
(C, 0, d + 1,0,0)

(x, NL- 1, d+ 1, K, S+ 1)
(C- NL, NL- 1, d + 1, K, 6+ 1)
(N G + x - ~ , N~,d+1,0 ,0)
(C- NL- 1, NL, d + 1,0,0)

(N ~ + ~ - l , N ~ + l , l , k - l , l)
(c- NL- 1, NL, 1, k - 1, 1)

(x, NL, 1, k+ 1,6+ 1)
(C- NL, NL- 1,1, k+ 1,6+ 1) - -

f ix) = (.d/k!)e-p is the probability that xglobal cells arrive in a time slot
Q(y) = X&, f i z) is the probability that yor more global cells arrive in a time slot
The integer variable x in f (x) extends from 0 to y - 1 (for instance, for rule 1 we have y = C)

IEE Proc.-Comwzun.. Vol. 148. No. 3, June 2001 189

the M/G/l queue [8], smaller than or equal to E. The last
two criteria were added to increase confidence in the proce-
dure, since we are approximating an infinite model with a
finite one. In the following we will describe the methodol-
ogy used to generate and solve the models l7,.

The space of feasible states of I& is SZ, = {(NG, NL, d, k,

0 if k = 0, 1 5 6 1. A if k > O}. Detailed analysis of nc
reveals that some of the states in QC are transient. Intui-
tively, it is clear that Hc has a single irreducible closed set
(we use the theory of the classification of states of finite
DTMCs as presented in [9]), since otherwise the system
would not show steady-state behaviour independent of its
initial state. However, we should prove that formally and,
furthermore, characterise the irreducible closed set. Given
the structure of H , an explicit characterisation of its irre-
ducible closed set is extremely difficult. However, the
following theorem characterises it implicitly:
Theorem 1: Assume D > 1 and A < D. Let Sc be the subset
of SZ, including the state U = (0, 1, 1, 0, 0) and the states
reachable in llc from U. Then, Sc is the only irreducible
closed set of n,.
Prooj See the Appendix.
In the following we will consider llc restricted to Se Then,
theorem 1 allows the restricted DTMC nc to be obtained
easily by simply generating the model from state U. The
DTMC IIc is periodic with period D. This follows easily by
considering that all successors of states (NG, NL, d, k, 4, 1
I d < D are of the form (VG, VL, d + 1, k’, 8) and that all
successors of states (NG, NL, D, k, 8) are of the form (N k ,
N i , 1, k’, 8). Let Sd denote the subset of Sc including the
states with d = i + 1. Note that the successors of S& belong
to Sd” mod D. For values of interest for C, K, D and A, the
number of states of l7, can be extremely large (of the order
of tens of millions). To reduce memory and disc storage
requirements to a minimum, we decided to use ‘on-the-fly’
model generation and model solution techniques [lo].
Using ‘on-the-fly’ techniques, the successors of a given state
and the corresponding transition probabilities are obtained
dynamically as required by the model generation and
model solution algorithms, thus avoiding the storage in
memory or disc of the transition probability matrix of the
model.

A standard way of reducing memory requirements when
dealing with large models is to use keys instead of state
descriptions. To support the use of keys, two functions are
required an encoding function computing the key from a
state description and a decoding function obtaining the
state description from a key. Since 0 I NG 2 C, 0 I NL 5 C,
1 I d 5 D, 0 I k I K and 0 I 6 I A, a suitable encoding
function is:

b(NG, N L , d, I C , 6) = NG(C+ 1) (D+ 1) (K + 1) (A + 1)

4, NG 2 0, NI 2 0, NG + NL I C, 1 I d I D, 0 1.k I K, 6 =

+ N L (D + 1)(K + l) (A + 1)
+ d (K + l) (A + l) + k (A + l) + S

The decoding function can be implemented by:

S = b mod(A + 1), bl = L b / (A + l)] ,
k = bl mod(K + 1)) bz = [b l / (K + l)],

d = b2 mod(D + 1)) b3 = Lb2/ (D + 1)J)
NL = b3 mod(C + l) , NG = l b S / (C + 1)J.

We have represented keys using 32-bit-long unsigned inte-
ger variables. This sets a maximum value for a key of 232 -
1 = 4294967 295, which has been enough in all the
instances of l7, we have tried.

190

Model generation requires a procedure of test of exist-
ence and insertion of a state with a given key into a subset
of already generated states. If the key exists, the procedure
should return the index of the state. If the key does not
exist, the key should be inserted with a state index one unit
greater than the maximum index in the subset. Holding the
keys and the associated state indices in a 2-3 tree [Ill
indexed by keys, the operation can be done in O(1og n)
time, where n is the number of states held in the subset.

We are now ready to present the model generation algo-
rithm. The purpose of the algorithm is to identify Sc.
According to theorem 1, Sc can be obtained by generating
all its states starting from the state U = (0, 1, 1, 0, 0). The
memory requirements of ‘on-the-fly’ techniques are typi-
cally vectors or data structures (e.g. search trees) with size
equal to the cardinality of the generated state space. How-
ever, the cyclic nature of the model allows us to translate
those requirements to disc and reduce the memory require-
ments to the components associated with two subsets s&.
This is achieved by generating the state space following a
breadth-first approach. We start by state U which belongs
to Sco and generate all its successors, which will belong to
Sc‘. Then, we expand the successors of U , obtaining states
in Sc2, and so on. It is clear that the generation process can
be organised in steps. At each step we expand the gener-
ated and unexpanded states of a subset SCt and obtain
states of S,l+l mod which, if new, are added. The genera-
tion process can be finished when a complete cyclic
sequence of subsets S,l has been visited without expanding
any state. If data structures are partitioned according to the
subsets S,l, only the data structures associated with the
subset S& from which states are expanded and the subset
S,l+‘ mod have to be kept in memory, holding in disc the
data structures associated with the other subsets. We give
in Fig. 2 a description of the generation algorithm. We use
sequential files file-i, 0 2 i 2 D - 1, where file-i holds the
data structures associated with a subset Sd. These data
structures include the number of generated states, the last
expanded state, an array of keys giving for each state index
the corresponding key, and a 2-3 tree holding the keys of
the generated states and, for each key, the corresponding
state index. The function look-and-insert(key-tree, b, &n)
looks for the key b in the search tree key-tree, returning
YES and, in n, the index of the state, if the key exists, and
returning NO and inserting the key b into the tree with
index one unit greater than the maximum index in the tree,
if the key does not exist. The variable previous-done is set
to YES when no state has been expanded in a sequence of
cyclically consecutive subsets S,l ending in the previously
visited subset. When previous-done is equal to YES, the
variablefirst-done is equal to the index i of the subset Scz
starting the cyclic sequence of ‘done’ subsets.

We next describe the solution procedure. Since llc is
periodic, it does not have a steady-state probability distri-
bution. However (see, for instance [9]) it has an invariant
measure Y = (vJzESc, where vz can be interpreted as the
long term average frequency of visits to state i.

The invariant measure v is the only normalised vector
(vTl = 1, where 1 is a vector with all its components equal
to 1) satisfying the linear system:

where Q is the transition probability matrix of nC. Defin-
ing A = Q - Z, eqn. 1 can be written as

where 0 is a vector of the appropriate dimension with all its
elements equal to 0. The cell loss probability can be

vTQ = uT (1)

v T A = OT (2)

IEE Proc -Commtin ~ Vol 148, No 3, June 2001

n-states = 1 ; last-exp = 0;
key[l] = encode(D,C',K,n,(O,l,1,0,0));
make empty tree key-tree;
answer = look-andinsert(key-tree, 6, Scn);
write nutates , /ast-exp, keyu and key-tree in file file-0;
for (i =: 1 ; d 5 D - 1; i++) {

n-states = 0; last-exp = 0;
ma,ke empty array key[];
make empty tree key-tree;
write n-states, last-exp, key1 and key-tree in file .tile-i;

1
e9id= NO;
previous-done = NO;
f = 0;
while (!end){

read n-statesf and last-exp-f from file file- f;
i f (East-exp-f == n-states-j) {

if (!preoiozls-done) {
prmvious-done = YES;
,fir&done = 1;

1
else if (f irs tdone == f + 1 mod D) end = YES;

I
else previous-done = NO;
if (!end){

reid key-jj and key-tree-f from file file- f;
t = f-i-1rnodL);
read n-states-t, last-exp-t, key-tu and key-tree-t from file J1e-l;
for (i = last-exp-f + 1; i 5 n-states-J is+){

decode(D,C,ZC,A,ke~-~~], &(NG, NL, d , h , 6));
obtain the set S of descriptions of the SuccessorN of (N G , N L , d , IC, 6) ;
for (each (Nc:, NL, d, k , 6) E S){

6 = encode(D,C,K,A,(NG, N L , d , k , 6));
if (!look_andinsert(key-tree-t, b, & n)) {

n-stutes-t++; /* new state */
key-t[12-states-t] = 6 ;

1
1

1
East-eq-f = ra-states-f;
w r i k n-states-f, East-exp-f, kcy-A] and key-tree-f in file file-f;
write a-stakx.t, last-exp-t, key$ and key-tree-t i n file file&
f = t ;

1
1

Fig. 2 Model generation algorithm

obtained as lp = lrl(llD), where lr is the cell loss rate. The
quantity lr can be computed by adding the vis of the states
in which a cell is lost. These states are those with NG = 0,
NL > 0 and k = K. The other quantities to be computed are
P, the probability that the server of the first queue is serv-
ing a local cell, and B, the average number of global cells in
the first queue at the beginning of a time slot. They can
also be easily obtained from v and the corresponding state
descriptions: P can be obtained by adding the vis of the
states with NG = 0 and NL > 0; B can be computed by add-
ing the products of the vis by NG.

Sorting the states according to the succession Sco, Sc' , . . .,
ScD-', we obtain for A the block structure:

-10 Q o , ~ 0 e . .

0 -11 Qi ,2 a . .

A = [0 0 - 1 2 . . . 0
. . .

Qo-l.0 0 0 . . . ID-^

where 4 denote identity matrices of appropriate dimensions
and Qij is the restriction of Q to pairs in Sd x 5'2. Such an
ordering guarantees the convergence of the Gauss-Seidel
method ([12], Section 7.4.2). SOR is an iterative method
which is usually used to speed up Gauss-Seidel iteration.
For matrices with the block structure of A , under the con-
dition that all eigenvalues of JD, where J is the Jacobi itera-
tion matrix, are real and non-negative, a theory is available
([121, Section 7.7.1) providing the optimum relaxation
parameter value. Computation of the optimum value for
the relaxation parameter requires the knowledge of the
convergence factor for Jacobi p(J), which, using the known
relationship ([12], Section 7.7.1) between the eigenvalues of
the Jacobi and Gauss-Seidel iteration matrices, can be
computed from the convergence factor of the Gauss-Seidel,
p(G), which can be estimated using:

IEE Proc.-Commun., Vol. 148, No. 3, June 2001 191

We performed numerical experiments and found that: (i)
stabilkation of the estimate for p(C) takes, for large mod-
els, a very substantial portion of the iterations needed for
the convergence under the Gauss-Seidel method (about
20%), (ii) the computed os are far from the optimum ones
(due to the fact that JD has negative or complex eigenval-
ues). Thus, the conditions behind the SOR optimisation
theory do not seem to hold for the matrices of our models
and, given the large number of iterations required for the
stabilkation of the estimates of the convergence factors, we
decided that trying to develop a sophisticated adaptive
SOR optimisation procedure such as that proposed in [13]
was not worthwhile. Thus, we decided to use the Gauss-
Seidel method.

Denoting the elements of Q by qd, the Gauss-Seidel iter-
ative step applied to the solution of eqn. 2 can be described
as:

(k + l) = c4 j a p f l) 3 + C g j a v i k) , ' a

3 < a 9>%

2=1,2,..,,JScJ (3)

The trivial implementation of eqn. 3 requires access to the
elements of Q in a column-by-column manner. This is
inconvenient, since it requires functions running backwards
in the model and these functions are difficult to obtain. To
solve the problem, an algorithm has been proposed in [lo]
that, at the cost of requiring two vectors instead of one,
implements the Gauss-Seidel iteration with access to the
elements of the matrix Q in a row by row manner.
However, the cyclic nature of matrix Q allows a natural
implementation of the Gauss-Seidel iteration in whch the
elements of the matrix are also accessed in a row by row
manner. To see that, it is enough to note that all predeces-
sors of S& are in Sd-' mod and that this subset has only
successors in Scl. Then, to perform, for instance, the itera-
tive step on the states of S$, it is enough to generate
successors of statesj E SCS1 and, for each successor i E

SCo, to cumulate in v, the contribution q119. This observa-
tion leads to the algorithm given in Fig. 3. First, the files
file-i left by the algorithm given in Fig. 2 are read, the iter-
ation vectors initialised with all components equal to 1 and
the files written with the information required by the solu-

old-lr = 0; old-P = 0; old-B = 0;
for (i = 0; i 5 II - 1; i f+) {

read n-states-f, last..exp-,f, key-fn a i d key-tree-f from file Jlc-i;
for (j = 1; j 5 n-stutes; j++){

U&'] = 1:
d e c o d e (D , C ' , I ~ , A , k e ~ ~ ~ ~] , &(NC;, NL, d , k , 6));
upda,t,P-contributioris((Nr;, N L , d, k , d), v- f i] , &old-lr, &old-P, &old-B);

}
write n-staks-f, key-A], key-trecf and U-,@ in file , f i l ~ i ;

1
read n-slates-& kcy-tu, key-tree-t and u-tO from file filclD - 1;
end= NO;
while (!end){

Ir' = 0; P = 0; B = 0; sum-I/ = 0;
for (t = 0; t 5 D - 1; t++){

ra..,sidcsf = nstates-t; key-a = key-.tU; key-tree-f = key-tree-l; v-fl = u-tu;
read n-states-t, key-tu, key-tree-t ancl v-tn from file file-t ;
for (i = I ; i 5 n-stutes-t; i++) v.44 z 0;
for (i = 1; i i: n-states-f; i++){

decode(D,C,K,A,key-~Ai], &(Nr;, N L , ~ , k , 6));
obtain the set. S of descriptions of the successors of (N G , N L , d , I C , 6)
a n d the corresponding transition probabilities;
for (each (X G , N Z , , ~ , ~ , S) E S) {

let q he the transition probability associated with (N G , NL, d, k , 6);
b = enc.ode(L),C,K,A,(NG, NL, d, k:, 6));
answer = look-andinsert(key-tree-t, b, gLj) :
v-s[j] += y x u-14;

}

SZ197tLU += v-t[i] ;

1
for (i = 1; i 5 n-states-t; i++){

decode(U,C',l~,A,kear-t[i3, & (N G , NI, , d , Fc, 8)) ;
update-conkcibutions((NG, N L , d , k , 6), u-t[i], &k, &P, &B) ;

1
write n-stu.tes4, key-to, keg-tree-t and v-20 in file f i led;

1
if (IEr - old..lrl/k. <: E' && (P - old-PI/P 5 E' k& IB - old-UI/R 5 E')

end = YES;
else end = NO;
old-lr = lr; old-P = P; old-B = B;

1
1p = Er x D/surn.-u; P = P/sum-u; B = Blsum-u;

Fig. 3 Model solution algorithm using Gauss-Seidel method with access to elements of Q in row-by-row manner

192 IEE Proc-Commun., Vol. 148, No. 3, June 2001

tion algorithm: number of states, array of keys, key tree
and iteration vector. The function update-contributions0
updates the unnormalised contributions to Ir, P and B of a
state with given description. The iteration step involves
looping through the subsets Scf from t = 0 to D - 1. In
each iteration of the loop, n-states f, k e y x] , key-tree f
and v_f[] hold the data structures of the predecessor subset
sct-l mod D and n-states-t, key-t[1, key-tree-t and v-t[]
hold the data structures of the current subset Set. The iter-
ation vector is kept unnormalised during the Gauss-Seidel
iterations. Convergence is considered achieved when the
relative tolerance in all the unnormalised quantities Ir, P
and B is smaller than or equal to a given small quantity E',
significantly smaller than E. Once convergence is achieved,
the cell loss probability I p and the normalised P and B are
computed using the sum of the components of the iteration
vector which is cumulated in sum-v. Note that, at a given
time, only the data structures associated with subsets Sci
and S2-I mod are held in memory.

4 Results

Table 2 illustrates the more relevant parameters related to
the computational effort of the solution of the model. For
several values of p, D, and K (A = D - 1 in all cases) and E
= l t 5 , E' = 10-lo, we give the value of C for which the
solution converged. For that value of C, we also give the
number of states, number of transitions, memory and disc
storage requirements in Mbytes, and number of required
Gauss-Seidel iterations. The amount of disc storage is
approximately the amount of memory which would be
required were our techniques to reduce it based on the
cyclic nature of the model not implemented. The required
value of C increases with K and is very sensitive to the utili-
sation factor of the first queue (p + UD). The required
number of Gauss-Seidel steps is also sensitive to the utilisa-
tion factor of the first queue and increases slightly with K.
We can note that memory requirements are very small rela-
tive to the number of states and transitions of the models.
Our code reads arrays from disc and writes arrays into disc
using, respectively, the ANSI standard C functions
fread0 and fwriteo. CPU utilisation was high
(between 70% and 90%, depending basically on the value of
C). That high CPU utilisation is due to the fact that the
average number of transitions per state is high (the contri-
bution to the wall clock time due to disc accesses is approx-
imately proportional to the number of states while the
CPU processing time is approximately proportional to the
number of transitions). Thus, the price paid by our tech-
niques to reduce the memory requirements exploiting the

cyclic nature of the model is small. The flop rate our code
achieved in a 167 MHz UltraSPARCl workstation was
about 174Kflops, which is reasonable considering the use
of the 2-3 trees to find the indices of the states from their
keys.

4 12 20 28 36 44 52

Fi Relative tolerance in loss rate (criterion I) and relative errorsfor
pr%*ility that server of irst queue is servin a local cell (criterion 2) mi
expected number of g lobahh in first queue (%iterion 3) for incremmg C, for
case p = 0.7, D = IO, A = 9, K = 4
-0- criterion 1
- -+- - criterion 2
-0.- criterion 3

C
4

Fig. 4 gives the relative tolerance for the loss rate and
the relative errors for the probability that the server of the
first queue is serving a local cell and the expected number
of global cells in the first queue for increasing C, for the
case p = 0.7, D = 10, A = 9, K = 4 and E' = We can
note first that both the relative tolerance and the relative
errors decrease at a high rate when C increases. Then, we
should expect the relative error in the loss rate to be smaller
than the relative tolerance. Also, of the two other criteria,
the strongest is the third one. For this particular set of
parameters, the required C would be determined by the
first criterion.

Figs. 5-7 display the loss probability as a function of K
for, respectively, p = 0.3, p = 0.5 and p = 0.7, for D = 5, D
= 10 and D = 15, and A = D - 1 in all cases. All results
were obtained using E = and E' = 10-lo. The K
required to achieve a given loss probability increases with
the load (i.e. with p, and with l/D). Except for the cases in
which the load of the system p + 1/D is very high, the min-
imum K required to achieve a loss probability smaller than
or equal to a typical value is moderate. Thus, for instance,
Table 3 gives the minimum required K to achieve a loss

Table 2: Crequired for convergence in results and number of states, number of transitions,
memory and disc storage requirements in Mbytes, and number of required iterations for
that value of Cfor several sets of model parameter values

~ ~ ~~ ~~ ~

Disc p D K C States Transitions Memory storage Iterations

0.5 10 2 18 29 513 223 968 0.341 1.64 25
0.5 10 8 32 365224 4557871 4.24 21.1 42

0.7 5 2 46 42 167 708 045 1.01 2.50 513
0.7 5 8 56 249129 4896546 5.66 14.0 631

0.7 5 14 66 598935 13159009 14.0 34.7 731
0.7 15 2 28 166578 1819 108 1.30 9.62 49

0.7 15 8 42 1479612 23397586 11.3 ' 84.3 70

0.7 15 14 52 3905134 73869532 29.8 222 86
A = D- 1 in all cases

IEE Proc.-Commun.. Vol. 148, No. 3, June 2001 193

probability smaller than or equal to 10-6 for all pairs of p,
D values considered in Figs. 5-7. Since the first queue has
infinite capacity, the traffic entering the second queue has
average rate 1/D. The average service rate of that queue is
l/A = 1/(D - 1). Thus, the utilisation of the second queue is

K
Fig. 5
D-I
-0- D = 5

.... 0 D = 15

Loss probability as ajinction of Kfor p = 0.3, D = 5, 10, 15 and A =

--+-- D = l O

' F

2 4 6 8 10 12 14
K

Lossprobability as afiozctwn of Kfor p = 0.5, D = 5, 10, 15 and A = Fig. 6
D - I
-0- D = 5
--+-- D = 10
.... 0 D = 15

1081 I I I I I I I I 1 I I ,

2 4 6 8 10 12 14
K

Loss probability as a function of Kfor p = 0.7, D'= 5, 10, 1.5 and A = Fig. 7

-0- D = 5

.... 0 D = 15

D - 1
--+-- D = 10

(D - l)/D, which increases with D. However, the results
given in Figs. 5-7 show that the loss probability decreases
with D, i.e. with the utilisation. The counter-intuitive
behaviour can be explained by the fact that the burstiness
of the traffic diverted to the second queue decreases with D,
compensating the larger utilisation for larger D.

Table 3: Minimum required K to achieve a loss probability
smaller than or equal to I O 4 for several values of p and D

P D K

0.3 15 3
0.3 10 3
0.3 5 5
0.5 15 5
0.5 10 6
0.5 5 11
0.7 15 13
0.7 10 >I4
0.7 5 >I4

5 Conclusions

We have developed a methodology for the solution of finite
large cyclic DTMC models and have applied it to the per-
formance analysis of an ATM leaky bucket GFC protocol.
The methodology includes 'on-the-fly' model generation
techniques and exploits the cyclic nature of the model to
reduce to a minimum the memory requirements. In addi-
tion, we have shown that the class of ATM leaky bucket
models considered in the paper have a single irreducible
closed set and have characterised this set implicitly by
showing that there exists a path from any feasible state of
the model to a given particular state U included in the irre-
ducible closed set. The characterisation allows the irreduci-
ble closed set to be generated very easily (it is enough to
generate states from U). The approach we have followed to
show that the models have a single irreducible closed set
and characterise it could be used for other classes of mod-
els. Using the methodology developed in the paper, we
have been able to solve very large models (3 905 134 states
and 73 869 532 transitions) using moderate amounts of
memory (29.8 Mbyte) and disc storage (222Mbyte). The
results obtained can be used to select an appropriate value
for the parameter K as a function of the negotiated portion
(l/D) of the bandwidth of the medium and the monitored
upstream load @) depending on the required loss probabil-
ity (typically between and lod). CPU time require-
ments are, however, large. In the future we are planning to
develop and test approximations requiring the solution of
smaller models so that more efficient computations can be
performed. In that sense, the methodology proposed in the
paper will allow the goodness of such approximations to be
tested.

6 Acknowledgments

The work of the two first authors has been supported by
the Comisi6n Interministerial de Ciencia y Tecnologia
(CICYT) under the research grant TIC95-0707-C02-02.
The authors are grateful to the anonymous reviewers,
whose comments have allowed the improvement of a
former version of the paper.

IEE Proc.-Commun.. Vol. 148, No. 3, June 2001 194

7 References

1 RITTLER, M.: ‘Multirate models for dimensioning and performance
evaluation of ATM networks’. COST-242 report, June 1994

2 ADAMS, J.: ‘A multiservice GFC protocol’, Znt. J. Digit. Analog
Commun. Syst., 1991,4, pp. 123-130

3 BUDRIKIS, Z.I., MERCANKOU, G., BLASIKIEWIECZ, M.,
ZUKERMAN, M., YAO, L., and POTTER, P.: ‘A generic flow con-
trol for B-ISDN. Proceedings of IEEE Infocom’92, 1992, pp. 895-904

4 FALCONER, R., and ADAMS, J.: ‘Orwell: a protocol for an inte-
grated services local network‘, British Telecommun. Tech. 1, 1985, 3,

5 NIESTEGGE, G.: ‘The leaky bucket policing method in ATM net-
works’, Int. J. Digital Analog Commun. Syst., 1990,3, pp. 187-197

6 GUILLEMIN, F., and MONIN, W.: ‘Analysis of cell clumping
caused by ATM network GFC protocols’, Comput. Commun., 1994,
17, (9), pp, 637646

7 GUILLEMIN, F., and DUPUIS, A.: private communication, 1996
8 KLEINROCK, L.: ‘Queueing systems. Volume 1: Theory’ (John

Wiley, 1975)
9 CINLAR, E.: ‘Introduction to stochastic processes’ (Prentice-Hall,

1975)
10 DEAVOURS, D.D., and SANDERS, W.H.: ‘On-the-fly solution

techniaues for stochastic aetri nets and extensions’. Proceedinns of the

(4), pp. 27-35

7th IEkE international iorkshop on Petri nets and perform&e mod-
els (PNPM97), 1997, pp. 132-141

11 AHO, A.V.. HOPCROFT. J.E., and ULLMAN, J.D.: ‘Data struc-
tures and algorithms’ (Addison-Wesley, 1985)

12 STEWART, W.J.: ‘Introduction to numerical solution of Markov
chains’ (Princeton University Press, 1994)

13 CIARDO, G., BLAKEMORE, A., CHIMENTO, P.F., MUPPALA,
J.K., and TRIVEDI, K.S.: ‘Automated generation and analysis of
Markov reward models using stochastic reward nets’ in MEYER, C.,
and PLEMMONS, R. (Eds.): ‘Linear algebra, Markov chains and
queumg models’ (IMA, 1992)

8

We will use the theory of classification of the states of finite
DTMCs as presented in [9]. It is enough to prove that there
exists a path in nC from any state s E Rc - { U } to U. To
see that, note first that U cannot be transient, since, if it
were, some state in Qc - (U) would be recurrent and the
existence of a path from such state to U would contradict
that U is transient (there cannot be paths from recurrent
states to transient states). Not being transient, U has to
belong to some irreducible closed set. Let Sc be the irreduc-
ible closed set of Ilc including U. States which are not
reachable from U cannot belong to Se Also, every state s
reachable from U belongs to Sc, since there exist paths
between s and U in both directions. Thus, Sc includes
precisely U and the states reachable from U. To show that
Sc is the only irreducible closet set of nC, assume the exist-
ence of another irreducible closed set Sl, and pick any state
S E S‘,. The existence of a path from s to U e Sc is in
contradiction with SC being a closed set.

We split the proof of the existence of a path from any
state s E Qc - {U) to U in two parts. In the first part, we
prove the existence of a path from any state (NG, NL, d, k,
S, to a state (0, 0, d‘, k‘, 6’). In the second part, we prove
the existence of a path from any state (0, 0, d, k, S, to U.
We use the notation

Appendix: Proof of theorem 1

s -3 s’
to indicate that state s‘ is the successor of s reached when x
arrivals from the global stream occur.
First part: Consider an arbitrary state (NG, NL, d, k, s) and
the path made up of transitions associated with 0 arrivals
of the global stream. Such a path reaches a state (0, 0, d‘,
k’, 6’). To prove that, consider first the case NG > 0. Each
transition will reduce NG by 1 and after NG transitions the
path will reach a state (0, NL, d‘, k’, 6’). Then, it is enough
to prove the result for states (0, NL, d, k, S, with NL > 0.
Consider a path of transitions associated with 0 arrivals
from the global stream. Each transition will decrement NL
if d < D and will leave unchanged (or decrement if NL = C)

IEE Proc -Commun , Vol. 148, No 3, June 2001

NL if d = D. Since D > 1, a d cycle will decrement NL and
a state (0, 0, d‘, k’, 6’) will be eventually reached.
Second part: We will analyse nine cases for the values of d,
k, 6, D, A and K. For each case we will find a path to either
U or a state of the form (0, 0, d’, k’, 6’) in such a way that
the existence of a path to U will be guaranteed.
Case 1: k = 0
Note that k = 0 implies 6 = 0. Therefore, the state will be
of the form (0, 0, d, 0, 0). A path to U is:

(O , O , d , O , O) - % (O , O , d + l , O , O) A...
o\ (O ,O, D, 0,O) -% (0,1, I, 0,O)

C a s e 2 : A - 6 > D - d + l , O < k < K , K > l
Note that D - d + 6 + 2 I A and that, with d I D and
(sincek>0)62 1 , A - D + d - 6 + l I A - 6 + 1 I A < D .
These two inequalities and k < K, D 2 2 guarantee the
existence of the path:

(O,O, d, I C , 6) 3 . I . o\ (O,O, D , I C , D - d + 6)

o\ (0,1,1, k , D - d + 6 + 1)

-% (0,0,2,k + l , D - d + 6 + 2)

5.. , o\ (O,O,A - D + d - 6, k + 1,A)

-% (O,O,A - D + d - 6 + l , k , 1)
Le td ’=A-D+d-6+ l a n d # = l.WehaveA-$-(D
- d ’) = d - 6 - 2 (D - A) < d - 6 - (0 - A) = A - & (D - d) .
Then, by concatenating an enough number of such paths
we will reach a state corresponding to case 5, 8 or 9.
Case 3: A - 6> D - d + 1, k = K > 1
Note that D - d + 6 + 2 5 A and, as shown in the discus-
sion of case 2, A - D +d - 6 + 1 < D. These two inequali-
ties with D 2 2 guarantee the existence of the path:

(0, 0 , d, K , 6) o\ . * * -% (O,O, D, K , D - d + 6)

3 (0 ,1 ,1 ,K ,D-d+6+1)

3 (0 ,0 ,2 ,K1D-d+6+2)

3 (O,O,A - D + d - 6 + l , K - 1,l)

0 -+ . . . -% (0,O,A - D + d - 6,K,A)

and we have reached a state corresponding to case 2, 5, 8
or 9.
Case 4: A - 6 > D - d + 1, k = K = 1
Note that D - d + 6 + 2 I A and, as shown in the discus-
sion of case 2, A - D + d - 6 + 1 < D. Since D 2 2, the fol-
lowing path exists:

(0,0,d,1,6) A... 5 (0 , 0 , D , 1 1 D - d + 6)

-% (0,1,1,1,D - d + 6 + 1)

3- (0,0,2,1,D - d + 6 + 2)
0 --+ . . . 5 (O ,O, A - D + d - 6, 1 ,A)

5 (O ,O, A - D + d - 6 + l , o ,o)
and we have reached a state corresponding to case 1.
C a s e S : A - 6 = D - d + l , O < k < K , K > l
Since D 2 2 we have the path:

(O,O, d, k , 6) 3 * . . 5 (O,O, D, k , a - 1)

-% (0,1,1, I C , A) -% (O ,O, 2, I C , 1) = s

195

Calling the 'd' and '6' parameters of s, respectively, d' and
8, we have A - 6' = A - 1 5 D - 2 = D - d'. Notice also
that k > 0. Then, we have reached a state corresponding to
case 8 or case 9.
Case 6: A - 6 = D - d + 1, k = K > 1
Since D 2 2 we have the path:

(O ,O,d ,K ,S) A... -%(O,O,D,K,A-1)

3 (O , l , l , K , A) 5 (0 , 0 , 2 , K - 1,l) = s

Calling the 'd' and '6' parameters of s, respectively, d' and
8, we have A - 6' = A - 1 I D - 2 = D - d'. Notice also
that K - 1 > 0. Then, we have reached a state correspond-
ing to case 8 or case 9.
Case7: A - 6 = D - d + 1, k = K = 1
Since D 2 2 we have the path:

0 0 (0,0)d,1,6) -+... --+ (0 , 0 , D , l , A - 1)

-% (O , l , l , l , A) -% (0,0,2,0,0)
and we have reached a state corresponding to case 1.
Case 8: A - 6 = D -d, 0 < k I K
For k = 1 we have the path to U :

(O , O , d , 1 , 6) 3 . . .&(O,O)D, l ,A)&(O, l , l , O , O)

For k > 1 and A = 1, since D 2 2, we have the path

(O ,O,d , k ,S) A... 3 (0 , 0 , D , k , A)

3 (0,1,1, IC - 1,l) -% (O , O , 2, IC - 1,l)

(0,O,d,Ic,6) ~ . . . ~ (O,o,D,Ic,n)

3 (O , l , l , k - 1 , l) 3 (0 , 0 , 2 , k , 2)
-+... 0 &(O,O,A,IC,A)

~ (O , O , A + l , I C - l , l)

For k > 1 and A > 1, since D 2 2, we have the path:

In both last cases we reach a state with 'k' one less.
Case 9: A - 6 < D - d, 0 < k I K
Note that A - 6 + d + 1 I D. For k = 1 we have the path:

(O,O,d,l,S) A... & (O , O , A - S + d , l , A)

-% (O , O , A - 6 + d + 1,0,0)
and we reach a state corresponding to case 1. For k > 1 the
previous path leads to (0, 0, A - 6 + d + 1, k - 1, l), a state
with 'k' one less.

To summarise, cases 4 and 7 are reduced to case 1; cases
2, 3, 5 and 6 are reduced to case 8 or case 9. In case 1 there
exists a path to U. In cases 8 and 9 either there exists a path
to U or a path to a state with 'k' one less, guaranteeing that
the case 1 (k = 0) will be eventually reached. Thus from
any state (0, 0, d, k, s) there exists a path to U and the
proof of the theorem is finished.

196 IEE Proc-Commun.. Vol. 148. No. 3. June 2001

