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Abstract: The authors describe and solve a Markov model of the leaky bucket ATM generic flow 
control mechanism. The model has a space cardinality which grows quickly with its parameters and is 
challenging to solve. Exploiting the cyclic nature of the model, the authors develop a methodology 
which allows them to efficiently solve instances of the model with 3905 134 states and 53869532 
transitions using 29.8Mbyte of memory and 222Mbyte of disc storage. The CPU utilisation is high 
(between 70% and 90%). The methodology is new and can be easily extended to any kind of finite 
cyclic Markov models. 

1 Introduction 

Communication networks based upon the asynchronous 
transfer mode (ATM) provide high performance user/ 
network interfaces [l]. The high bit rates made available by 
ATM allow several ATM connections to share a common 
medium. Examples of such media are a bus, a dual bus, or 
a ring. Generic flow control (GFC) mechanisms are needed 
to arbitrate the access to the medium. Several GFC mecha- 
nisms/protocols have heen proposed [ 2 4 .  A simple and 
popular one is the leaky bucket method [5]. In [6] the 
performances of several GFC protocols are evaluated by 
simulation. In this paper we evaluate the performances of 
the leaky bucket protocol by numerically solving a discrete- 
time Markov chain model. For typical model parameters, 
the resulting Markov chains are large. In addition the char- 
acterisation of the irreducible closed set in which the 
steady-state regime is established is digcult. That charac- 
terisation is necessary to solve the model efficiently. In this 
paper we first characterise the irreducible closed set of the 
Markov chain model. Then, we develop an ‘on-the-fly’ 
model generation methodology and an associated model 
solution methodology, which exploit the cyclic structure of 
the model to reduce memory requirements to a minimum. 
This allows us to solve instances of the model with 
3 905 134 states and 73 869 532 transitions using 29.8 Mbyte 
of memory and 222Mbyte of disc storage with a CPU 
utilisation between 70”/0 and 90% depending on model 
parameters. Our model generation and model solution 
methodologies can be used to solve any class of finite cyclic 
Markov models. 
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2 Model description 

The purpose of the leaky bucket GFC protocol is to regu- 
late traffic by limiting throughput and cell clumping. The 
leaky bucket protocol has a parameter K equal to the maxi- 
mum number of credits given to local cells. At the begin- 
ning, the number of credits is equal to K. The number of 
credits is decremented each time a local cell is put in the 
medium. The number of credits is incremented up to Kat a 
rate l/A (once every A slots). A local cell can only be put in 
a free time slot (a slot not containing a cell from some 
other station upstream) if there are credits. If there is a 
waiting local cell when a free slot is received and there are 
not credits available, that local cell is either lost, or 
contained and it will wait until a credit is available, or it is 
accepted but marked, meaning that it may be handled 
differently from unmarked cells in the network. We will 
focus on the first case. An appropriate selection of K then 
allows a balance between local cell loss probability which 
decreases with increasing K, and cell clamping, which 
increases with increasing K. To reduce clamping, one 
should use the smallest K giving a cell loss probability 
smaller than or equal to the required value (for instance, 

Fig. 1 shows a model of the leaky bucket protocol 
(proposed to the authors by Guillemin and Dupuis [7]). A 
first queue with infinite capacity and slotted deterministic 
service time 1 models contention for the medium. The 
queue has two incoming streams of cells: a global stream G 
modelling the traffic generated by the upstream stations 
and a local stream L modelling the traffic generated by the 
station under consideration. The global stream is ‘discrete 
Poisson’ with load parameter p (the probability that the 
number of arriving cells during a time slot x is P(x) = @”/ 
x!)e-p). The local stream is assumed to be deterministic with 
interarrival time equal to D slots. This corresponds to 
assuming that the station under consideration has negoti- 
ated a traffic with peak rate 1/D and putting ourselves in 
the worst case scenario in which the station under consider- 
ation generates a cell to be put in the medium every D 
slots. Cells from the global stream (called global) have 
priority over cells from the local stream (called local). This 
models the fact that local cells can be put in the medium 
only in free time slots. A cell from the global stream 
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departing from the first queue models the fact that the 
current slot is filled with a cell coming from the upstream 
stations. A local cell departing from the upstream models 
the fact that the current slot is empty and an existing local 
cell in the buffer of the station under consideration can be 
put in the medium. However, whether the local cell will be 
put or not in the medium is determined by the leaky bucket 
protocol. The leaky bucket protocol is modelled by the 
second queue. The number of credits available at a given 
time in the leaky bucket protocol is K minus the number of 
cells in that queue. The queue has a server with determinis- 
tic service time A, modelling the fact that the number of 
credits is incremented up to K once every A slots. Local 
cells departing from the first queue are diverted to the 
second queue. If the second queue is not full, this means 
that there are credits available and the local cell will be put 
in the medium. The resulting decrease by one in the 
number of credits is modelled by putting the local cell in 
the second queue. If the second queue is full there are not 
credits available and the local cell will be thrown away. 
Thus, cell losses in the local stream diverted to the second 
queue due to that queue being full are cell losses in the 
local stream caused by the leaky bucket protocol, and local 
cells entering the second queue correspond to accepted 
local cells. The parameter A establishes an upper bound l/A 
for the average local traffic put into the medium and, there- 
fore, l/A should be as close as possible to the negotiated 
peak rate 1/D. In addition, to have a small cell loss proba- 
bility in the local stream, A should be strictly less than D. 
This leads to a typical selection A = D - 1. 

K . 

G - 
L 

Fig. 1 Queue model ojlenky bucket bused GFCprotocol 

The behaviour of the model can be described by a dis- 
crete time Markov chain (DTMC), whose generic state is 
the state of the queueing network defined at the beginning 

Table 1: Some generation rules of II, 

of time slots. That state can be described by the vector (ATG, 
NL, d, k, s), where NG and NL are the number of cells of, 
respectively, the global stream and the local stream in the 
first queue, d is the counter of the local stream source (1 I 
d 5 D and a cell arrives when d = D), k is the number of 
cells in the second queue, and S is the counter of the service 
time of the second queue (6 = 0 when k = 0, 1 I 6 5 A 
when k > 0, and a cell leaves the queue when 6 = A). 

Since the first queue has infinite capacity, the model 
described previously has infinitely many states. This makes 
an exact solution of the model extremely difficult, if not 
impossible (solution techniques for models with infinite 
state spaces require a certain regularity in the state space 
and the model lacks that structure). Therefore, we decided 
to give to the model an approximate solution obtained by 
solving for increasing values of C, models with the first 
queue of finite capacity C, monitoring the convergence of 
the solution, and stopping when some appropriate conver- 
gence condition is satisfied. We decided to start with C = 4 
and increase C by increments of two. We found this an 
appropriate tradeoff between reducing the number of 
models which are solved and minimising the size of the 
largest model solved. Let IIc be the DTMC modelling the 
queueing network with a first queue of finite capacity C. 
To generate TIc we use a function which for a given state 
description (NG, NL, d, k, s) of a state s gives the state 
descriptions of the successors of s and the associated transi- 
tion probabilities. This function is eficiently implemented 
using 28 generation rules. Each generation rule has a 
precondition on the state variables and specifies the succes- 
sors and transition probabilities which apply when the 
precondition is satisfied. As an illustration, we give several 
generation rules in Table 1. Transitions with probabilities 
smaller than are discarded. 

3 Model generation and solution 

The measure we want to compute is the cell loss probabil- 
ity. We took three criteria for convergence with respect to 
C. Let E be a small relative tolerance parameter. The first 
such criterion is to have a relative difference between the 
cell loss probabilities computed in successive iterations 
smaller than or equal to E; the second criterion is to have a 
relative error for the probability that the server of the first 
queue is serving a local cell (which is equal to 1/D) smaller 
than or equal to E; the last criterion is to have a relative 
error for the average number of global cells in the first 
queue at the beginning of time slots, which is equal to p(2 - 
p)/(2( 1 - p)) as it easily follows using well-known results for 

Rule Precondition Transition 
probability Successors 

1 N G = O A N L = O A ~ # D  

7 NG=OA N L = O A ~ # D  

A k = O  

A k=  K A  6 # A  
13 NG>OAd#DAk=l  

A S = A  
18 NG>OAd=D/ \k> l  

A ~ = A  

20 NG=OA N L > O A ~ =  D 
A k > O A  k < K A 6 # A  

(x, 0, d, + 1,0,0) 
(C, 0, d +  1,0,0) 

(x, NL- 1, d+  1, K, S+ 1 )  
(C- NL, NL- 1,  d +  1, K, 6+ 1 )  
( N G + x - ~ ,  N~,d+1,0 ,0)  
(C- NL- 1, NL, d +  1,0,0) 

( N ~ + ~ - l , N ~ + l , l , k - l , l )  
(c- NL- 1, NL, 1, k -  1, 1) 

(x, NL, 1, k+  1,6+ 1 )  
(C- NL, NL- 1,1,  k+ 1,6+ 1) - -  

f ix)  = (.d/k!)e-p is the probability that xglobal cells arrive in a time slot 
Q(y) = X&, f i z )  is the probability that yor  more global cells arrive in a time slot 
The integer variable x in f ( x )  extends from 0 to y -  1 (for instance, for rule 1 we have y =  C) 
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the M/G/l queue [8], smaller than or equal to E. The last 
two criteria were added to increase confidence in the proce- 
dure, since we are approximating an infinite model with a 
finite one. In the following we will describe the methodol- 
ogy used to generate and solve the models l7,. 

The space of feasible states of I& is SZ, = {(NG, NL, d, k,  

0 if k = 0, 1 5 6 1. A if k > O}. Detailed analysis of nc 
reveals that some of the states in QC are transient. Intui- 
tively, it is clear that Hc has a single irreducible closed set 
(we use the theory of the classification of states of finite 
DTMCs as presented in [9]), since otherwise the system 
would not show steady-state behaviour independent of its 
initial state. However, we should prove that formally and, 
furthermore, characterise the irreducible closed set. Given 
the structure of H ,  an explicit characterisation of its irre- 
ducible closed set is extremely difficult. However, the 
following theorem characterises it implicitly: 
Theorem 1: Assume D > 1 and A < D. Let Sc be the subset 
of SZ, including the state U = (0, 1, 1, 0, 0) and the states 
reachable in llc from U. Then, Sc is the only irreducible 
closed set of n,. 
Prooj See the Appendix. 
In the following we will consider llc restricted to Se Then, 
theorem 1 allows the restricted DTMC nc to be obtained 
easily by simply generating the model from state U. The 
DTMC IIc is periodic with period D. This follows easily by 
considering that all successors of states (NG, NL,  d, k, 4, 1 
I d < D are of the form (VG, VL, d + 1, k’, 8) and that all 
successors of states (NG, NL, D, k,  8) are of the form ( N k ,  
N i ,  1, k’, 8). Let Sd denote the subset of Sc including the 
states with d = i + 1. Note that the successors of S& belong 
to Sd” mod D. For values of interest for C, K, D and A, the 
number of states of l7, can be extremely large (of the order 
of tens of millions). To reduce memory and disc storage 
requirements to a minimum, we decided to use ‘on-the-fly’ 
model generation and model solution techniques [lo]. 
Using ‘on-the-fly’ techniques, the successors of a given state 
and the corresponding transition probabilities are obtained 
dynamically as required by the model generation and 
model solution algorithms, thus avoiding the storage in 
memory or disc of the transition probability matrix of the 
model. 

A standard way of reducing memory requirements when 
dealing with large models is to use keys instead of state 
descriptions. To support the use of keys, two functions are 
required an encoding function computing the key from a 
state description and a decoding function obtaining the 
state description from a key. Since 0 I NG 2 C, 0 I NL 5 C, 
1 I d 5 D,  0 I k I K and 0 I 6 I A, a suitable encoding 
function is: 

b( NG, N L  , d,  I C ,  6) = NG(C+ 1) (D+ 1) ( K +  1) (A + 1) 

4, NG 2 0, NI 2 0, NG + NL I C, 1 I d I D, 0 1.k I K, 6 =  

+ N L ( D  + 1)(K + l ) ( A  + 1) 
+ d ( K + l ) ( A + l ) + k ( A + l ) + S  

The decoding function can be implemented by: 

S = b mod(A + 1), bl = L b / ( A  + l ) ] ,  
k = bl mod(K + 1)) bz = [ b l / ( K  + l)], 

d = b2 mod(D + 1)) b3 = Lb2/ (D + 1)J) 
NL = b3 mod(C + l) ,  NG = l b S / ( C  + 1)J. 

We have represented keys using 32-bit-long unsigned inte- 
ger variables. This sets a maximum value for a key of 232 - 
1 = 4294967 295, which has been enough in all the 
instances of l7, we have tried. 

190 

Model generation requires a procedure of test of exist- 
ence and insertion of a state with a given key into a subset 
of already generated states. If the key exists, the procedure 
should return the index of the state. If the key does not 
exist, the key should be inserted with a state index one unit 
greater than the maximum index in the subset. Holding the 
keys and the associated state indices in a 2-3 tree [Ill 
indexed by keys, the operation can be done in O(1og n) 
time, where n is the number of states held in the subset. 

We are now ready to present the model generation algo- 
rithm. The purpose of the algorithm is to identify Sc. 
According to theorem 1, Sc can be obtained by generating 
all its states starting from the state U = (0, 1, 1, 0, 0). The 
memory requirements of ‘on-the-fly’ techniques are typi- 
cally vectors or data structures (e.g. search trees) with size 
equal to the cardinality of the generated state space. How- 
ever, the cyclic nature of the model allows us to translate 
those requirements to disc and reduce the memory require- 
ments to the components associated with two subsets s&. 
This is achieved by generating the state space following a 
breadth-first approach. We start by state U which belongs 
to Sco and generate all its successors, which will belong to 
Sc‘. Then, we expand the successors of U ,  obtaining states 
in Sc2, and so on. It is clear that the generation process can 
be organised in steps. At each step we expand the gener- 
ated and unexpanded states of a subset SCt and obtain 
states of S,l+l mod which, if new, are added. The genera- 
tion process can be finished when a complete cyclic 
sequence of subsets S,l has been visited without expanding 
any state. If data structures are partitioned according to the 
subsets S,l, only the data structures associated with the 
subset S& from which states are expanded and the subset 
S,l+‘ mod have to be kept in memory, holding in disc the 
data structures associated with the other subsets. We give 
in Fig. 2 a description of the generation algorithm. We use 
sequential files file-i, 0 2 i 2 D - 1, where file-i holds the 
data structures associated with a subset Sd.  These data 
structures include the number of generated states, the last 
expanded state, an array of keys giving for each state index 
the corresponding key, and a 2-3 tree holding the keys of 
the generated states and, for each key, the corresponding 
state index. The function look-and-insert(key-tree, b, &n) 
looks for the key b in the search tree key-tree, returning 
YES and, in n, the index of the state, if the key exists, and 
returning NO and inserting the key b into the tree with 
index one unit greater than the maximum index in the tree, 
if the key does not exist. The variable previous-done is set 
to YES when no state has been expanded in a sequence of 
cyclically consecutive subsets S,l ending in the previously 
visited subset. When previous-done is equal to YES, the 
variablefirst-done is equal to the index i of the subset Scz 
starting the cyclic sequence of ‘done’ subsets. 

We next describe the solution procedure. Since llc is 
periodic, it does not have a steady-state probability distri- 
bution. However (see, for instance [9]) it has an invariant 
measure Y = (vJzESc, where vz can be interpreted as the 
long term average frequency of visits to state i. 

The invariant measure v is the only normalised vector 
(vTl = 1, where 1 is a vector with all its components equal 
to 1) satisfying the linear system: 

where Q is the transition probability matrix of nC. Defin- 
ing A = Q - Z, eqn. 1 can be written as 

where 0 is a vector of the appropriate dimension with all its 
elements equal to 0. The cell loss probability can be 

vTQ = uT (1) 

v T A  = OT (2) 
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n-states = 1 ;  last-exp = 0;  
key[l] = encode(D,C',K,n,(O,l,1,0,0)); 
make empty tree key-tree; 
answer = look-andinsert(key-tree, 6, Scn); 
write nutates ,  /ast-exp, keyu and key-tree in file file-0; 
for (i  =: 1 ; d 5 D - 1; i++) { 

n-states = 0; last-exp = 0;  
ma,ke empty array key[]; 
make empty tree key-tree; 
write n-states, last-exp, key1 and key-tree in file .tile-i; 

1 
e9id= NO; 
previous-done = NO; 
f = 0;  
while (!end){ 

read n-statesf and last-exp-f from file file- f; 
i f  (East-exp-f == n-states-j) { 

if (!preoiozls-done) { 
prmvious-done = YES; 
,fir&done = 1; 

1 
else if ( f irs tdone == f + 1 mod D )  end = YES; 

I 
else previous-done = NO; 
if (!end){ 

reid key-jj and key-tree-f from file file- f; 
t =  f-i-1rnodL); 
read n-states-t, last-exp-t, key-tu and key-tree-t from file J1e-l; 
for (i = last-exp-f + 1; i 5 n-states-J is+){ 

decode(D,C,ZC,A,ke~-~~], &(NG,  NL,  d ,  h ,  6)); 
obtain the set  S of descriptions of the SuccessorN of ( N G ,  N L ,  d ,  IC, 6 ) ;  
for (each (Nc:, NL,  d,  k ,  6) E S){ 

6 = encode(D,C,K,A,(NG, N L , d ,  k ,  6)); 
if (!look_andinsert(key-tree-t, b, & n ) ) {  

n-stutes-t++; /* new state */ 
key-t[ 12-states-t] = 6 ;  

1 
1 

1 
East-eq-f = ra-states-f; 
w r i k  n-states-f, East-exp-f, kcy-A] and key-tree-f in file file-f; 
write a-stakx.t, last-exp-t, key$ and key-tree-t i n  file file& 
f = t ;  

1 
1 

Fig. 2 Model generation algorithm 

obtained as lp = lrl(llD), where lr is the cell loss rate. The 
quantity lr can be computed by adding the vis of the states 
in which a cell is lost. These states are those with NG = 0, 
NL > 0 and k = K. The other quantities to be computed are 
P, the probability that the server of the first queue is serv- 
ing a local cell, and B, the average number of global cells in 
the first queue at the beginning of a time slot. They can 
also be easily obtained from v and the corresponding state 
descriptions: P can be obtained by adding the vis of the 
states with NG = 0 and NL > 0; B can be computed by add- 
ing the products of the vis by NG. 

Sorting the states according to the succession Sco, Sc' , . . ., 
ScD-', we obtain for A the block structure: 

-10 Q o , ~  0 e . .  

0 -11 Qi ,2  a . .  

A = [ 0 0 - 1 2  . . .  0 
. . .  

Qo-l.0 0 0 . . .    ID-^ 

where 4 denote identity matrices of appropriate dimensions 
and Qij is the restriction of Q to pairs in Sd x 5'2. Such an 
ordering guarantees the convergence of the Gauss-Seidel 
method ([12], Section 7.4.2). SOR is an iterative method 
which is usually used to speed up Gauss-Seidel iteration. 
For matrices with the block structure of A ,  under the con- 
dition that all eigenvalues of JD, where J is the Jacobi itera- 
tion matrix, are real and non-negative, a theory is available 
([ 121, Section 7.7.1) providing the optimum relaxation 
parameter value. Computation of the optimum value for 
the relaxation parameter requires the knowledge of the 
convergence factor for Jacobi p(J), which, using the known 
relationship ([12], Section 7.7.1) between the eigenvalues of 
the Jacobi and Gauss-Seidel iteration matrices, can be 
computed from the convergence factor of the Gauss-Seidel, 
p(G), which can be estimated using: 
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We performed numerical experiments and found that: (i) 
stabilkation of the estimate for p(C) takes, for large mod- 
els, a very substantial portion of the iterations needed for 
the convergence under the Gauss-Seidel method (about 
20%), (ii) the computed os  are far from the optimum ones 
(due to the fact that JD has negative or complex eigenval- 
ues). Thus, the conditions behind the SOR optimisation 
theory do not seem to hold for the matrices of our models 
and, given the large number of iterations required for the 
stabilkation of the estimates of the convergence factors, we 
decided that trying to develop a sophisticated adaptive 
SOR optimisation procedure such as that proposed in [13] 
was not worthwhile. Thus, we decided to use the Gauss- 
Seidel method. 

Denoting the elements of Q by qd, the Gauss-Seidel iter- 
ative step applied to the solution of eqn. 2 can be described 
as: 

( k + l )  = c4 j a  p f l )  3 + C g j a v i k ) ,  ' a  

3 < a  9>% 

2=1,2,..,,JScJ (3) 

The trivial implementation of eqn. 3 requires access to the 
elements of Q in a column-by-column manner. This is 
inconvenient, since it requires functions running backwards 
in the model and these functions are difficult to obtain. To 
solve the problem, an algorithm has been proposed in [lo] 
that, at the cost of requiring two vectors instead of one, 
implements the Gauss-Seidel iteration with access to the 
elements of the matrix Q in a row by row manner. 
However, the cyclic nature of matrix Q allows a natural 
implementation of the Gauss-Seidel iteration in whch the 
elements of the matrix are also accessed in a row by row 
manner. To see that, it is enough to note that all predeces- 
sors of S& are in Sd-' mod and that this subset has only 
successors in Scl. Then, to perform, for instance, the itera- 
tive step on the states of S$, it is enough to generate 
successors of statesj E SCS1 and, for each successor i E 

SCo, to cumulate in v, the contribution q119. This observa- 
tion leads to the algorithm given in Fig. 3. First, the files 
file-i left by the algorithm given in Fig. 2 are read, the iter- 
ation vectors initialised with all components equal to 1 and 
the files written with the information required by the solu- 

old-lr = 0;  old-P = 0; old-B = 0; 
for (i = 0; i 5 II - 1; i f+ ) {  

read n-states-f, last..exp-,f, key-fn a i d  key-tree-f from file Jlc-i; 
for ( j  = 1; j 5 n-stutes; j++){  

U&'] = 1: 
d e c o d e ( D , C ' , I ~ , A , k e ~ ~ ~ ~ ] ,  &(NC;, NL,  d ,  k ,  6)); 
upda,t,P-contributioris((Nr;, N L ,  d, k ,  d), v- f i ] ,  &old-lr, &old-P, &old-B); 

} 
write n-staks-f, key-A], key-trecf and U-,@ in file , f i l ~ i ;  

1 
read n-slates-& kcy-tu, key-tree-t and u-tO from file filclD - 1; 
end= NO; 
while (!end){ 

Ir' = 0; P = 0; B = 0; sum-I/ = 0; 
for ( t  = 0; t 5 D - 1; t++){ 

ra..,sidcsf = nstates-t; key-a = key-.tU; key-tree-f = key-tree-l; v-fl = u-tu; 
read n-states-t, key-tu, key-tree-t ancl v-tn from file file-t ; 
for ( i  = I ;  i 5 n-stutes-t; i++) v.44 z 0; 
for ( i  = 1; i i: n-states-f; i++){ 

decode(D,C,K,A,key-~Ai], &(Nr;, N L , ~ ,  k ,  6)); 
obtain the  set. S of descriptions of the  successors of ( N G ,  N L ,  d ,  I C ,  6) 
a n d  the  corresponding transition probabilities; 
for (each ( X G , N Z , , ~ , ~ , S )  E S ) {  

let q he the transition probability associated with ( N G ,  NL, d, k ,  6); 
b = enc.ode(L),C,K,A,( NG, NL,  d, k:, 6)); 
answer = look-andinsert( key-tree-t, b, gLj) : 
v-s[j] += y x u-14; 

} 

SZ197tLU += v-t[ i ] ;  

1 
for (i = 1; i 5 n-states-t; i++){ 

decode(U,C',l~,A,kear-t[i3, & ( N G ,  NI, ,  d ,  Fc, 8 ) ) ;  
update-conkcibutions((NG, N L ,  d ,  k ,  6), u-t[i], &k,  &P, &B) ;  

1 
write n-stu.tes4, key-to, keg-tree-t and v-20 in file f i led;  

1 
if (IEr - old..lrl/k. <: E' && ( P  - old-PI/P 5 E' k& IB - old-UI/R 5 E' )  

end = YES; 
else end = NO; 
old-lr = lr; old-P = P; old-B = B; 

1 
1p = Er x D/surn.-u; P = P/sum-u; B = Blsum-u; 

Fig. 3 Model solution algorithm using Gauss-Seidel method with access to elements of Q in row-by-row manner 

192 IEE Proc-Commun., Vol. 148, No. 3, June 2001 



tion algorithm: number of states, array of keys, key tree 
and iteration vector. The function update-contributions0 
updates the unnormalised contributions to Ir, P and B of a 
state with given description. The iteration step involves 
looping through the subsets Scf from t = 0 to D - 1. In 
each iteration of the loop, n-states f, k e y x ] ,  key-tree f 
and v_f[] hold the data structures of the predecessor subset 
sct-l mod D and n-states-t, key-t[ 1, key-tree-t and v-t[] 
hold the data structures of the current subset Set. The iter- 
ation vector is kept unnormalised during the Gauss-Seidel 
iterations. Convergence is considered achieved when the 
relative tolerance in all the unnormalised quantities Ir, P 
and B is smaller than or equal to a given small quantity E', 
significantly smaller than E. Once convergence is achieved, 
the cell loss probability I p  and the normalised P and B are 
computed using the sum of the components of the iteration 
vector which is cumulated in sum-v. Note that, at a given 
time, only the data structures associated with subsets Sci 
and S2-I mod are held in memory. 

4 Results 

Table 2 illustrates the more relevant parameters related to 
the computational effort of the solution of the model. For 
several values of p, D, and K (A = D - 1 in all cases) and E 
= l t 5 ,  E' = 10-lo, we give the value of C for which the 
solution converged. For that value of C, we also give the 
number of states, number of transitions, memory and disc 
storage requirements in Mbytes, and number of required 
Gauss-Seidel iterations. The amount of disc storage is 
approximately the amount of memory which would be 
required were our techniques to reduce it based on the 
cyclic nature of the model not implemented. The required 
value of C increases with K and is very sensitive to the utili- 
sation factor of the first queue (p + UD). The required 
number of Gauss-Seidel steps is also sensitive to the utilisa- 
tion factor of the first queue and increases slightly with K. 
We can note that memory requirements are very small rela- 
tive to the number of states and transitions of the models. 
Our code reads arrays from disc and writes arrays into disc 
using, respectively, the ANSI standard C functions 
fread0 and fwriteo. CPU utilisation was high 
(between 70% and 90%, depending basically on the value of 
C). That high CPU utilisation is due to the fact that the 
average number of transitions per state is high (the contri- 
bution to the wall clock time due to disc accesses is approx- 
imately proportional to the number of states while the 
CPU processing time is approximately proportional to the 
number of transitions). Thus, the price paid by our tech- 
niques to reduce the memory requirements exploiting the 

cyclic nature of the model is small. The flop rate our code 
achieved in a 167 MHz UltraSPARCl workstation was 
about 174Kflops, which is reasonable considering the use 
of the 2-3 trees to find the indices of the states from their 
keys. 

4 12 20 28 36 44 52 

Fi Relative tolerance in loss rate (criterion I )  and relative errorsfor 
pr%*ility that server of irst queue is servin a local cell (criterion 2) mi 
expected number of g lobahh  in first queue (%iterion 3) for incremmg C, for 
case p =  0.7, D = IO, A =  9, K =  4 
-0- criterion 1 
- -+- - criterion 2 
-0.- criterion 3 

C 
4 

Fig. 4 gives the relative tolerance for the loss rate and 
the relative errors for the probability that the server of the 
first queue is serving a local cell and the expected number 
of global cells in the first queue for increasing C, for the 
case p = 0.7, D = 10, A = 9, K = 4 and E' = We can 
note first that both the relative tolerance and the relative 
errors decrease at a high rate when C increases. Then, we 
should expect the relative error in the loss rate to be smaller 
than the relative tolerance. Also, of the two other criteria, 
the strongest is the third one. For this particular set of 
parameters, the required C would be determined by the 
first criterion. 

Figs. 5-7 display the loss probability as a function of K 
for, respectively, p = 0.3, p = 0.5 and p = 0.7, for D = 5, D 
= 10 and D = 15, and A = D - 1 in all cases. All results 
were obtained using E = and E' = 10-lo. The K 
required to achieve a given loss probability increases with 
the load (i.e. with p, and with l/D). Except for the cases in 
which the load of the system p + 1/D is very high, the min- 
imum K required to achieve a loss probability smaller than 
or equal to a typical value is moderate. Thus, for instance, 
Table 3 gives the minimum required K to achieve a loss 

Table 2: Crequired for convergence in results and number of states, number of transitions, 
memory and disc storage requirements in Mbytes, and number of required iterations for 
that value of Cfor several sets of model parameter values 

~ ~ ~~ ~~ ~ 

Disc p D K C States Transitions Memory storage Iterations 

0.5 10 2 18 29 513 223 968 0.341 1.64 25 
0.5 10 8 32 365224 4557871 4.24 21.1 42 

0.7 5 2 46 42 167 708 045 1.01 2.50 513 
0.7 5 8 56 249129 4896546 5.66 14.0 631 

0.7 5 14 66 598935 13159009 14.0 34.7 731 
0.7 15 2 28 166578 1819 108 1.30 9.62 49 

0.7 15 8 42 1479612 23397586 11.3 ' 84.3 70 

0.7 15 14 52 3905134 73869532 29.8 222 86 
A = D- 1 in all cases 
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probability smaller than or equal to 10-6 for all pairs of p, 
D values considered in Figs. 5-7. Since the first queue has 
infinite capacity, the traffic entering the second queue has 
average rate 1/D. The average service rate of that queue is 
l/A = 1/(D - 1). Thus, the utilisation of the second queue is 

K 
Fig. 5 
D-I 
-0- D = 5  

.... 0 .... D =  15 

Loss probability as ajinction of Kfor p = 0.3, D = 5, 10, 15 and A = 

--+-- D = l O  

' F  

2 4 6 8 10 12 14 
K 

Lossprobability as afiozctwn of Kfor p = 0.5, D = 5, 10, 15 and A = Fig. 6 
D - I  
-0- D = 5  
--+-- D = 10 
.... 0 .... D =  15 

1081 I I I I I I I I 1  I I ,  

2 4 6 8 10 12 14 
K 

Loss probability as a function of Kfor p = 0.7, D'= 5, 10, 1.5 and A = Fig. 7 

-0- D =  5 

.... 0 .... D =  15 

D - 1  
--+-- D =  10 

(D - l)/D, which increases with D. However, the results 
given in Figs. 5-7 show that the loss probability decreases 
with D, i.e. with the utilisation. The counter-intuitive 
behaviour can be explained by the fact that the burstiness 
of the traffic diverted to the second queue decreases with D, 
compensating the larger utilisation for larger D. 

Table 3: Minimum required K to achieve a loss probability 
smaller than or equal to I O 4  for several values of p and D 

P D K 

0.3 15 3 
0.3 10 3 
0.3 5 5 
0.5 15 5 
0.5 10 6 
0.5 5 11 
0.7 15 13 
0.7 10 >I4 
0.7 5 >I4 

5 Conclusions 

We have developed a methodology for the solution of finite 
large cyclic DTMC models and have applied it to the per- 
formance analysis of an ATM leaky bucket GFC protocol. 
The methodology includes 'on-the-fly' model generation 
techniques and exploits the cyclic nature of the model to 
reduce to a minimum the memory requirements. In addi- 
tion, we have shown that the class of ATM leaky bucket 
models considered in the paper have a single irreducible 
closed set and have characterised this set implicitly by 
showing that there exists a path from any feasible state of 
the model to a given particular state U included in the irre- 
ducible closed set. The characterisation allows the irreduci- 
ble closed set to be generated very easily (it is enough to 
generate states from U). The approach we have followed to 
show that the models have a single irreducible closed set 
and characterise it could be used for other classes of mod- 
els. Using the methodology developed in the paper, we 
have been able to solve very large models (3 905 134 states 
and 73 869 532 transitions) using moderate amounts of 
memory (29.8 Mbyte) and disc storage (222Mbyte). The 
results obtained can be used to select an appropriate value 
for the parameter K as a function of the negotiated portion 
(l/D) of the bandwidth of the medium and the monitored 
upstream load @) depending on the required loss probabil- 
ity (typically between and lod). CPU time require- 
ments are, however, large. In the future we are planning to 
develop and test approximations requiring the solution of 
smaller models so that more efficient computations can be 
performed. In that sense, the methodology proposed in the 
paper will allow the goodness of such approximations to be 
tested. 
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8 

We will use the theory of classification of the states of finite 
DTMCs as presented in [9]. It is enough to prove that there 
exists a path in nC from any state s E Rc - { U }  to U. To 
see that, note first that U cannot be transient, since, if it 
were, some state in Qc - ( U )  would be recurrent and the 
existence of a path from such state to U would contradict 
that U is transient (there cannot be paths from recurrent 
states to transient states). Not being transient, U has to 
belong to some irreducible closed set. Let Sc be the irreduc- 
ible closed set of Ilc including U. States which are not 
reachable from U cannot belong to Se Also, every state s 
reachable from U belongs to Sc, since there exist paths 
between s and U in both directions. Thus, Sc includes 
precisely U and the states reachable from U. To show that 
Sc is the only irreducible closet set of nC, assume the exist- 
ence of another irreducible closed set Sl,  and pick any state 
S E  S‘,. The existence of a path from s to U e Sc is in 
contradiction with SC being a closed set. 

We split the proof of the existence of a path from any 
state s E Qc - {U) to U in two parts. In the first part, we 
prove the existence of a path from any state (NG, NL, d, k, 
S, to a state (0, 0, d‘, k‘, 6’). In the second part, we prove 
the existence of a path from any state (0, 0, d, k, S, to U. 
We use the notation 

Appendix: Proof of theorem 1 

s -3 s’ 
to indicate that state s‘ is the successor of s reached when x 
arrivals from the global stream occur. 
First part: Consider an arbitrary state (NG, NL, d, k, s) and 
the path made up of transitions associated with 0 arrivals 
of the global stream. Such a path reaches a state (0, 0, d‘, 
k’, 6’). To prove that, consider first the case NG > 0. Each 
transition will reduce NG by 1 and after NG transitions the 
path will reach a state (0, NL, d‘, k’, 6’). Then, it is enough 
to prove the result for states (0, NL, d, k, S, with NL > 0. 
Consider a path of transitions associated with 0 arrivals 
from the global stream. Each transition will decrement NL 
if d < D and will leave unchanged (or decrement if NL = C )  
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NL if d = D. Since D > 1, a d cycle will decrement NL and 
a state (0, 0, d‘, k’, 6’) will be eventually reached. 
Second part: We will analyse nine cases for the values of d, 
k, 6, D, A and K. For each case we will find a path to either 
U or a state of the form (0, 0, d’, k’, 6’) in such a way that 
the existence of a path to U will be guaranteed. 
Case 1: k = 0 
Note that k = 0 implies 6 = 0. Therefore, the state will be 
of the form (0, 0, d, 0, 0). A path to U is: 

( O , O , d , O , O )  - % ( O , O , d + l , O , O )  A... 
o\ (O ,O,  D, 0,O) -% (0,1, I, 0,O) 

C a s e 2 : A - 6 > D - d + l , O < k < K , K > l  
Note that D - d + 6 + 2 I A and that, with d I D and 
(sincek>0)62 1 , A - D + d - 6 +  l I A - 6 +  1 I A < D .  
These two inequalities and k < K, D 2 2 guarantee the 
existence of the path: 

(O,O,  d, I C ,  6) 3 . I .  o\ (O,O,  D ,  I C ,  D - d + 6) 

o\ (0,1,1, k , D  - d +  6 + 1) 

-% (0,0,2,k + l , D  - d + 6 + 2) 

5.. , o\ (O,O,A - D + d - 6, k + 1,A) 

-% (O,O,A - D + d -  6 + l , k ,  1) 
Le td ’=A-D+d-6+  l a n d # =  l.WehaveA-$-(D 
- d ’ ) = d - 6 - 2 ( D - A ) < d - 6 - ( 0 - A ) = A - & ( D - d ) .  
Then, by concatenating an enough number of such paths 
we will reach a state corresponding to case 5, 8 or 9. 
Case 3: A -  6> D - d +  1, k = K > 1 
Note that D - d + 6 + 2 5 A and, as shown in the discus- 
sion of case 2, A - D +d - 6 + 1 < D. These two inequali- 
ties with D 2 2 guarantee the existence of the path: 

(0, 0 ,  d, K ,  6) o\ . * * -% (O,O,  D, K ,  D - d + 6) 

3 (0 ,1 ,1 ,K ,D-d+6+1)  

3 (0 ,0 ,2 ,K1D-d+6+2)  

3 (O,O,A - D + d -  6 +  l , K  - 1,l) 

0 -+ . . . -% (0,O,A - D + d - 6,K,A)  

and we have reached a state corresponding to case 2, 5, 8 
or 9. 
Case 4: A - 6 >  D - d + 1, k = K =  1 
Note that D - d + 6 + 2 I A and, as shown in the discus- 
sion of case 2, A - D + d - 6 + 1 < D. Since D 2 2, the fol- 
lowing path exists: 

(0,0,d,1,6) A... 5 ( 0 , 0 , D , 1 1 D - d + 6 )  

-% (0,1,1,1,D - d +  6 + 1) 

3- (0,0,2,1,D - d + 6 + 2 )  
0 --+ . . . 5 (O ,O,  A - D + d - 6, 1 ,A)  

5 (O ,O,  A - D + d - 6 + l , o ,o )  
and we have reached a state corresponding to case 1. 
C a s e S : A - 6 = D - d + l , O < k < K , K > l  
Since D 2 2 we have the path: 

(O,O,  d, k , 6 )  3 * . . 5 (O,O,  D, k ,  a - 1) 

-% (0,1,1, I C ,  A) -% (O ,O,  2, I C ,  1) = s 
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Calling the 'd' and '6' parameters of s, respectively, d' and 
8, we have A - 6' = A - 1 5 D - 2 = D - d'. Notice also 
that k > 0. Then, we have reached a state corresponding to 
case 8 or case 9. 
Case 6: A - 6 = D - d + 1, k = K > 1 
Since D 2 2 we have the path: 

(O ,O,d ,K ,S )  A... -%(O,O,D,K,A-1) 

3 ( O , l , l , K , A )  5 ( 0 , 0 , 2 , K -  1,l) = s 

Calling the 'd' and '6' parameters of s, respectively, d' and 
8, we have A - 6' = A - 1 I D - 2 = D - d'. Notice also 
that K - 1 > 0. Then, we have reached a state correspond- 
ing to case 8 or case 9. 
Case7: A - 6  = D - d +  1, k = K =  1 
Since D 2 2 we have the path: 

0 0 (0,0)d,1,6) -+... --+ ( 0 , 0 , D , l , A -  1) 

-% ( O , l , l , l , A )  -% (0,0,2,0,0) 
and we have reached a state corresponding to case 1. 
Case 8: A -  6 =  D -d,  0 < k I K 
For k = 1 we have the path to U :  

( O , O , d , 1 , 6 ) 3 . .  .&(O,O)D, l ,A)&(O, l , l , O , O )  

For k > 1 and A = 1, since D 2 2, we have the path 

(O ,O,d , k ,S )  A... 3 ( 0 , 0 , D , k , A )  

3 (0,1,1, IC - 1,l) -% ( O , O ,  2, IC - 1,l) 

(0,O,d,Ic,6) ~ . . . ~ (  O,o,D,Ic,n) 

3 ( O , l , l , k -  1 , l )  3 ( 0 , 0 , 2 , k , 2 )  
-+... 0 &(O,O,A,IC,A) 

~ ( O , O , A + l , I C - l , l )  

For k > 1 and A > 1, since D 2 2, we have the path: 

In both last cases we reach a state with 'k' one less. 
Case 9: A -  6 < D - d, 0 < k I K 
Note that A - 6 + d + 1 I D. For k = 1 we have the path: 

(O,O,d,l,S) A... & ( O , O , A - S + d , l , A )  

-% ( O , O ,  A - 6 + d + 1,0,0) 
and we reach a state corresponding to case 1. For k > 1 the 
previous path leads to (0, 0, A - 6 + d  + 1, k - 1, l), a state 
with 'k' one less. 

To summarise, cases 4 and 7 are reduced to case 1; cases 
2, 3, 5 and 6 are reduced to case 8 or case 9. In case 1 there 
exists a path to U. In cases 8 and 9 either there exists a path 
to U or a path to a state with 'k' one less, guaranteeing that 
the case 1 (k = 0) will be eventually reached. Thus from 
any state (0, 0, d, k, s) there exists a path to U and the 
proof of the theorem is finished. 
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