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Abstract

As it is well-known, much of the arithmetic information for aGalois num-
ber field extensionL/Q is encoded by its Dedekind zeta function and the set of
primes that split completely inL. According to the Birch and Swinnerton-Dyer
conjectures, ifA/Q is an abelian variety then itsL-function must also capture a
substantial part of the properties ofA. The smallest number fieldL whereA has
all its endomorphisms defined must also have a role. This article deals with the
relationship between these two objects in the specific case of modular abelian va-
rietiesAf/Q associated to weight 2 newforms for the groupΓ1(N). Specifically,
our goal is to relate the order ofL(Af/Q,s) ats= 1 with Euler products cropped
by primes that split completely inL. This is attained by giving separated formu-
lae for the CM and non CM cases when a power ofAf is isogenous overQ to the
Weil restriction of the building block ofAf .

1 Introduction

Let f be a normalized modular newform inS2(Γ1(N)) with Fourier expansion given
by ∑n>0anqn and letε be its Nebentypus. We shall be concerned with itsL-function

L( f ,s) = ∑
n>0

an

ns = ∏
p

1
1−app−s+ ε(p)p1−2s ,

and, specially, with its Euler product. The functionL( f ,s) converges absolutely for
ℜ(s) > 3/2, and has analytic continuation to the whole complex plane.It is known
thatE = Q({an}) is a number field and the Galois action on the Fourier coefficients
provides a set of normalized newformsf1, · · · , fn of S2(Γ1(N)) with n= [E : Q]. The
product∏n

i=1L( fi ,s) is theL-functionL(Af /Q,s) of then-dimensional abelian variety
Af /Q attached by Shimura tof . The value ords=1L(Af /Q,s) is a matter of importance
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DGICYT Grant MTM2009-11068 and the third by DGICYT Grant MTM2009-13060-C02-01
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since it must coincide with the rank of the Mordell-Weil group Af (Q) according to the
Birch and Swinnerton-Dyer conjectures.

To motivate the issue that we want to address in this article,let us consider for
a moment the case of Euler products arising from Dedekind zeta-functions attached
to number fields. For every number fieldL, it is well-known that its Dedekind zeta-
functionζL(s), defined as an Euler product on the right half-planeℜ(s)> 1, does have
meromorphic continuation to the whole complex plane and it has a unique simple pole
ats= 1. For the particular case thatL/Q is a Galois extension, we consider the subset
S1 of rational primes that split completely inL and introduce the partial Dedekind
zeta-function

ζL(S1,s) := ∏
p∈S1

1
1− p−s ,

defined onℜ(s) > 1. SinceζL(s)/ζL(S1,s)[L:Q] is holomorphic onℜ(s) > 1/2 and
does not vanishes ats= 1, the functionζL(S1,s)[L:Q] admits meromorphic continua-
tion onℜ(s)> 1/2 and satisfies

ords=1 ζL(S1,s)
[L:Q] = ords=1 ζL(s) =−1.

We point out that this equality shows thatζL(S1,s) does not admit meromorphic con-
tinuation onℜ(s)> a for anya< 1, except for the trivial caseL=Q.

The starting point of this article is to study the generalization of this phenomenon
to modularL-functions. In other words, we want to find out if the Euler product of
L( f ,s) can be cropped in the sense that it exists a subset of distinguished primes with
regard to their contribution to the order ofL( f ,s) at s= 1.

It turns out that there is a natural place to look at for findingthis set of primes.
Indeed, the splitting fieldL of Af (that is, the smallest number field whereAf has
all its endomorphisms defined) is an important ingredient ofthe arithmetic ofAf . In
particular, the abelian varietyAf is isogenous overL to the power of a simple abelian
varietyBf . In [5], [6] and [4], the fieldL is explicitly determined. Then, we propose
to consider the partial Euler product

L( f ,S1,s) := ∏
p∈S1

1
1−app−s+ ε(p)p1−2s ,

wherep runs over the setS1 of primes that split completely inL.
The plan of this paper is as follows. Section 2 is devoted to introduce notation

and summarizes some well-known facts concerning modularL-functions. Since two
different situations emerge depending on whetherf has complex multiplication (CM)
or not, each of them is treated separately in Sections 3 and 4.In both sections, we
study the relationship between ords=1L(Af /L,s) and the order of∏n

i=1L( fi ,S1,s)[L:Q]

at s= 1. As a good point, the functionL( f ,S1,s) does not depend on certain Galois
conjugates of the newformf but, as we shall see, unfortunately the primesp with
residue degreed(p) = 2 in L (if any) will cause some problems and we shall need a

2



substitute ofL( f ,S1,s) as first approach. In both cases, we introduce a partial Euler
productL(s) of L(Af /Q,s) associated with primesp with residue degreed(p) ≤ 2
in L. We prove in Theorem 3.1 and Theorem 4.1 that ords=1L(Bf /L,s) is determined
by ords=1L(s)[L:Q]/2. For the particular case that a power ofAf is isogenous overQ to
the Weil restriction ResL/Q(Bf ), thenL(Bf /L,s) agrees with the corresponding power
of L(Af /Q,s) and we obtain results for thisL-function.

Section 5 contains the main results of the article. This lastsection is devoted to
study whether we can avoid the primesp with d(p) = 2 in order to use the more natural
L( f ,S1,s) instead ofL(s). As we will show, this fact is related to the distribution of
the valuesbp = (a2

p− 2ε(p))/(2p) for primes p with d(p) = 2. For the CM case,
we generalize results of T. Mitsui in [15] on distribution ofprimes in sectors and this
allows us to solve completely this problem in Theorem 5.3. For the non-CM case,
we extend the recent result obtained by T. Barnet-Lamb, D. Geraghty, M. Harris and
R. Taylor in [2] about Sato-Tate distributions, when restricting to primes in arithmetic
progressions. Then, we present the main result for this casein Theorem 5.5.

2 Modular L-functions

Let f = ∑n>0anqn be a normalized newform of levelN with Nebentypusε and letE
be the number fieldQ({an}). From now on, at our convenience anL-functions with
an asterisk will stand for the correspondingL-functions but removing the Euler factors
attached to the primes dividingN.

Let λ be a prime ideal ofE over a rational primeℓ. There is a continuousλ -adic
representation

ρλ : Gal(Q/Q)−→ GL2(Oλ ) ,

whereOλ denotes the completion of the ring of integers ofE at λ such thatL( f ,s) is
theL-function attached to thisλ -adic representation. Also, for every number fieldL,
we shall denote byL( f/L,s) the L-series attached toρλ restricted to Gal(Q/L). If
L/Q is a Galois extension andd(p) denotes the residue degree ofp in L, then one has

L∗( f/L,s) = ∏
p∈P

1

(1−bpp−d(p)s+ ε(p)d(p)pd(p)(1−2s))[L:Q]/d(p)
,

where hereafterP will denote the set of rational primes not dividing the levelN,

bp = αp
d(p)+(α pε(p))d(p) ,

andαp is any root of the polynomialx2−apx+ pε(p). Notice that ifp 6= ℓ, then

bp = Trace
(

ρλ (Frobp)
d(p)
)

.

By the results on base change of automorphic representations established by Lang-
lands [11], we know thatL∗( f/L,s) has analytic continuation to the whole complex
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plane when the group Gal(L/Q) is solvable and, consequently, so does

L∗(Af/L,s) = ∏
σ :E→֒Q

L∗(σ f/L,s) .

Moreover, it is clear thatL∗( f/L,s) andL( f/L,s) have the same order ats= 1. From
now on, the number fieldL will be the splitting field ofAf ; i.e.,L is the smallest num-
ber field whereAf has all its endomorphisms defined. Hence,Af is isogenous overL
to the power of an absolutely simple abelian varietyBf /L, the so-called building block
of Af , and one has

L∗(Af /L,s) = L∗(Bf /L,s)
dimA f /dimB f .

Moreover, by Milne [14], one has

L∗(Bf /L,s) = L∗(ResL/Q(Bf ),s) .

As we shall show, the functionL∗(Bf /L,s) is the product of functionsL∗(σ f/L,s)
whenσ runs over a certain subset of the embeddings ofE intoQ and, thus, it has also
analytic continuation to the whole complex plane since Gal(L/Q) is solvable.

To end this section, let us fix the following terminology. Forevery subsetS ⊆P,
we consider the partial Euler products

L( f ,S ,s) := ∏
p∈S

1
1−app−s+ ε(p)p−2s+1 ,

L( f−,S ,s) := ∏
p∈S

1
1+app−s+ ε(p)p−2s+1 ,

where we takeL( f , /0,s) = L( f−, /0,s) = 1. One hasL∗(Af/Q,s) = ∏σ L(σ f ,P,s),
whereσ runs over the set of embeddings ofE intoQ.

3 First approach to the non-CM case

In this section we assume thatf is without CM. We recall that a Dirichlet characterχ is
called an inner-twist off if there is an embeddingσ :E →֒Q satisfyingσ ap = χ(p)ap

for all primesp∈ P. If for an embeddingσ there is an inner-twist, it is unique and is
denoted byχσ .

By Proposition 2.1 in [5], the splitting fieldL of Af is the number fieldQ
∩σ kerχσ ,

whereσ runs over the set of embeddings ofE into Q for which there is an inner-

twist χσ . The extensionL/Q is the compositum of the cyclic extensionQ
kerε

and
a polyquadratic extension ofQ. Notice thatL is contained in theN-th cyclotomic
field and, thus, all primes inP are unramified inL. Moreover, the center of the
algebra EndL(Af )⊗Q is the totaly real subfieldF = Q({a2

p/ε(p) : p ∈ P}) of E
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and dimBf = t · [F : Q], wheret is either 1 or 2 depending on whether the algebra
EndL(Bf )⊗Q is isomorphic to eitherF or a quaternion algebra with centerF. In

particular,Af is isogenous overL to B[E:F]/t
f . We shall need the following result.

Lemma 3.1 The abelian variety Af is isogenous overQ to ResL/Q(Bf ) if and only if
t = 1 and [L : Q] = [E : F].

Proof. SinceAf is simple overQ, Af is isogenous overQ to ResL/Q(Bf ) if and only
if [E : Q] = [L : Q]dimBf , i.e. [E : F] = [L : Q] t. We know thatE/F is an abelian
extension and Gal(E/F) is the set of embeddings ofE into Q for which there is an
inner-twist of f . Therefore,[E : F]≤ [L : Q], and it follows the lemma. 2

As in Section 2, for a primep ∈ P, let d(p) be the residue degree ofp in L

andbp be the trace ofρλ (Frobp)
d(p). SinceQ

kerε ⊆ L, one hasε(p)d(p) = 1. By
Proposition 5.2 and Lemma 6.1 of [3], we know that for almost all primes such that

ap 6= 0, thenad(p)
p ∈F andd(p) is the smallest positive integer satisfying this condition.

Moreover,bp ∈ F for all primes p ∈ P. We shall consider the following partition
of P:

S1 = {p∈ P : d(p) = 1} ,
S2 = {p∈ P : d(p) = 2} ,
S3 = {p∈ P : d(p)≥ 3} .

(1)

Notice that for every primep∈S2 there existsτ ∈ Gal(E/F) such thatτap =−ap

and, thus,L( f ,S2,s)L( f−,S2,s) is a partial Euler product ofL(Af /Q,s).

Theorem 3.1 Keep the above notations. LetI be a minimal set of embeddings ofE

intoQ such that their restrictions onF provide all embeddings ofF intoQ. Then,

(i) the function
(

L( f ,S1,s)
2L( f ,S2,s)L( f−,S2,s)

)[L:Q]/2

has analytic continuation to the right half-planeℜ(s) > 5/6 and its order at
s= 1 is equal toords=1L( f/L,s).

(ii) Let

L1(s) := ∏
σ∈I

L(σ f ,S1,s) , L2(s) := ∏
σ∈I

L(σ f ,S2,s)L(σ f−,S2,s)

and L(s) := L1(s)2L2(s). The function L(s)[L:Q]/2, that for S2 = /0 coincides
with L1(s)[L:Q], satisfies

ords=1L(Bf /L,s) = t ·ords=1L(s)[L:Q]/2,

ords=1L(Af /L,s) = [E : F] ·ords=1L(s)[L:Q]/2 .
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(iii) In the particular case that Af is isogenous toResL/Q(Bf ), then

ords=1L(Af /Q,s) = ords=1L(s)[E:F]/2 .

Proof. We consider the factorizationL∗( f/L,s) = ∏3
i=1Gi( f ,s), where

G1( f ,s) := L( f ,S1,s)
[L:Q],

G2( f ,s) :=

(

∏
p∈S2

1

1−bpp−2s+ p2(−2s+1)

)[L:Q]/2

,

G3( f ,s) :=

(

∏
p∈S3

1

1−bpp−d(p)s+ pd(p)(−2s+1)

)[L:Q]/d(p)

.

Observe that ifp∈ S2, then we have

1−bpp−2s+ p2(1−2s) = (1−app−s+ ε(p)p1−2s)(1+app−s+ ε(p)p1−2s) .

Therefore, it follows

L∗( f/L,s) =
(

L( f ,S1,s)
2L( f ,S2,s)L( f−,S2,s)

)[L:Q]/2 ·G3( f ,s) . (2)

Due to the fact thatL∗( f/L,s) has analytic continuation to the whole complex plane
and (2), in order to prove part (i) it is enough to prove thatG3( f ,s) is analytic on
ℜ(s)> 5/6 andG3( f ,1) is non-zero. However, this follows from| bp |≤ 2pd(p)/2 and
the inequality

| b(p)p−sd(p)−pd(p)(−2s+1) |≤2p−d(p)(ℜ(s)−1/2)+p−2d(p)(ℜ(s)−1/2) ≤3p−3(ℜ(s)−1/2) ,

valid sinced(p) ≥ 3. Now, observe that for everyσ ∈ Gal(E/F), we haveGi( f ,s) =
Gi(

σ f ,s) for all i ≤ 3. Hence, it follows part (ii). Finally, assume thatAf is isogenous
overQ to ResL/Q(Bf ). By Lemma 3.1, we have thatt = 1 and[L :Q] = [E : F]. Noting
thatL∗(Af/Q,s) = L∗(Bf /L,s), the last assertion of the statement follows. 2

Remark 3.1 The above theorem has full sense when[L :Q]> 1. In this case, ifS2 = /0
then L(σ f ,S1,s)[L:Q] has analytic continuation onℜ(s) > 5/6 for all σ ∈ I and,
moreover,

ords=1L(σ f/L,s) = ords=1L(σ f ,S1,s)
[L:Q] . (3)

For S2 6= /0, the product

Gσ (s) := L(σ f ,S2,s)L(
σ f−,S2,s) = ∏

p∈S2

1

1− σ bpp−2s+ p2(−2s+1)
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converges absolutely forℜ(s)> 1 since for p∈S2 we have| σ bp |≤ 2p. In particular,
L(σ f ,S1,s)[L:Q] is analytic onℜ(s) > 1. As we shall show in the last section, the
product Gσ converges at s= 1 if and only if the series

∑
p∈S2

σ bp

p2

converges. In this case, the equality (3) also applies, understanding, here and in the
sequel, that if for a meromorphic function H(s) defined onℜ(s) > 1 there exists an
integer n satisfying that

lim
s→1,ℜ(s)>1

H(s)
(s−1)n

is a non-zero complex number, then we writeords=1H(s) = n.

4 First approach to the CM case

Let K be an imaginary quadratic field and letO be its ring of integers. Now, assume
that f = ∑n>0anqn has CM byK. Thus, there exist an integral idealm of K and a
primitive Hecke characterψ : I(m)→C∗ of conductorm such thatf = ∑ψ(a)qN(a),
where the summation is restricted to the integral idealsa of K coprime tom. Here,
N(a) is the norm of the ideala andI(m) denotes the multiplicative group of fractional
ideals ofK relatively prime tom. In this case, theL-function attached tof can be
rewritten as

L( f ,s) = ∑
(a,m)=1

ψ(a)

N(a)s = ∏
(p,m)=1

1
1−ψ(p)N(p)−s ,

and the levelN of f is N(m) times the absolute value of the discriminant ofK. Note
that for a primep ∈ P, the roots of the polynomialx2−apx+ pε(p) areψ(p) and
ψ(p) whenp splits inK and±

√

ψ(p) for p inert, wherep is a prime ofK over p.
Attached toψ there is a characterη : (O/m)∗ →C∗ defined byη(a) = ψ(aO)/a.

The Nebentypusε of f is the Dirichlet character modN such thatε(n) = η(n)χ(n),
whereχ denotes the quadratic Dirichlet character attached toK. The existence ofψ
implies that the natural projectionO∗ → (O/m)∗ is a group monomorphism and, thus,
two different generators of a principal ideal inI(m) are not equivalent modm and the
unique unity ofK in kerη is 1.

We fix the following notation. For a subsetSof (O/m)∗, we denote byPS(m) the
subset ofI(m) consisting on principals ideals which have a generatorα such thatα
(modm) lies in S. To simplify notation, we writePδ (m) andP(m) whenS= {δ}
andS= (O/m)∗, respectively. Of course, ifG is a subgroup of(O/m)∗, thenPG(m)
is also a subgroup ofI(m) containing the subgroupP1(m).

Let Km be the ray class field modm. By Class field theory we know that the
groupI(m)/P1(m) is isomorphic to Gal(Km/K) via the Artin map and there exists
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an intermediate number fieldLη between the Hilbert class field ofK andKm such
that Gal(Lη/K) ≃ I(m)/Pkerη(m). In [6], it is proved that there is a quotient abelian
varietyA of Af defined overK, simple overK and such thatAf /K is isogenous overK
to eitherA×A or A according to whetherK is contained inE or not, where stands
for the complex conjugation. Moreover, the splitting field of A is the number fieldLη ,
which is a cyclic extension of the Hilbert class field ofK (cf. Theorem 1.2 of [6]). In
Remark 2.1 of [4], it is showed that the splitting field ofAf is the compositum

L= Lη Q
kerε

.

Notice that againL/Q is solvable. Since ResK/Q(A) is isogenous overQ to either
Af or A2

f depending on whetherK⊆ E or not, we have that

L(A/K,s) = L(Af /Q,s)[EK:E] .

Now, the building block ofAf is an elliptic curveBf defined overL with CM byK and
for the case thatA is isogenous overK to ResL/K(Bf ), two situations can occur: the
abelian varietyAf is isogenous overM to ResL/M(Bf ) whereM is eitherQ or K. In
both cases,L coincides withLη since dim(A)≤ [Lη : K] and[E : Q] [M : Q] = [L : Q].

Let p be a prime ideal ofK over p ∈ P. Let us denote byd(p) andd(p) the
residue degrees ofp andp in L, respectively. We have that eitherd(p) = d(p) or
d(p) = 2d(p) depending on whetherp splits or it is inert inK. We know that

ε(p)d(p) = 1 andψ(p)d(p) ∈K , if p splits inK,

ε(p)d(p) = 1 andψ(p)d(p)/2 ∈K , if p is inert inK.

In both cases, one hasbp ∈Z. In the CM case, we introduce a modified partition ofP:

S1 = {p∈ P : d(p) = 1}∪{p∈ P : d(p) = 2, p inert inK} ,
S2 = {p∈ P : d(p) = 2, p splits inK} ,
S3 = {p∈ P : d(p)≥ 3} .

(4)

Let us denote byPK the set of prime idealsp of K over all primesp∈P. Finally,
let S ′

i be the subset ofPK consisting on the primes over all primes inSi . That is,

S ′
1 = {p ∈ PK : d(p) = 1} ,

S ′
2 = {p ∈ PK : d(p) = 2, p 6= p} ,

S
′
3 = {p ∈ PK : d(p) = 2, p= p}∪{p ∈ PK : d(p)≥ 3} .

(5)

Theorem 4.1 With the above notations, let L2(s) := L( f ,S2,s)L( f−,S2,s) and

L(s) := L( f ,S1,s)
2L2(s) =



 ∏
p∈S ′

1

1
1−ψ(p)N(p)−s





2

∏
p∈S ′

2

1
1−ψ(p)2p−2s .
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The function L(s)[L:K] has analytic continuation to the the right half-planeℜ(s)> 5/6
and, moreover, one has

ords=1L(Bf /L,s) = ords=1L( f/L,s) = ords=1L(s)[L:K] ,

and, thus,
ords=1L(Af /L,s) = [E : Q]ords=1L(s)[L:K] .

Moreover, if Af is isogenous overM to ResL/M(Bf ) for M⊆K, then

ords=1L(Af /Q,s) =
1

[M : Q]
ords=1L(s)[L:K] .

Proof. Observe thatL(Af /K,s) = L(Af /Q,s)2. Now, we can factorizeL∗( f/L,s) =
∏3

i=1Gi( f ,s), where

G1( f ,s) := L( f ,S1,s)
[L:Q],

G2( f ,s) :=

(

∏
p∈S2

1

1−bpp−2s+ p2(−2s+1)

)[L:Q]/2

,

G3( f ,s) :=

(

∏
p∈S3

1

1−bpp−d(p)s+ pd(p)(−2s+1)

)[L:Q]/d(p)

.

By taking into account thatL∗(Af/L,s) = L∗( f/L,s)[E:Q] and that if ResL/K(Bf ) is
isogenous toAf overK then ResL/Q(Bf ) is isogenous toA2

f overQ, the statement is
obtained by using similar arguments as in the proof of Theorem 3.1. 2

Notice that the same arguments used in Remark 3.1 can be applied to obtain the
corresponding analogues for the CM case. As a by-product, wealso obtain the follow-
ing application to the elliptic curves studied by B. Gross in[7].

Proposition 4.1 Let p≡ 3 (mod 4) be a rational prime> 3. Let A(p) be the Gross’s
elliptic curve with CM by the ring of integers ofK=Q(

√−p). Let f be a normalized
newform in S2(Γ0(p2)) such that A(p) is a quotient of Af . Then,

ords=1L( f ,s) =
1

[H : Q]
ords=1L( f ,S1,s)

[H:Q] ,

whereH denotes the Hilbert class field ofK.

Proof. In this case,L = H and the class number ofK, sayh, coincides with[L : K]
and[E : Q]. Moreover,S2 = /0 sinceh is odd and, thus, the functionL(s) in the above
theorem isL( f ,S1,s)2. We know that, for allσ ∈Gal(Q/Q), the value ords=1L(σ f ,s)
is either 0 or 1 depending on whetherp≡ 7 (mod 8) or p≡ 3 (mod 8) (cf. [16] and
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[13]). To prove the statement, we use that ResL/K(A(p)) is isogenous toAf overK
and that ords=1L( f ,s) is invariant under Galois conjugations off . Then, applying
Theorem 4.1 we obtain

[E : Q]ords=1L( f ,s) = ords=1L(Af /Q,s) =
1
2

ords=1L( f ,S1,s)
[L:Q] .

The statement is now an immediate consequence. 2

5 Distributions of Frobenius traces and their conver-
gences in average

With the aim of enlightening that the role of primesp having residue degree 2 inL is
minor, in this section we examine the convergence of the product

∏
p∈S2

1
1−bpp−2+ p−2 = ∏

p∈S2

(

1− bp−1
p2

)−1

,

for any newformf (with or without CM). To this end, first we generalize some results
of T. Mitsui for the CM case and we prove that one can spurn these primes. As for
the non-CM case, we adapt the proof of the result obtained by T. Barnet-Lamb, D.
Geraghty, M. Harris and R. Taylor in [2] about Sato-Tate distributions to extend it to
the case when the set of primes is restricted to an arithmeticprogression and, then, we
prove an estimation for the rate of convergence of the mathematical expectations.

In the sequel we will use the following notation. For any subset S of P and a
real numbert, we putS (t) := {p∈ S : p≤ t} andδt denotes the Dirac measure att.
Before going further, we need the following two lemmas.

Lemma 5.1 LetS = {p1 < · · ·< pn < · · ·} be an infinite sequence of rational primes
and let{cn}n>0 be a sequence of real numbers such that| cn |≤ kpn for some k> 0 and
all n > 0. Then, the product∏n>0(1−cnp−2

n )−1 converges if and only if∑n>0cn/p2
n

converges.

Proof. For every positive realt we set

S(t) = ∏
pn∈S (t)

1

1−cnp−2
n

.

The convergence of∏n>0(1−cnp−2
n )−1 is equivalent to the existence of limt→+∞ logS(t).

Now,

logS(t) =− ∑
pn∈S (t)

log

(

1− cn

p2
n

)

=− ∑
pn∈S (t)

(

log

(

1− cn

p2
n

)

+
cn

p2
n

)

+ ∑
pn∈S (t)

cn

p2
n
,

10



and the convergence of the first term follows from

∑
pn∈S (t)

∣

∣

∣

∣

log

(

1− cn

p2
n

)

+
cn

p2
n

∣

∣

∣

∣

< ∑
pn∈S (t)

c2
n/p4

n < ∞

sincec2
n/p4

n < k2/p2
n. 2

Lemma 5.2 LetS = {p1< · · ·< pn< · · ·} be a sequence of primes of positive density
and let{cn} be a sequence of real numbers. Consider the sequence of the probability
measuresνn := 1/n∑n

i=1 δci/pi
and assume that the sequence of their mathematical

expectations, E(νn), converges to a real numberℓ. Then, we have that

(i) if ℓ 6= 0, then the series∑n>0cn/p2
n does not converge,

(ii) if ℓ= 0 and the real functionK (t) = 1
|S (t)| ∑pn∈S (t) cn/pn defined on[p1,+∞)

satisfies the condition
∫+∞

p1

|K (t)|
t logt dt <+∞, then the series∑n>0cn/p2

n is conver-
gent.

Proof. By hypothesis, we have

lim
n→+∞

E(νn) = lim
t→+∞

1
|S (t)| ∑

pn∈S (t)

cn

pn
= ℓ.

Let K (t) be the function defined by the relation

∑
pn∈S (t)

cn

pn
= |S (t)|ℓ+ |S (t)|K (t) .

By partial summation we get

∑
pn∈S (t)

cn

p2
n
=

1
t ∑

pn∈S (t)

cn

pn
+

∫ t

p1

1
x2 ∑

pn∈S (x)

cn

pn
dx.

Observe that|S (t)|= ct/ logt(1+o(1)) andpn = cn logn(1+o(1)), wherec> 0 is
the density ofS . On one hand, we have that

lim
t→+∞

1
t ∑

pn∈S (t)

cn

pn
= lim

t→+∞

(

1
|S (t)| ∑

pn∈S (t)

cn

pn

)

|S (t)|
t

= ℓ lim
t→+∞

|S (t)|
t

= 0.

On the other hand, one has that
∫ t

p1

1
x2 ∑

pn∈S (x)

cn

pn
dx= ℓ

∫ t

p1

|S (x)|
x2 dx+

∫ t

p1

|S (x)|
x2 K (x)dx. (6)

Since limt→+∞ K (t) = 0 and limt→+∞
∫ t

p1
|S (x)|/x2dx = +∞, the convergence of

∑n>0cn/p2
n implies thatℓ= 0.

Assume now thatℓ = 0. By the hypothesis in (ii), the last integral in (6) is abso-
lutely convergent and, thus, the series∑i>0cn/p2

n converges. 2

11



Remark 5.1 Recall that if a sequence of probability measuresνn with support on a
compact real subset converges in law to a continuous probability measureν, then the
mathematical expectation E(ν) exists and the sequence of the mathematical expecta-
tions E(νn) converges to E(ν). Moreover, if a real functionK provides a uniform es-
timation for this convergence, namelyνn((−∞,a])−∫ a

−∞ dν =O(K (n)) for all real a,
then E(νn)−E(ν) = O(K (n)). We will apply the above lemma in this sense, proving
that the sequenceνn = ∑p∈S2(n) δbp/(2p) converges in law to a continuous probability
measure with support on[−1,1].

Next, we treat in separate subsections the CM and non-CM cases.

5.1 Uniform distribution of arguments for the CM case

In this subsection, it is assumed thatf has CM by an imaginary quadratic fieldK and
we keep the notation as in Section 4.

For the particular case thatAf is an elliptic curve, thenL=K and it is well-known
that the valuesap/(2

√
p) ∈ R for the set of primesp∈ P which split inK, sayP1,

are equidistributed in[1,1] with respect to the measuredµ = 1/π(1−x2)−1/2dx; i.e.,
for all a∈ [−1,1] we have that

lim
t→+∞

|{p∈ P1(t) : ap
2
√

p ≤ a}|
|P1(t)|

=
1
π

∫ a

−1

1√
1−x2

dx. (7)

In other words, the sequence of measures1
n ∑n

i=1δapi /(2
√

pi) converges in law toµ,
whereP1 = {p1 < · · · < pn < · · ·}. If we takeθp ∈ (0,π) such thatap/(2

√
p) =

cosθp, then the above condition amounts to saying that the sequence of measures
1
n ∑n

i=1 δθpi
converges in law to the uniform measure on[0,π ].

In order to remove the set of primesS2 from Theorem 4.1, we shall generalize (7),
in Theorem 5.2, to CM modular abelian varietiesAf of higher dimension, for several
subsets of primes which split completely inK, and also including an estimate for the
error term. The next result is the main tool to achieve this goal.

Theorem 5.1 Let ψ ′ be any Hecke character ofK modn (not necessarily primitive),
and letθ ∈ [0,2π ]. Then, for any ideal class C in I(n)/P1(n) one has

|{p ∈C∩PK : N(p)≤ t,argψ ′(p)≤ θ}|= θ
2π [Kn : K]

∫ t

2

dx
logx

+O
(

t e−c
√

logt
)

,

(8)
where c is some positive real constant. In particular,

|{p ∈C∩PK : N(p)≤ t,argψ ′(p)≤ θ}|
|{p ∈C∩PK : N(p)≤ t}| − θ

2π
= O

(

e−K
√

logt
)

(9)

for some positive real constant K.
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Proof. The proof is based on a theorem of T. Mitsui in [15] and uses similar arguments.
Let us note that it is enough to restrict to primitive characters, since the only difference
will be in a finite number of primes dividing the conductor. Now, first, letθ ∈ [0,2π),
t > 2 and∆ = e−u

√
logt for someu that will be chosen later. We will denoteC(t) =

{a ∈ C : N(a) ≤ t}. Consider a 2π-periodic functiong∈ C 2(R) such thatg(x) = 1
for x ∈ [0,θ ], 0 ≤ g(x) ≤ 1 for x ∈ [−∆,0]∪ [θ ,θ + ∆] and g(x) = 0 for any other
x ∈ [−π + θ

2 ,π + θ
2 ]. Assume also that||g′||22 ≪ 1/∆ and letg(x) = ∑ncneinx denote

its Fourier expansion. For any given ideala, let θa be the argument ofψ ′(a); in other
words,ψ ′(a) =

√

N(a)eiθa. Hence, summing over prime ideals inC(t), we get

#{p ∈C(t) : 0≤ θp ≤ θ} ≤ ∑
p∈C(t)

g(θp). (10)

First, we will proceed to obtain the right asymptotics for the sum. This will provide
an upper bound for the left hand side of (10). An analogous argument will give us the
lower bound and, hence, the theorem. By expanding into its Fourier series we get

∑
p∈C(t)

g(θp) = ∑
p∈C(t)

∑
n

cne
inθp =

1
2π

∫ 2π

0
g(x)dx ∑

p∈C(t)

1+ ∑
n6=0

cn ∑
p∈C(t)

e
inθp .

Let us denote the two terms by

T1 =
1

2π

∫ 2π

0
g(x)dx ∑

p∈C(t)

1, T2 = ∑
n6=0

cn ∑
p∈C(t)

e
inθp .

Noting that
∫ 2π

0 g(x)dx= θ +O(∆), Theorem in Section 1 of [15] gives us for the main
term

T1 =
θ

2π [Kn : K]
li (t)+O(∆ li (t)),

where, as usual, li(t) =
∫ t

2
1

logxdx is the logarithmic integral. Observe that, for any
choice ofu in ∆, this error term is of the form stated in (8) and then, to provethe first
part of the theorem, we have to get the correct upper bound forthe error termT2. Let
ξ : I(n)→C∗ be the group homomorphism defined by

ξ (a) :=
ψ ′(a)
√

N(a)
= eiθa.

By definition, for any integern 6= 0, the mapξ n is a non-real Grossencharacter of the
field K of modulusn and frequencyn as in Section 3.8 of [9]. In particular,

L(ξ n,s) = ∑
(a,n)=1

einθa

N(a)s

13



is a HeckeL-function. With the notation as in Chapter 5 of [9], thisL-function has
parametersd = 2, κ1 = |n|/2, κ2 = |n|/2+1 andq(ξ n)≪ |n|2. Hence, by noting that

∑
p∈C(t)

e
inθp = ∑

m≤t

Λξ n(m)

logm
+O

(√
t logt

)

,

where hereΛξ n(m) = (e
iknθp + e

iknθp̄) logp for any m = pk with N(p) = p, and
Λξ n(m) = 0 otherwise, and that the constant in the error term is independent ofn,
we can apply Theorem 5.13 of [9] and partial summation to obtain

T2 ≪ t ∑
n6=0

|cn|exp

(

−c
logt√

logt +6log|n|

)

. (11)

Now, the Cauchy-Schwarz inequality yields

(

∑
n∈S

|cn|
)2

≤ ∑
n∈S

n2|cn|2 ∑
n∈S

1
n2 ≪ ||g′||22 ∑

n∈S

1
n2 ≪ 1

∆ ∑
n∈S

1
n2 (12)

for any setS⊂Z. Hence, lettingR= ev
√

logt , for somev to be chosen later, and splitting
the sum in the right hand side of (11) into two different sumsT2,1, T2,2, depending on
whether|n|< R or not respectively, we get on one hand

T2,1 ≤ te−
c

6v+1
√

logt ∑
|n|<R

|cn| ≪ t
1

∆1/2
e−

c
6v+1

√
logt = te(

u
2− c

6v+1)
√

logt .

On the other hand, using the trivial bound exp
(

−c logt√
logt+6log|n|

)

< 1 and (12), we get

for |n| ≥ R,

T2,2 ≪ t
1

(∆R)1/2
= e(u−v)/2

√
logt .

From here it is easy to get the upper bound

T2 = O
(

te−c′
√

logt
)

,

for somec′ > 0, for example by choosing(6v+1)v= c/2 andu= v/2.
In order to get the lower bound, we just have to consider a 2π-periodic function

ĝ∈C 2(R) such that ˆg(x) = 1 in the interval[∆,θ −∆], 0≤ ĝ(x)≤ 1 for x∈ [0,∆]∪ [θ −
∆,θ ] andĝ(x) = 0 for any otherx∈ [−π + θ

2 ,π + θ
2 ]. We can assume that||ĝ′||2 ≪ 1

∆ ,
for the same selection of∆ as above. Now,

∑
p∈C(t)

ĝ(θp)≤ #{p ∈C(t) : 0≤ θp ≤ θ},
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and the same arguments as above produce

∑
p

ĝ(θp) =
θ

2π [Kn : K]
li (t)+O

(

te−c
√

logt
)

,

for some constantc, which ends the proof of (8) forθ ∈ [0,2π). The caseθ = 2π
is given by Theorem in Section 1 of [15]. Finally, observe that (9) is an immediate
consequence of (8). 2

Remark 5.2 We observe that for the case when C is a class of principal ideals, the
above theorem agrees with Theorem in Section 4 of [15] adapted to imaginary quadratic
fields. Indeed, one has C= Pδ (n) for someδ ∈ (O/n)∗ and letη ′ be the correspond-
ing character modn attached toψ ′. For anyα ∈ O such thatα ≡ δ (modn), we
haveψ ′(αO) = α η ′(δ ) and, thus,argψ ′(αO)≡ argα +argη ′(δ ) (mod 2π).

As a consequence, we obtain the following result concerningthe CM newformf .
Recall that for a primep ∈ P (resp.p ∈ PK), d(p) (resp.d(p)) denotes its residue
degree inL, and letbp be as in the beginning of Section 2.

Theorem 5.2 Let n> 0 be an integer such that the set

Pn := {p∈ P : d(p) = n, p splits inK }

is non-empty. For every a∈ [−1,1], one has

|{p∈ Pn(t) : bp

2pn/2 ≤ a}|
|Pn(t)|

−
∫ a

−1
dµ = O

(

e−K
√

logt
)

,

for some positive constant K.

Proof. Since the conductor ofε and N(m) divide the levelN of the newformf and
L/K is an abelian extension, the fieldL is contained in the ray class field ofK modn,
wheren= NO . Consider the sets

Pn,K := {p ∈ PK : d(p) = n} and P
′
n,K := {p ∈ Pn,K : p 6= p} .

Note thatP ′
n,K is the subset ofPK consisting on the primes over all primes inPn.

It is clear that ifp ∈ Pn,K, then any prime ofK in the class ofp in I(n)/P1(n) also
lies inPn,K. Hence, there exists a subsetSof I(n) which is a union of certain classes
of I(n)/P1(n) and such thatS∩PK = Pn,K. For every class ofS, we apply (8) of
Theorem 5.1, replacingψ ′ with ψ as Hecke character modn and then summing over
the set of classes inS, and we obtain

|{p ∈ Pn,K : N(p)≤ t,argψ(p)≤ θ}|
|{p ∈ Pn,K : N(p)≤ t}| − θ

2π
= O

(

e−K
√

logt
)

.
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The setPn,K is the disjoint union ofP ′
n,K and the set of the ideals generated by inert

primesp in K such thatpO ∈ Pn,K. Since the density of this last set inPn,K is zero,
we get

|{p ∈ P ′
n,K : N(p)≤ t,argψ(p)≤ θ}|

|{p ∈ P ′
n,K : N(p)≤ t}| − θ

2π
= O

(

e−K
√

logt
)

,

and, thus, also

|{p ∈ P ′
n,K : N(p)≤ t,argψ(pn)≤ θ}|
|{p ∈ P ′

n,K : N(p)≤ t}| − θ
2π

= O
(

e−K
√

logt
)

.

For p∈ Pn, the two primesp,p ∈ P ′
n,K over p satisfy argψ(pn)+argψ(pn) = 2π .

Let p be the unique prime such that argψ(pn) ∈ (0,π). Hence,bp = 2pn/2 cos(θp)
with θp = argψ(pn) and it follows the statement. 2

Remark 5.3 Note that the above theorem for n= 1 generalizes and improves (7) for
higher dimensional CM modular abelian varieties Af and for n= 2 states

|{p∈ S2(t) : bp
2p ≤ a}|

|S2(t)|
−
∫ a

−1
dµ = O

(

e−K
√

logt
)

,

for some positive constant K.

Next, we present the main theorem for the CM case.

Theorem 5.3 Assume that f has CM and let E/L be an elliptic curve such that Af is
isogenous overL to EdimA f . Then, one has

ords=1L(E/L,s) = ords=1L( f/L,s) = ords=1L( f ,S1,s)
[L:Q] .

Moreover, if Af is isogenous overM to ResL/M(E) for M⊆K, then

ords=1L(Af /Q,s) =
1

[M : Q]
ords=1L( f ,S1,s)

[L:Q].

Proof. SinceE(µ) = 0, the statement follows from Lemmas 5.1, 5.2, Theorem 5.2
and Theorem 4.1. 2

Corollary 5.1 With the same notation as in Theorem 5.3, assume that Af is isoge-
nous overM to ResL/M(E) for M ⊆ K. If ords=1L( f ,s) is invariant under Galois
conjugations of f , then we have

ords=1L( f ,s) =
1

[L : Q]
ords=1L( f ,S1,s)

[L:Q] .
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This corollary is obtained as a consequence of the above discussion and it general-
izes our previous result concerning Gross’s elliptic curves in Proposition 4.1.

Remark 5.4 In the above corollary, it is assumed thatords=1L( f ,s) is invariant under
Galois conjugations acting on f . Although this is expected to be always true, only a
few results are known in this direction (see Corollary 1.3 ofGross-Zagier in [8]).

Remark 5.5 For any number fieldM, let rM= rank(Af (M)) be the rank of the Mordell-
Weil group overM. From the inclusionE →֒ End(Af (M)⊗Q) when rM > 0, it follows
that Af (M)⊗Q is also anE-vector space and, thus,[E : Q] divides rM. Accord-
ing to the Birch and Swinnerton-Dyer conjectures, one expects that [E : Q] divides
ords=1L(Af /Q,s). In the CM case, if Af is isogenous overM to ResL/M(E) for
M⊆K, then this divisibility condition implies that the rational number

1
[L : Q]

ords=1L( f ,S1,s)
[L:Q]

must be an integer.

5.2 Sato-Tate distributions for the non-CM case

In this subsection, we assume thatf does not have CM. First, we include a result about
Sato-Tate distributions in arithmetic progressions. Letµ be the so-called Sato-Tate
measure; i.e., the measure with support on[−1,1] such thatdµ = 2/π

√
1−x2dx. The

next result generalizes part 3 of Theorem B of [2].

Theorem 5.4 Let M be any multiple of the conductor ofε. Let ζ be a root of unity
such thatζ 2 = ε(m) for some m∈ (Z/MZ)∗. Then, for all a∈ [−1,1] we have

lim
t→+∞

|{p∈ P(t) : ap

2
√

p ζ ≤ a, p≡ m (mod M)|
|{p∈ P(t) : p≡ m (mod M)| =

∫ a

−1
dµ .

Proof. For a primep∈ P, let us denote byαp andβp the roots of the polynomial
x2−apx+pε(p). We know that the statement is equivalent to prove that for all integer
n> 0 one has

∑
p∈P(x)

p≡m( modM)

∑n
i=0 αn−i

p β i
p

pn/2ζ n
= o

(

x
logx

)

.

Of course,ζ n can be omitted in the above condition. Letχ be a Dirichlet character
modM. Consider the partialL-function

L((Symmn f )⊗χ ,s) = ∏
p∈P

n

∏
i=0

(1−αn−i
p β i

p χ(p)/ps)−1,

17



which converges absolutely onℜ(s) > n/2+1. By part 2 of Theorem B in [2], we
know that this function has meromorphic continuation to thewhole complex plane and
is holomorphic and non-zero inℜ(s)≥ n/2+1. Therefore, its logarithmic derivative

Hχ,n(s) :=
d
ds

log(L((Symmn f )⊗χ ,s)) =
d
dsL((Symmn f )⊗χ ,s)
L((Symmn f )⊗χ ,s)

is holomorphic forℜ(s)≥ n/2+1. Hence,

Hχ,n(s) =− ∑
p∈P

∑
k≥1

∑n
i=0(αn−i

p β i
p χ(p))k logp

pks

=− ∑
p∈P

∑n
i=0αn−i

p β i
p χ(p) logp

ps +G(s),

whereG(s) is holomorphic forℜ(s)> n/2+1/2. Summing over all Dirichlet charac-
tersχ modM, we get:

∑
χ

∑
p∈P

χ(m)
∑n

i=0αn−i
p β i

p χ(p) logp

ps =−ϕ(M) ∑
p∈P(x)

p≡m( modM)

∑n
i=0 αn−i

p β i
p logp

ps ,

whereϕ stands for Euler’s function. Since the function

∑
p∈P(x)

p≡m( modM)

∑n
i=0 αn−i

p β i
p logp

pn/2ps

is holomorphic forℜ(s)≥ 1, by the Wiener-Ikehara tauberian theorem (cf. Theorem 1
in Chapter XV §3 of [10]), we obtain that

∑
p∈P(x)

p≡m( modM)

∑n
i=0αn−i

p β i
p logp

pn/2
= o(x).

Now, applying Abel summation, we get

∑
p∈P(x)

p≡m( modM)

∑n
i=0αn−i

p β i
p

pn/2
= o

(

x
logx

)

,

as we wanted to prove. 2

Remark 5.6 Note that if the Nebentypusε of the newform f is trivial, then Sato-Tate
distribution applies to arbitrary arithmetic progressions.
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Let S2 be the set of primes defined in (1). Assume thatS2 is non-empty, and
consider the following subsets ofS2:

S
+
2 = {p∈ S2 : ε(p) = 1} ,

S
−
2 = {p∈ S2 : ε(p) =−1} .

Clearly,S2 is the disjoint union ofS +
2 andS

−
2 . Since each of them is the set of all

primes in certain congruence classes modN, as a consequence of the above theorem
we obtain the following result.

Corollary 5.2 For all a ∈ [−1,1] we have that

(i) if S
+
2 is non-empty, then

lim
t→+∞

|{p∈ S
+
2 (t) : ap

2
√

p ≤ a}|
|S +

2 (t)| =
∫ a

−1
dµ ,

(ii) if S
−
2 is non-empty, then

lim
t→+∞

|{p∈ S
−
2 (t) : ap

2i
√

p ≤ a}|
|S −

2 (t)| =
∫ a

−1
dµ .

We introduce the measuresµ+ and µ− with support on[−1,1] and defined as
follows:

µ+((−∞,x]) := µ([−
√

(x+1)/2,
√

(x+1)/2 ]) ,

µ−((−∞,x]) := 1−µ([−
√

(1−x)/2,
√

(1−x)/2 ]) ;

that is,

dµ+ =
1
π

√

1−x
1+x

dx and dµ− =
1
π

√

1+x
1−x

dx.

Recall that forp∈ S2, we havebp = a2
p−2pε(p). As a by-product of the above

corollary, it follows the next result.

Corollary 5.3 AssumeS2 is non-empty. For all a∈ [−1,1] we have that

(i) if S
+
2 is non-empty, then

lim
t→+∞

|{p∈ S
+
2 (t) : bp

2p ≤ a}|
|S +

2 (t)| =
∫ a

−1
dµ+ ,

(ii) if S
−
2 is non-empty, then

lim
t→+∞

|{p∈ S
−
2 (t) : bp

2p ≤ a}|
|S −

2 (t)| =
∫ a

−1
dµ− .
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SinceE(µ+) = −1/2 andE(µ−) = 1/2, in particular we have obtained that if
S

+
2 6= /0 then

lim
t→+∞

1

|S +
2 (t)| ∑

p∈S
+
2 (t)

bp

p
= 2E(µ+) =−1,

while for the caseS −
2 6= /0 one has

lim
t→+∞

1

|S −
2 (t)| ∑

p∈S
−
2 (t)

bp

p
= 2E(µ−) = 1.

Hence, by Lemma 5.2 the products

∏
p∈S

+
2

1
1−bpp−2+ p−2 , ∏

p∈S
−
2

1
1−bpp−2+ p−2

do not converge. To determine the orders ats= 1 of suitable powers of them, we
consider the products

∏
p∈S

+
2

1
(1−bpp−2+ p−2)(1− p−s)

, ∏
p∈S

−
2

1
(1−bpp−2+ p−2)(1+ p−s)

and we introduce the functions

K +(t) =
1

|S +
2 (t)| ∑

p∈S
+
2 (t)

(

bp

p
+1

)

, if S
+
2 is non-empty,

K −(t) =
1

|S −
2 (t)| ∑

p∈S
−
2 (t)

(

bp

p
−1

)

, if S
−
2 is non-empty,

for which we already know

lim
t→+∞

K
+(t) = lim

t→+∞
K

−(t) = 0.

Now, we want to apply Lemma 5.2 to the sequences{bp+p}p∈S
+
2

and{bp−p}p∈S
−
2

.
If we had some control of the rate of convergence in the above Sato-Tate type formulas,
then we would obtain conditions for the functionsK +(t) and K −(t). As far as
we know, nothing is proved in this sense. There exists a conjecture made first by
S. Akiyama and Y. Tanigawa in [1] for rational elliptic curves, and then by B. Mazur
in [12] for more general modular forms, which is in accordance with the widely present
square root accuracy. In the particular case of elliptic curves overQ (that is, dimAf =
1), the conjecture claims that the error term

E(a, t) =
|{p∈ P(t) : ap

2
√

p ≤ a}|
|P(t)| − 2

π

∫ a

−1

√

1−x2dx,
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verifies
E(a, t) = O(t−

1
2+ε).

The conjecture has been tested, and even refined, numerically by W. Stein in [18] for
rational elliptic curves. It is interesting to note that hisdata show a relation between
the rate of convergence ofE(a, t) and the rank of the elliptic curve.

Nevertheless, we only need to have a control of the rate of convergence of the
mathematical expectations. This is the content of the following proposition.

Proposition 5.1 LetK +(t), K −(t) as above. Then,
∫ +∞

p1

| K +(t) |
t logt

dt <+∞ ,

∫ +∞

p1

| K −(t) |
t logt

dt <+∞ .

Proof. It is well-known that the symmetric squareL-function

L((Symm2 f )⊗χ ,s) = ∏
p∈P

2

∏
i=0

(1−αn−i
p β i

p χ(p)/ps)−1,

is an entireL-function as those considered in Section 5 of [9]. In fact, Part 2 of Theo-
rem 5.44 of [9] give us a zero free region like 1− c

logt , for some constantc depending
on the formf . Now, we note that its logarithmic derivative is given by

d
ds

log
(

L((Symm2 f )⊗χ ,s)
)

=− ∑
p∈P

∑
k≥1

∑2
i=0(α2−i

p β i
pχ(p))k logp

pks

and, by definition, we have the bound

∑2
i=0 α2−i

p β i
p χ(p) logp

p
≪ clogx,

for some constantc and anyp≤ x. Hence, the crude bound (5.48) in page 110 of [9]
applies, and we can use Theorem 5.13 of [9] to get, in particular

∑
p∈P(x)

∑2
i=0 α2−i

p β i
p χ(p) logp

p
= O

(

e−c
√

logx
)

.

Now we just have to apply Abel summation, to get

∑
p∈P(x)

∑2
i=0 α2−i

p β i
pχ(p)

p
= O

(

e−K
√

logx
)

,

for some constantK. Summing over the characters modM, and using orthogonality
we get

∑
p∈P(x)

p≡m( modM)

∑2
i=0α2−i

p β i
p

p
= O

(

e−K
√

logx
)

, (13)

which clearly implies the result. 2
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Remark 5.7 It is possible to prove an analogous estimate as (13) for any symmetric n-
th power. From part 2 of Theorem B in [2], the function L((Symmn f )⊗χ ,s) has mero-
morphic continuation to the whole complex plane and is holomorphic and non-zero in
ℜ(s) ≥ n/2+1. From the proof of Theorem B, we know that L((Symmn f )⊗ χ ,s) is
the quotient of an automorphic representation arising fromRAESDC representations
π of GLn+1(AL). Hence, we are in the right position to apply for example Theorem
5.42 of [9] (see also [17]) and obtain a zero free region for L((Symmn f )⊗ χ ,s) of
the form1− c

logt for some constant c depending on n. Now, we just have to consider
its logarithmic derivative to obtain again the bound

∑n
i=0(αn−i

p β i
p χ(p)) logp

pn/2
≪ clogx,

for some constant c depending on n and any p≤ x. Hence, the crude bound (5.48) in
page110of [9] applies, and we can use Theorem5.13of the same reference to get the
same estimation as in the above proof for every n≥ 1.

We shall need the following lemma. Recall that Gal(L/Q) is the compositum of a

polyquadratic extension ofQ and the cyclic extensionQ
kerε

. We consider the integers
n, n1 andn2 defined as follows

n= ordε , 2n1 =
[L : Q]

n
, n2 =

(−1)n+1
2

.

Notice thatS +
2 = /0, resp.S −

2 = /0, if and only ifn1 = 0, resp.n2 = 0.

Lemma 5.3 AssumeS2 6= /0. One has,

(i) the functions

G+(s) =



 ∏
p∈S

+
2

1
1+ p−s





[L:Q]

, G−(s) =



 ∏
p∈S

+
2

1
1− p−s





[L:Q]

are meromorphic onℜ(s)> 1/2 andords=1G+(s) =−ords=1G−(s) = n1.

(ii) The functions

H+(s) =



 ∏
p∈S

−
2

1
1+ p−s





[L:Q]

, H−(s) =



 ∏
p∈S

−
2

1
1− p−s





[L:Q]

are meromorphic onℜ(s)> 1/2 andords=1H+(s) =−ords=1H−(s) = n2.

These functions are taken to be the constant1 if the set of primes in the correspond-
ing product is empty.
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Proof. Let M be a subfield ofL such that[L : M] = 2. Let SM be the set of primes
of S2 that split completely inM. Recall that the asterisk means to exclude Euler
factors corresponding to primes dividingN. By using Dedekind zeta functions, we
know that:

• The function

S1(s) :=

(

∏
p∈S1

1
1− p−s

)[L:Q]

= ζ ∗
L(s)/

(

∏
{p:d(p)>1}

1

1− p−sd(p)

)[L:Q]/d(p)

is meromorphic onℜ(s)> 1/2 and its order ats= 1 is−1.

• The function

S2(s) :=

(

∏
p∈S1

1
1− p−s ∏

p∈SM

1
1+ p−s

)[L:Q]/2

is meromorphic onℜ(s)> 1/2 and has the same order ats= 1 asζ ∗
L(s)/ζ ∗

M(s),
which is 0.

Hence, the function

S2(s)
2/S1(s) =

(

∏
p∈SM

1
1+ p−s

)[L:Q]

has a zero of order 1 ats= 1.
Now, the statement follows from the facts thatS

+
2 , resp.S −

2 , is the disjoint union
of n1, resp. n2, setsSMi such that[L : Mi ] = 2 and the functionsG+(s)G−(s) and
H+(s)H−(s) are holomorphic and non-zero ats= 1. 2

Finally, we obtain the main theorem for the non-CM case.

Theorem 5.5 Let f be a newform without CM such thatS2 6= /0. Let n1 and n2 as
above. With the notations as in Section 3, then

ords=1L( f/L,s) =
1
2

(

ords=1L( f ,S1,s)
2[L:Q]+n1−n2

)

,

ords=1L(Bf /L,s) =
t
2

(

ords=1L1(s)
2[L:Q]+(n1−n2)[F : Q]

)

,

ords=1L(Af /L,s) =
[E : F]

2
ords=1L1(s)

2[L:Q]+
1
2
(n1−n2)[E : Q] .

Moreover, if Af is isogenous toResL/Q(Bf ), then

ords=1L(Af /Q,s) =
1
2

(

ords=1L1(s)
2[E:F]+(n1−n2)[F : Q]

)

.
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Proof. By Proposition 5.1 and Lemmas 5.1, 5.2 and 5.3, it follows that the product
(

L( f ,S2,s)L( f−,S2,s)
)[L:Q]

G−(s)H+(s)

converges ats= 1. Hence,

ords=1
(

L( f ,S2,s)L( f−,S2,s)
)[L:Q]

= ords=1G+(s)+ords=1H−(s) = n1−n2 .

Applying Theorem 3.1, we obtain the statement. 2

As an application, we get the following.

Proposition 5.2 Suppose that Af is an abelian surface with quaternionic multiplica-
tion. Then,

ords=1L(Af /Q,s) =
1
2

(

ords=1L( f ,S1,s)
4+1

)

.

In particular, ords=1L( f ,S1,s)4 is an odd integer≥−1.

Proof. We have that dimAf = 2, F = Q, and t = 2. It is known that in this case
ε = 1 and, thus,n1 = 1, n2 = 0 andL is a quadratic field. Moreover, the Weil re-
striction ResL/Q(Af ) is isogenous overQ to A2

f . Then, Theorem 5.5 gives the desired
formula. 2
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email: josepg@ma4.upc.edu

Jorge Jiménez Urroz
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