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Abstract

As it is well-known, much of the arithmetic information for@alois num-
ber field extensiof./Q is encoded by its Dedekind zeta function and the set of
primes that split completely if.. According to the Birch and Swinnerton-Dyer
conjectures, ifA/Q is an abelian variety then its-function must also capture a
substantial part of the properties &f The smallest number field whereA has
all its endomorphisms defined must also have a role. Thisladieals with the
relationship between these two objects in the specific das®dular abelian va-
rietiesA¢ /Q associated to weight 2 newforms for the grdugN). Specifically,
our goal is to relate the order bf A¢/Q,s) ats= 1 with Euler products cropped
by primes that split completely ih. This is attained by giving separated formu-
lae for the CM and non CM cases when a poweApfs isogenous ovep to the
Weil restriction of the building block of\s.

1 Introduction

Let f be a normalized modular newform #(I"1(N)) with Fourier expansion given
by S h-0anq" and lete be its Nebentypus. We shall be concerned witliifsinction

an 1
L(f,s) = — = ,
9 n; ns l;l 1-apps+e(p)pt

and, specially, with its Euler product. The functibOf,s) converges absolutely for
O(s) > 3/2, and has analytic continuation to the whole complex pldhé known
thatE = Q({an}) is a number field and the Galois action on the Fourier coeffisie
provides a set of normalized newforrfis - - -, fp of S(F1(N)) with n=[E : Q]. The
product]i, L(fi,s) is theL-functionL(A¢/Q,s) of then-dimensional abelian variety
A¢ /Q attached by Shimura tb. The value ord-1 L(At /Q,s) is a matter of importance
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since it must coincide with the rank of the Mordell-Weil gpo&is (Q) according to the
Birch and Swinnerton-Dyer conjectures.

To motivate the issue that we want to address in this artietes consider for
a moment the case of Euler products arising from Dedekina-zetctions attached
to number fields. For every number fidld it is well-known that its Dedekind zeta-
function{y (s), defined as an Euler product on the right half-plaris) > 1, does have
meromorphic continuation to the whole complex plane andstdunique simple pole
ats=1. For the particular case thafQ is a Galois extension, we consider the subset
7 of rational primes that split completely ih and introduce the partial Dedekind

zeta-function 1

Z]L(‘Eﬂlvs) = I_l 1_7p_57

pe
defined on(s) > 1. Sincel.(s)/¢.(-71,9) Y is holomorphic oril(s) > 1/2 and
does not vanishes at= 1, the functionZL(yl,S)[L:Q] admits meromorphic continua-
tion onJ(s) > 1/2 and satisfies

ords_141.(#1,9)M% = ords_1 4y (s) = 1.

We point out that this equality shows that(.#1,s) does not admit meromorphic con-
tinuation onlJ(s) > afor anya < 1, except for the trivial cask = Q.

The starting point of this article is to study the generdi@aof this phenomenon
to modularL-functions. In other words, we want to find out if the Euler gwot of
L(f,s) can be cropped in the sense that it exists a subset of dighegiprimes with
regard to their contribution to the orderloff,s) ats= 1.

It turns out that there is a natural place to look at for findihig set of primes.
Indeed, the splitting field. of As (that is, the smallest number field wheke has
all its endomorphisms defined) is an important ingredierthefarithmetic ofAs. In
particular, the abelian varie#; is isogenous ovelL to the power of a simple abelian
variety Bs. In [5], [6] and [4], the fieldL is explicitly determined. Then, we propose
to consider the partial Euler product

1
L-app S+e(p)pt >

L(f,.,s) =
p€|_5|’1

wherep runs over the se¥; of primes that split completely ih.

The plan of this paper is as follows. Section 2 is devoted twduce notation
and summarizes some well-known facts concerning modufanctions. Since two
different situations emerge depending on whethbas complex multiplication (CM)
or not, each of them is treated separately in Sections 3 arld #oth sections, we
study the relationship between grgL (A /I, s) and the order of]"_; L( f;,.#1,s)“Q
ats= 1. As a good point, the function( f,.#1,s) does not depend on certain Galois
conjugates of the newfornfi but, as we shall see, unfortunately the prinpewith
residue degred(p) = 2 in L (if any) will cause some problems and we shall need a
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substitute ofL( f,.71,s) as first approach. In both cases, we introduce a partial Euler
productL(s) of L(A;/Q,s) associated with primep with residue degred(p) < 2

in L. We prove in Theorem 3.1 and Theorem 4.1 thatortl(B; /L, s) is determined

by ords_; L(s)=@/2, For the particular case that a powerqfis isogenous oved to

the Weil restriction Res g (Bs ), thenL(Bs/L,s) agrees with the corresponding power
of L(At/Q,s) and we obtain results for thisfunction.

Section 5 contains the main results of the article. Thisdastion is devoted to
study whether we can avoid the primgwith d(p) = 2 in order to use the more natural
L(f,.71,s) instead ofL(s). As we will show, this fact is related to the distribution of
the valuesb, = (a% —2¢(p))/(2p) for primesp with d(p) = 2. For the CM case,
we generalize results of T. Mitsui in [15] on distributionmimes in sectors and this
allows us to solve completely this problem in Theorlen] 5.3r the non-CM case,
we extend the recent result obtained by T. Barnet-Lamb, Da@#y, M. Harris and
R. Taylor in [2] about Sato-Tate distributions, when resinig to primes in arithmetic
progressions. Then, we present the main result for thisinaBeeoren 5.5.

2 Modular L-functions

Let f = S-0anq" be a normalized newform of levél with Nebentypus and letE
be the number field)({an}). From now on, at our convenience bffunctions with
an asterisk will stand for the correspondindunctions but removing the Euler factors
attached to the primes dividing.

Let A be a prime ideal oE over a rational primé. There is a continuous-adic
representation

p) : GallQ/Q) — GL2(6)),

whered, denotes the completion of the ring of integerdioéit A such thatl (f,s) is
the L-function attached to thig-adic representation. Also, for every number figld
we shall denote by (f/L,s) the L-series attached tp, restricted to GdlQ/L). If
L/Q is a Galois extension ard| p) denotes the residue degreepdf L, then one has

1

|_>’< f L,S = . 7
(f/L,s) pr(1_bpp—d(p)s+g(p)d(p)pd(p)(l_zs))[L_@]/d(p)

where hereafter” will denote the set of rational primes not dividing the leMgl
bp = ap®P + (ape(p) ",

andayp is any root of the polynomiaf® — apX+ pe(p). Notice that ifp # ¢, then
bp = Trace(p,\ (Frobp)d(p)) :

By the results on base change of automorphic represendagistablished by Lang-
lands [11], we know thak*(f /LL,s) has analytic continuation to the whole complex
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plane when the group G@l/Q) is solvable and, consequently, so does

L*(At/L.s) = [] L'(°f/L.s).
o E—Q

Moreover, it is clear that*(f /IL,s) andL(f /L, s) have the same order &= 1. From
now on, the number fieltl will be the splitting field ofAs; i.e., L is the smallest num-
ber field whereAs has all its endomorphisms defined. Hengejs isogenous oveL
to the power of an absolutely simple abelian vartyL, the so-called building block
of A¢, and one has

L* (At /L,s) = L*(Bf/L,S>dimAf/dime ‘
Moreover, by Milne [14], one has
L*(B¢/L,s) = L*(Rei/Q(Bf),S).

As we shall show, the functiob* (Bt /L,s) is the product of functiont* (¢ f/LL,s)
wheno runs over a certain subset of the embeddingg wfto Q and, thus, it has also
analytic continuation to the whole complex plane since(GAD) is solvable.

To end this section, let us fix the following terminology. ewery subset” C &,
we consider the partial Euler products

1
L(f ,.,s):= ,
L(f~,.,s) = !

ple_ly 1+app=>+e(p)p >t

where we take (f,0,s) = L(f~,0,s) = 1. One had*(At/Q,s) = [sL(°f,Z,9),
whereo runs over the set of embeddingslbinto Q.

3 First approach tothenon-CM case

In this section we assume thiais without CM. We recall that a Dirichlet characteis
called an inner-twist of if there is an embedding : E — Q satisfyingZa, = x (p)ap
for all primesp € &. If for an embeddingy there is an inner-twist, it is unique and is
denoted byx,.

—Ngkerxg

By Proposition 2.1 in[[5], the splitting fieldl of As is the number fiel ,

where o runs over the set of embeddings Bfinto Q@ for which there is an inner-

twist xg. The extensioi./Q is the compositum of the cyclic extensi@kere and

a polyquadratic extension dp. Notice thatl is contained in theN-th cyclotomic
field and, thus, all primes it are unramified inL. Moreover, the center of the
algebra End(A;) ® Q is the totaly real subfieldf = Q({a%/e(p) pe Z}) of E
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and dimBs =t [F : Q], wheret is either 1 or 2 depending on whether the algebra
End,(Bf) ® Q is isomorphic to eithef or a quaternion algebra with centér In

particular,As is isogenous oveL to B[IE It We shall need the following result.

Lemma3.1 The abelian variety Ais isogenous oveR to Res, o (Bs) if and only if
t=1and[L:Q]=[E:F].

Proof. SinceAs is simple overQ, As is isogenous ovep to Re%/Q<Bf) if and only
if [E:Q]=[L:Q]dimBy¢, i.e. [E:F]=[L:QJt. We know thatE/F is an abelian
extension and G&E/F) is the set of embeddings @&f into Q for which there is an
inner-twist of f. ThereforeE : F] < [L: Q], and it follows the lemma. O
As in Section 2, for a prime € &2, let d(p) be the residue degree @fin L

—kere

and by, be the trace op, (Frob,)4(P). SinceQ" = C L, one hase(p)d(P) = 1. By
Proposition 5.2 and Lemma 6.1 6f [3], we know that for almdlspames such that

ap#0, thena AP e andd(p) is the smallest positive integer satisfying this condition
Moreover, b, € F for all primesp € &2. We shall consider the following partition

of &7:
{pe Z:d(p) =1},
Sr= {pe Z:d(p)=2}, (1)
3= {peZ:d(p) =3}.

Notice that for every prim@ € .7 there existg € Gal(E/F) such thata, = —ap
and, thusl(f,.#%,s)L(f~,.72,s) is a partial Euler product df(As/Q,s).

Theorem 3.1 Keep the above notations. L&t be a minimal set of embeddingslof
into Q such that their restrictions oR provide all embeddings @ into Q. Then,

(i) the function
(L(f, 70, 92L(F, 72, 9L(1,.75,9)) Y2

has analytic continuation to the right half-plarié(s) > 5/6 and its order at
s=1is equal toords_1 L(f/L,s).

(i) Let

L f yl? 5 L2(8> = I_l L(Of,y&S)L(Gf_,yZ’S)
oed oeyd

and L(s) := L1(s)?Lx(s). The function (s)“Q/2  that for.#, = 0 coincides
with Ly(s)-@, satisfies

ords_1 L(Bs/L,s) = t-ords_1 L(s)/2,
ords_1 L(A;/L,s) = [E:F]-ords_1L(s)@/2,



(iii) In the particular case that Ais isogenous t&es, (Bt), then
ords_1 L(A¢ /Q,s) = ords_q L(s)[EF1/2,
Proof. We consider the factorizatide (f /L, s) = 13, Gi(f,s), where

Gi(f,s):= L(f,.7,9)FY,

L:Q]/2
1 [L:Q]/

Go(f,s):= ,
1 [L:Q]/d(p)
Gs(f,s):=
( ) <pen§”3 1— bppfd(p)s_f_ pd(p)(25+1)>

Observe that ip € .#%, then we have
1—bpp 4+ p?12) = (1—app >+ &(p)p™ *)(1+app S+&(p)p" %)

Therefore, it follows
L* _ 2 — [L:Q]/2
(f/Hﬂs)_(L(f?'yl,S) L(fwyZ,S)L(f 7°§ﬂ27s)) ~Gg(f,$). (2)

Due to the fact that *(f /I, s) has analytic continuation to the whole complex plane
and [2), in order to prove part (i) it is enough to prove tlaf f,s) is analytic on
0(s) > 5/6 andGs(f, 1) is non-zero. However, this follows frofrby, |< 2p4(P)/2 and
the inequality

| b(p)pSUP) — pd(P)(=25+1) | < pp=d(P)(D(8)=1/2) 4 x=2d(P)(D(8)-1/2) < 3p=3(D(9)~1/2)
valid sinced(p) > 3. Now, observe that for every € Gal(E/FF), we haveG;(f,s) =
Gi(°f,s) for all i < 3. Hence, it follows part (ii). Finally, assume thft is isogenous
overQto Resg,p(Bf). By Lemmd 3.1, we have that= 1 and[LL : Q] = [E : F]. Noting
thatL*(A;/Q,s) = L*(B¢/L,s), the last assertion of the statement follows. O

Remark 3.1 The above theorem has full sense wfienQ] > 1. In this case, if*2 =0
then L(°f,.71,s)=¥ has analytic continuation ofl(s) > 5/6 for all o € .# and,
moreover,

ords_1L(°f/L,s) = ords_1 L(° f,.71,5) Y. 3)

For .#, # 0, the product

1
1—09bpp25+ pA-2stD)

Go(s) :=L(°f, S,5)L(°f~, 7,9 =
peS2



converges absolutely fat(s) > 1 since for pe .2 we haveg by |< 2p. In particular,
L(9f,.7,5) W is analytic onl(s) > 1. As we shall show in the last section, the
product G; converges at s 1 if and only if the series

s “bp
peS2 p2
converges. In this case, the equallty (3) also applies, tstdeding, here and in the
sequel, that if for a meromorphic function(s} defined onJ(s) > 1 there exists an
integer n satisfying that

H(s)

lim ——%
s»1,0(s)>1 (s—1)"
is a non-zero complex number, then we waitds_1 H(s) = n.

4 First approach tothe CM case

Let K be an imaginary quadratic field and &tbe its ring of integers. Now, assume
that f = y,.0anq" has CM byK. Thus, there exist an integral ideal of K and a
primitive Hecke characteyp : 1 (m) — C* of conductomm such thatf = 5 ¢(a)gN(®),
where the summation is restricted to the integral ideats K coprime tom. Here,
N(a) is the norm of the ideat andl (m) denotes the multiplicative group of fractional
ideals ofK relatively prime tom. In this case, thé-function attached td can be
rewritten as

_ Yla) _ 1
H1e = B (pﬂ)_l 1-y(p)N(p)~®

and the leveN of f is N(m) times the absolute value of the discriminantkof Note
that for a primep € 22, the roots of the polynomia#® — apx+ pe(p) are Y(p) and
Y(p) whenp splits inK and+/(p) for p inert, wherep is a prime ofK over p.

Attached toy there is a charactey : (¢/m)* — C* defined byn(a) = ¢(a0)/a.
The Nebentypus of f is the Dirichlet character molN such thats(n) = n(n)x(n),
wherey denotes the quadratic Dirichlet character attachdl.t@ he existence ofy
implies that the natural projectiofi* — (&' /m)* is a group monomorphism and, thus,
two different generators of a principal ideallifim) are not equivalent mogh and the
unique unity ofK in kern is 1.

We fix the following notation. For a subsbf (¢/m)*, we denote bys(m) the
subset ofl (m) consisting on principals ideals which have a generatsuch thata
(modm) lies in S. To simplify notation, we writéPs(m) andP(m) whenS= {4}
andS= (0 /m)*, respectively. Of course, & is a subgroup of&'/m)*, thenPs(m)
is also a subgroup dfm) containing the subgrou (m).

Let Ky be the ray class field moah. By Class field theory we know that the
groupl (m)/P;(m) is isomorphic to GdlKy /K) via the Artin map and there exists
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an intermediate number field, between the Hilbert class field & andKy such
that Ga(LL,, /K) ~ | (m)/Perp (m). In [6], it is proved that there is a quotient abelian
varietyA of A; defined ovelk, simple oveiK and such thads /K is isogenous oveK

to eitherA x A or A according to whetheK is contained irlE or not, where™ stands
for the complex conjugation. Moreover, the splitting fiefdis the number field.,,
which is a cyclic extension of the Hilbert class fieldi&f(cf. Theorem 1.2 of [6]). In
Remark 2.1 ofl[4], it is showed that the splitting field&f is the compositum

—kere

Notice that agaifi./Q is solvable. Since Rgsg(A) is isogenous oveQ to either
As orA% depending on whethéf C [E or not, we have that

L(A/K,s) = L(A;/Q,s)EKEL

Now, the building block of\; is an elliptic curveBs defined ovei. with CM by K and
for the case thah is isogenous oveK to Res, x (Bt), two situations can occur: the
abelian varietyAs is isogenous ove¥ to Res, i (Bf) whereM is eitherQ or K. In
both casedl. coincides withL,, since dinfA) < [L, : K] and[E: Q] [M: Q] = [L: Q.

Let p be a prime ideal oK overp € &2. Let us denote byl(p) andd(p) the
residue degrees g and p in L, respectively. We have that eithd(p) = d(p) or
d(p) = 2d(p) depending on whether splits or it is inert inK. We know that

g(p)dP =1 andy(p)dP c K ,if psplitsink,
g(p)dP =1 andy(p)dP/2c K ,if pisinertink.
In both cases, one hag € Z. In the CM case, we introduce a modified partitionzéf
= {peZ:dp)=1tu{pe Z:d(p) =2, pinertinK},

Sr= {pe Z:d(p) =2, psplitsinK}, 4)
S= {pe 2 :d(p) > 3}.

Let us denote by?k the set of prime idealg of K over all primesp € 2. Finally,
let.# be the subset ok consisting on the primes over all primesify. That is,

1= {pe Pk d(p)=1},
Sy= {pePx:d(p)=2,p#Pp}, (5)
3= {pePx:d(p)=2,p=p}U{pec Pk :d(p)>3}.

Theorem 4.1 With the above notations, leb(s) := L(f,.72,s)L(f~,.#%,s) and

2
1 1
”Dyflw(p)N(p)s) pr;W'

L(s) := L(f,.#1,9)%La(s) = (
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The function [s)“K! has analytic continuation to the the right half-plafigs) > 5/6
and, moreover, one has

ords_1 L(Bt/LL,s) = ords_1 L(f /L, s) = ords_1 L(s)K] |

and, thus,
ords_1 L(Af/L,s) = [E: Q|ords_1 L(s)“K]
Moreover, if A is isogenous oveyl to Re§/M(Bf) for M C K, then

ords_1 L(Af/Q,s) = ords_1 L(s) =

1
[M: Q]

Proof. Observe thak (A /K,s) = L(At/Q,s)?. Now, we can factorizé&*(f /LL,s) =
M2, Gi(f,s), where

Gi(f,s):= L(f,.7,9Y,

L:Q]/2
1 [L:Q]/

Go(f,s):= ,
1 [L:Q]/d(p)
Gs(f,s):=
( ) <p€|_¢|5”3 1— bppfd(p)s_f_ pd(p)(25+1)>

By taking into account thalt* (At /L,s) = L*(f/L,s)®@ and that if Regx(Br) is
isogenous td\; overK then Reﬁ/Q(Bf) is isogenous td\% over(Q, the statement is
obtained by using similar arguments as in the proof of Tha@dl. O

Notice that the same arguments used in Rerhark 3.1 can beedjpplbbtain the
corresponding analogues for the CM case. As a by-produchjseeobtain the follow-
ing application to the elliptic curves studied by B. Gros§/ih

Proposition 4.1 Let p=3 (mod 4 be a rational prime> 3. Let A(p) be the Gross’s
elliptic curve with CM by the ring of integers & = Q(,/—p). Let f be a normalized
newform in $(Fo(p?)) such that Ap) is a quotient of A. Then,

ords_1 L(f,s) = ords_y L(f,.#,s)HY

1
[H: Q)
whereH denotes the Hilbert class field &.

Proof. In this caselL = H and the class number &, sayh, coincides with[L : K]
and[E : Q]. Moreover,”, = 0 sinceh is odd and, thus, the functidr(s) in the above
theoremid (f,.71,5)2. We know that, for alb € Gal(Q/Q), the value orgL1 L(? f,s)
is either 0 or 1 depending on whethee= 7 (mod 8 or p=3 (mod 8 (cf. [16] and
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[13]). To prove the statement, we use that Be$A(p)) is isogenous td\s overK
and that ord_1 L(f,s) is invariant under Galois conjugations &f Then, applying
Theoreni 4.1l we obtain

[E:QJords—1 L(f,s) = ords—1 L(Ar/Q;s) = %ord&1 L(f,.7,s)LQ,

The statement is now an immediate consequence. O

5 Distributions of Frobenius traces and their conver-
gencesin average

With the aim of enlightening that the role of primpsaving residue degree 2 inis
minor, in this section we examine the convergence of theywid

-1
[ }2 2= [] (1_bp;1) ’
pess 1™ bpp~+p pES2 P

for any newformf (with or without CM). To this end, first we generalize someutes
of T. Mitsui for the CM case and we prove that one can spurnetipesnes. As for
the non-CM case, we adapt the proof of the result obtained. Bainet-Lamb, D.
Geraghty, M. Harris and R. Taylor inl[2] about Sato-Taterdisttions to extend it to
the case when the set of primes is restricted to an arithppeigression and, then, we
prove an estimation for the rate of convergence of the madiieal expectations.

In the sequel we will use the following notation. For any sthg” of &7 and a
real numbet, we put.(t) .= {pe . : p<t} andd denotes the Dirac measuretat
Before going further, we need the following two lemmas.

Lemmab.l Let.” = {p1 <--- < pn < --- } be an infinite sequence of rational primes
and let{cy}n~0 be a sequence of real numbers such flat < kp, for some k> 0and

all n > 0. Then, the produdf],-o(1— cnpy?) " converges if and only i 1~ Cn/ P2
converges.

Proof. For every positive realwe set

st)= [ —

72 .
pre(t) 1-—-capn

The convergence ¢f,-.o(1—cnp;2) ~tis equivalent to the existence of im, . log&(t).
Now,

log&(t) = — Z Iog<1—c—g):_ Z (|og(1_c_g)+c_g)+ z C_r2‘7
P 0 Y Pa D n

P (1) n pneS n e (t)
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and the convergence of the first term follows from
Cn Cn

log <1 — —) +—=

2 PR/ PR

pne-Z(t)
sincec?/pf < k?/p2. m

< Y ci/pr<w
pheS(t)

Lemmab.2 Let.” ={p1<--- < pn<:--} be asequence of primes of positive density
and let{cy} be a sequence of real numbers. Consider the sequence ofabaljility
measuresn = 1/n3y &/, and assume that the sequence of their mathematical
expectations, B/y), converges to a real numbér Then, we have that

(i) if £ 0, then the serie§ .q cn/ P2 does not converge,

(i) if £=0and the real function# (t) = ﬁ Y pne.(t) Cn/ Pn defined orjpy, +o)

o | (1)]
t logt

satisfies the conditioy‘ipl
gent.

dt < +oo, then the series .o Cn/ P2 is conver-

Proof. By hypothesis, we have

Cn

lim E(vy) = lim =/.
N— o0 (Vn) t—+oo | (1)] e () Pn

Let 7 (t) be the function defined by the relation
C
D=L O+ ().
pnd 7 (1) Pr
By partial summation we get
t1

SoEt 2 a3 g

pne (t) PRt pnEZ(t) Pn p1 X pnE.7 (X) Pn

Observe that¥(t)| = ct/logt(1+0(1)) andp, = cnlogn(1+o0(1)), wherec > 0 is
the density of”. On one hand, we have that

Cn

im =y = lim ( ﬁ) ZOL_y i ZOL_g
t—oo t 1) Ppn  t=+o \ ()] (1) Pn t t—fo t
On the other hand, one has that
t t t
/ 2y Sdx—s TN g [ 170 (x ax. (6)
p1 X PnES (X) Pn pp X p X

Since lim_ 102 (t) = 0 and Iim_>+mfrt,1|¢5ﬂ(x)|/x2dx: +oo, the convergence of
S n=0Cn/ P2 implies that/ = 0.

Assume now thaf = 0. By the hypothesis in (ii), the last integral [0 (6) is abso-
lutely convergent and, thus, the serjgs ocn/ p2 converges. O
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Remark 5.1 Recall that if a sequence of probability measuvgswvith support on a
compact real subset converges in law to a continuous praipameasurev, then the
mathematical expectation(kZ) exists and the sequence of the mathematical expecta-
tions E(v,) converges to Ev). Moreover, if a real function#” provides a uniform es-
timation for this convergence, namely((—,a]) — [2,dv = O(# (n)) for all real a,

then Ev,) —E(v) = O(# (n)). We will apply the above lemma in this sense, proving
that the Sequencen = 3 pe #(n) ,/(2p) CONVerges in law to a continuous probability
measure with support op-1,1].

Next, we treat in separate subsections the CM and non-CMcase

5.1 Uniform distribution of argumentsfor the CM case

In this subsection, it is assumed tifahas CM by an imaginary quadratic fiekland
we keep the notation as in Sect{dn 4.

For the particular case thag is an elliptic curve, thei. = K and it is well-known
that the valuesyy/(2,/p) € R for the set of primep € &2 which splitinK, say #1,
are equidistributed ifil, 1] with respect to the measudg: = 1/71(1 — x?)~¥2dx i.e.,
for all a € [—1,1] we have that

dx. 7)

~ Hpea(t):g<all 12 1
im — = =

te | Z1(1)] 7T/l 12
In other words, the sequence of measu]%gﬁ‘:l 5api/(2\/ﬁ) converges in law tqu,
where 1 = {py < --- < pn < ---}. If we take 6p € (0, ) such thatay/(2,/p) =
cosfp, then the above condition amounts to saying that the sequehmeasures
sn, Jg,, converges in law to the uniform measure|[0vy.

In order to remove the set of primeg4 from Theoreni 41, we shall generalizé (7),
in Theoren 5.2, to CM modular abelian varieti®s of higher dimension, for several
subsets of primes which split completelyliy and also including an estimate for the
error term. The next result is the main tool to achieve thel go

Theorem 5.1 Let (/' be any Hecke character & modn (not necessarily primitive),
and letf € [0,2m]. Then, for any ideal class C ir{ih)/P;(n) one has

6 t dx
: < / < _ —cy/logt
[{p €CN P iN(b) Starg (b) < 0} = 5o [ o +O(te e/od)
(8)
where c is some positive real constant. In particular,
[{p €CN Pk :N(p) <t,argy/(p) < 6} _£:O<emo—gt> )
[{peCN Pk :N(p) <t} 2m

for some positive real constant K.
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Proof. The proofis based on a theorem of T. Mitsuilin[15] and usedaimrguments.
Let us note that it is enough to restrict to primitive chagagt since the only difference
will be in a finite number of primes dividing the conductor.Wdirst, let6 < [0, 2m),

t > 2 andA = e W9l for someu that will be chosen later. We will deno@(t) =
{a €C: N(a) <t}. Consider a &-periodic functiong € ¥?(R) such thaig(x) = 1
for x € [0,0], 0 < g(x) <1 for x € [-A,0]U[6,0+ A] andg(x) = O for any other
x € [+ §,m+ §]. Assume also thatg'||3 < 1/A and letg(x) = 3 ,cn€™ denote
its Fourier expansion. For any given idegllet 8q be the argument af/(a); in other
words, /' (a) = /N(a)€f% . Hence, summing over prime ideals@(t), we get

#peCt):0<B <0} < T o(6p). (10)
peCit)

First, we will proceed to obtain the right asymptotics foe sum. This will provide
an upper bound for the left hand side [ofl(10). An analogousraemt will give us the
lower bound and, hence, the theorem. By expanding into isi€oseries we get

in6 1 21 ino
G D che'nl’:ﬁ/o gxdx ¥ 1+§cn 5 "%
peC(t) peC(t) n peCt) n#0  PpeC(t)

Let us denote the two terms by

n= 2 [T 1, Tp= "%
e TACCLD IR D D S
pécw 70 péciy

Noting thathZ"g(x)dx: 8 +0(A), Theorem in Section 1 of [15] gives us for the main
term g

21Ky : K]

where, as usual, (t) = /5 @dx is the logarithmic integral. Observe that, for any
choice ofuin A, this error term is of the form stated inl (8) and then, to pribneefirst
part of the theorem, we have to get the correct upper bounthéoerror termr,. Let

& : 1(n) — C* be the group homomorphism defined by

e li (t) +O(Ali (1)),

Y'(a) _ g
VN(a)
By definition, for any integen # 0, the mapE" is a non-real Grossencharacter of the

field K of modulusn and frequency as in Section 3.8 of |9]. In particular,

einea

L(&",s) =

13



is a HeckelL-function. With the notation as in Chapter 5 of [9], thifunction has
parametersl = 2, k1 = |n|/2, ko, = |n|/2+1 andq(&M) < |n|?. Hence, by noting that

5 dnép _ 5 Ngn(M)

péc) Az logm

+0O(vVtlogt),

where hereAgn(m) = (e e K P)logp for any m = p* with N(p) = p, and
Ngn(m) = O otherwise, and that the constant in the error term is inadget ofn,
we can apply Theorem 5.13 of [9] and partial summation toiabta

logt
TL<tS |cexp( —c . 11
’ n;o| " p( vlogt+6log\n\) D

Now, the Cauchy-Schwarz inequality yields

1 1

<Z\Cn\> Zn2|cn\22 2<<H9||22 2<<AZ@ (12)

nes nes nes

for any seSc Z. Hence, lettindR = €"v'°9, for somev to be chosen later, and splitting
the sum in the right hand side ¢f{11) into two different sums, T, 2, depending on
whether|n| < R or not respectively, we get on one hand

fToat 1 fToat fToat
T2,1 < te—v‘il ogt |Cn| <K tme_vil ogt — te(%_Wil) oQt.
In|<R

On the other hand, using the trivial bound {mﬁﬂmm) < land[12), we get
for |n| > R,

1
Top <t = guv)/2/oat
2.2 (DR)1/2
From here it is easy to get the upper bound

T,=0 (te—c’\/]o_gt> ,

for somec’ > 0, for example by choosin@v+ 1)v=c/2 andu=v/2.

In order to get the lower bound, we just have to considerrgeriodic function
§ <€ ?(R) such thag(x) = 1in the intervaLA, 6 —A],0<§(x) <1forxe[0,A]U[0—
A, 6] andgix) = 0 for any othex € [~ 1+ 9, -+ §]. We can assume thg/||? < £,
for the same selection & as above. Now,

> G(6p) <#{peC(t) : 0< 6p < 6},
peC(t)

14



and the same arguments as above produce

%@(913) = MH (t)‘l‘O(te_C ogt) |

for some constant, which ends the proof of 8) fof € [0,2m). The cased = 2
is given by Theorem in Section 1 of [15]. Finally, observettf® is an immediate
consequence of(8). O

Remark 5.2 We observe that for the case when C is a class of principallsgdiae
above theorem agrees with Theorem in Section4 of [15] ad&ptenaginary quadratic
fields. Indeed, one has€ Ps(n) for somed € (&' /n)* and letn’ be the correspond-
ing character moch attached toy/’. For anya € ¢ such thata = d (modn), we
havey/(a0) = an’(d) and, thusargy/’(a @) = arga +argn’(d) (mod 2rm).

As a consequence, we obtain the following result concertiiegCM newformf.
Recall that for a primep € & (resp.p € Hk), d(p) (resp.d(p)) denotes its residue
degree irlL, and letb, be as in the beginning of Section 2.

Theorem 5.2 Let n> 0 be an integer such that the set
Pn={pe Z:d(p)=n, psplitsinK }
is non-empty. For everya [—1,1], one has

. _bp_
e it 2 gy o)
| Zn(t)] -1 ’

for some positive constant K.

Proof. Since the conductor of and N'm) divide the levelN of the newformf and
L/K is an abelian extension, the fidldis contained in the ray class field &fmodn,
wheren = N¢&'. Consider the sets

Pk ={pec Px:dp)=n} and Py :={pec Pnx:p#P}.

Note thatB%K is the subset of” consisting on the primes over all primes 4#4.

It is clear that ifp € Pk, then any prime oK in the class op in I (n)/Pi(n) also
lies in Z, k. Hence, there exists a sub&atf | (n) which is a union of certain classes
of I(n)/Pi(n) and such thabn Zx = Z,k. For every class 0§, we apply [(8) of
Theoreni5.l, replacing’ with ¢ as Hecke character madand then summing over
the set of classes i§ and we obtain

-~ =0
(P € Pnzc :N(p) <1} 2n

{p € Znx :N(p) <targy(p) <0} 6 (e—K\/Vgt> .

15



The setZ, k is the disjoint union of; nK and the set of the ideals generated by inert
primesp in K such thatpd’ € k. Slnce the density of this last set i, k is zero,
we get

[{pe Zh:Np) <targy(p) <6} 6 O@«@)
{p € Ppy Np) < 1) an |

and, thus, also

[{p e Zni :N@p) <targp(p") <6} 6 _ O<efK\/Io_gt) .
[{p € Pk N(p) <t} 21

For p € &y, the two primesp,p € &/ . over p satisfy argh(p") +-argy(p") = 21

Let p be the unique prime such that apgp") < (0, 7). Hence,bp = 2p"/? cog 6p)
with 8 = argy(p") and it follows the statement. O

Remark 5.3 Note that the above theorem foenl generalizes and improves (7) for
higher dimensional CM modular abelian varietieg @nd for n= 2 states

tpe 720 5 —/adu:o<eKm),
A(t )I -1
for some positive constant K.
Next, we present the main theorem for the CM case.

Theorem 5.3 Assume that f has CM and le{'E be an elliptic curve such thatAs
isogenous ovek to E9MA? . Then, one has

ords_1 L(E/L,s) = ords_1 L(f /L, s) = ords_1 L(f,.71,5) Q.

Moreover, if 4 is isogenous ovell to Reg, i (E) for M C K, then

ords_1L(Af/Q,s) = ords_1 L(f,.71,s)@,

1
[M: Q]

Proof. SinceE(u) = 0, the statement follows from Lemmlias]9.1,15.2, Thedrem 5.2
and Theorern 4]1. O

Corollary 5.1 With the same notation as in Theoréml|5.3, assume thas Asoge-
nous overM to Res, i (E) for M C K. If ords—; L(f,s) is invariant under Galois
conjugations of f, then we have

ords_1L(f,s) = ords_1 L(f,.7,s)H9.

1
[L:Q

16



This corollary is obtained as a consequence of the abovastismn and it general-
izes our previous result concerning Gross'’s elliptic canveProposition 411.

Remark 5.4 Inthe above corollary, itis assumed thats_q L(f,s) is invariant under
Galois conjugations acting on f. Although this is expectete always true, only a
few results are known in this direction (see Corollary 1.Z0bss-Zagier in[[8]).

Remark 5.5 Forany number field1, let ry; = rank(As (M) ) be the rank of the Mordell-
Weil group oveM. From the inclusior£ — EndAs (M) ® Q) when kg > 0, it follows
that As (M) ® Q is also anE-vector space and, thusE : Q] divides k. Accord-
ing to the Birch and Swinnerton-Dyer conjectures, one ettt [E : Q] divides
ords—;1 L(A¢/Q,s). In the CM case, if Ais isogenous oveM to Reg i (E) for
M C K, then this divisibility condition implies that the ratioh@umber

ords_1 L(f,.7,s)U

1
[L:Ql

must be an integer.

5.2 Sato-Tatedistributionsfor the non-CM case

In this subsection, we assume ttiadoes not have CM. First, we include a result about
Sato-Tate distributions in arithmetic progressions. udbe the so-called Sato-Tate
measure; i.e., the measure with supporf-eh, 1] such thatdy = 2/mv/1—x2dx The
next result generalizes part 3 of Theorem BLof [2].

Theorem 5.4 Let M be any multiple of the conductor of Let { be a root of unity
such that{? = &(m) for some me (Z/M Z)*. Then, for all ac [—1, 1] we have

|{p€§f’()'2\/b <a,p=m (modM)|
lim /du
t—o0 Hpe Z(t):p=m (modM)|

Proof. For a primep € &7, let us denote by, andfp the roots of the polynomial
X2 — apX+ pe(p). We know that the statement is equivalent to prove that fontger

n> 0 one has o
y T ()
o5 p/2Zn logx /)

p=m( mod M)

Of course," can be omitted in the above condition. Letbe a Dirichlet character
modM. Consider the partidl-function

]

S rﬁ’f 1 n—ini s\ —1
L((Symnt' f) ® x,s) = p|€'|32,||'L ap BpX(P)/P)

17



which converges absolutely dn(s) > n/2+ 1. By part 2 of Theorem B irn_[2], we
know that this function has meromorphic continuation towi®le complex plane and
is holomorphic and non-zero i(s) > n/2+ 1. Therefore, its logarithmic derivative

((Symnf' f)® X, )
(Symnf' f)® x,s)

d Bt
()= gloa(L((Symnt 1) 0 x.9) = &

is holomorphic forl(s) > n/2+ 1. Hence,

S o(al ' Bhx(p)) < logp
ka
pe#k>1 o
S oap ' Bpx(p)logp
— S +
pe# p

Hyxn(s) =-—

G(s),

whereG(s) is holomorphic forJ(s) > n/2+1/2. Summing over all Dirichlet charac-
tersy modM, we get:

____§sn n—ini |
3 (my2=0% izx(p) 9P _ 4w

X peZ

Soap By logp

pEZ(X) P
p=m( mod M)

where¢ stands for Euler’s function. Since the function

Soap By logp
pﬂ/z pS

peZ(X)
p=m( mod M)

is holomorphic forl(s) > 1, by the Wiener-lkehara tauberian theorem (cf. Theorem 1
in Chapter XV §3 of[[10]), we obtain that

Sloap 'Bylogp
o2 = 0(X).

peZ(X)
p=m( modM)

Now, applying Abel summation, we get

zP:oaBiB;,:()( X )

o5 p"/2 logx

p=m( modM)

as we wanted to prove. O

Remark 5.6 Note that if the Nebentypusof the newform f is trivial, then Sato-Tate
distribution applies to arbitrary arithmetic progressisn
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Let ., be the set of primes defined inl (1). Assume tl¥gtis non-empty, and
consider the following subsets of2:

Sy = {peS2:&(p)
Sy = {peS:e(p)

1},
~1}.
Clearly,.#> is the disjoint union of#;" and.#, . Since each of them is the set of all

primes in certain congruence classes mbhas a consequence of the above theorem
we obtain the following result.

Corollary 5.2 For all a € [-1,1] we have that
(i) if 7" is non-empty, then

{pe5): 2 <al
SN 0] = [0

(ii) if .7, is non-empty, then

[{pe 75 (1) 55 < &}l
lim 2 U aip - / du.
toteo 5 (1)
We introduce the measurgs™ and pu~ with support on[—1,1] and defined as
follows:
pr((—ox) = p(—V/&xFD2/x+1D)/2))
H((—oox]) = 1—p([—/(1-%)/2,/(1- /2]
that is,

1 /1-x 1 /1+x
+ _ = N
du _n”1+ dx and du~ \/1 xd'

Recall that forp € .5, we haveb, = a2 2pe(p). As a by-product of the above
corollary, it follows the next result.

Corollary 5.3 Assume> is non-empty. For all & [—1,1] we have that

(i) if %" is non-empty, then

2 '—p<
lim P 2 ( 2p — —/ du™,
t—-o0 ‘,Vz )|

(ii) if .7 is non-empty, then

€75 (1) R <
jim (P72 (1) 2 —/ dy .
t—too ‘,Vz )|
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SinceE(u™) = —1/2 andE(u~) = 1/2, in particular we have obtained that if
5" # 0 then

: 1 b
while for the case”’,” # 0 one has
lim — Z %:ZE(u‘):l.
b |y (O p &) P
Hence, by Lemm@5l2 the products
1 1
pg; 1—bpp=2+p2’ p6|_5|”2 1—bpp 2+ p2

do not converge. To determine the ordersat 1 of suitable powers of them, we
consider the products

1 1

Jame e I aee ez

and we introduce the functions

HTH) = iL <% + 1) , if 5 is non-empty,
"yZ (t)| pe&’*(t)
1 b
H () =—— <—p — 1) , If .7, is non-empty,
7 01, % \p 2

for which we already know

lim 2#*(t)= lim ¢~ (t)=0.

t—>-o0 t—-oo
Now, we want to apply Lemnia 5.2 to the sequendgst p} pe.sy and{bp— p} pesy
If we had some control of the rate of convergence in the abate Fate type formulas,
then we would obtain conditions for the functiong ™ (t) and 2 ~(t). As far as
we know, nothing is proved in this sense. There exists a ctunje made first by
S. Akiyama and Y. Tanigawa inl[1] for rational elliptic cusjeand then by B. Mazur
in [12] for more general modular forms, which is in accordanath the widely present
square root accuracy. In the particular case of elliptiwesioverQ (that is, dimA; =
1), the conjecture claims that the error term




verifies .
E(at)=0O(t"2%%).
The conjecture has been tested, and even refined, numgbgall. Stein in [18] for
rational elliptic curves. It is interesting to note that desta show a relation between
the rate of convergence &f(a,t) and the rank of the elliptic curve.
Nevertheless, we only need to have a control of the rate ofesgence of the
mathematical expectations. This is the content of theotig proposition.

Proposition 5.1 Let.# " (t), # —(t) as above. Then,

400 + 400 -
/ 27O g ¢ oo / 27014 ¢ oo
p  tlogt p  tlogt

Proof. It is well-known that the symmetric squatefunction

2

S m?f .S) = _ AN—-ipi s—l,
L((Symnf f)® X,s) pD@i[L(l ap 'Bpx(P)/P°)

is an entireL-function as those considered in Section 5.0f [9]. In factf Raf Theo-
rem 5.44 of([9] give us a zero free region like-1-=:, for some constart depending
on the formf. Now, we note that its logarithmic é’erivative is given by

d 3 SZ (a2 Bix(p))* logp
golog (L((Symn? f)@ x,s)) = —pezym ¥s

and, by definition, we have the bound

52 0a3-'BLx(p) logp
p

for some constartt and anyp < x. Hence, the crude bound.) in page 110 of [9]
applies, and we can use Theorerh®of [9] to get, in particular

2 i
2i—00p IﬁbX(p) logp 0 <e—c ogx) .
peZ(X) P

< clogx,

Now we just have to apply Abel summation, to get

s i
Sodp ' BpX(P) — 0 (ervio9),
peZ(X) P

for some constank. Summing over the characters mbtj and using orthogonality
we get

2 ~2-ipi
o
2i=0% Pp Bp:o<eK ng), (13)
peZ(x) P
p=m( modM)
which clearly implies the result. O
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Remark 5.7 Itis possible to prove an analogous estimate a$ (13) for gnynsetric n-
th power. From part 2 of Theorem B inl[2], the functiof(Bymn!' f) ® x,s) has mero-
morphic continuation to the whole complex plane and is holgohic and non-zero in
[0(s) > n/2+ 1. From the proof of Theorem B, we know th&at&ymnt ) ® x,s) is
the quotient of an automorphic representation arising fl@ARESDC representations
mmof GLh11(Ar). Hence, we are in the right position to apply for example Téeso
5.42 of [9] (see also[17]) and obtain a zero free region fof(Symnf' ) ® x,s) of
C

the form1— ogt for some constant ¢ depending on n. Now, we just have to amsid

its logarithmic derivative to obtain again the bound

S o(al~'Bhx(p)) logp

on/2 < clogx,

for some constant ¢ depending on n and any . Hence, the crude boun8.48) in
pagell0of [9] applies, and we can use Theoréd 3 of the same reference to get the
same estimation as in the above proof for every h

We shall need the following lemma. Recall that GalQ) is the compositum of a

polyquadratic extension @b and the cyclic extensic® . We consider the integers
n, n; andny defined as follows

. __1\n
nzordg, 2n1:M, nzz(l)i—i_l

n 2
Notice that¥," = 0, resp.#, =0, if and only ifn; = 0, resp.n, = 0.
Lemma5.3 Assume, # 0. One has,

(i) the functions

[L:Q] [L:Q]
1 1
G'(s) = = , G (s)= —
<|06«|_5|”2+ 1+p s) pelzlﬂfl_p )

are meromorphic ofl(s) > 1/2 andords—; G*(s) = —ords—1 G~ (S) = .

(i) The functions

1 [L:Q] 1 [L:Q]
H+(s)< |_| 1—|—p5) ) H(S)( |_| 1p3)

pes, pes,

are meromorphic onl(s) > 1/2 andords_1 H ™ (s) = —ords_1 H ™ (s) = ny.

These functions are taken to be the conslahthe set of primes in the correspond-
ing product is empty.
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Proof. Let M be a subfield ol such thaflL : M| = 2. Let.# be the set of primes
of %, that split completely inM. Recall that the asterisk means to exclude Euler
factors corresponding to primes divididdy By using Dedekind zeta functions, we
know that:

e The function

1 [L:Q] 1
Si(s) == — ={1.()/ ——sdp
(per«l% 1-p > - <{p:d|(_p!>1} 1—psdp)

is meromorphic o (s) > 1/2 and its order as= 1 is —1.

> (L:Ql/d(p)

e The function

L:Q)/2
1 1
S2(8) = ( [ [ = ps)

__ Nn—S
pe&”ll P peSm

is meromorphic ol (s) > 1/2 and has the same ordersat 1 as{;’(s)/{y(S),
which is 0.

Hence, the function

1 [L:Q]
S(9)%/Si(s) = ( M )

pesiy 1TP®

has a zero of order 1 at= 1.

Now, the statement follows from the facts th#", resp..# , is the disjoint union
of ny, resp. ny, sets.%jy; such thafL : Mj] = 2 and the function&*(s) G (s) and
H*(s)H~(s) are holomorphic and non-zerost 1. 0

Finally, we obtain the main theorem for the non-CM case.

Theorem 5.5 Let f be a newform without CM such that, # 0. Let p and rp as
above. With the notations as in Section 3, then

1 )
ords_; L(f/LL,s) = 5 (ordﬁl L(f,&”l,s)z[L'Q] +n1—n2>,

ords_1 L(Br/L,s) = % (ordss La(929 + (ny ) [F: ).

[E:F]
2

Moreover, if A is isogenous tcRe%/Q(Bf), then

ords_1 L(A¢/L,s) = ords_1 Ly(s)2@ 4 %(nl —m)[E: Q).

ords—1L(Af/Q,s) = % (ordkl L1()2®F 4 (ng —np)[F : @]) :
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Proof. By Proposition 5.1 and Lemmas 5l1,]5.2 5.3, it follows the product
(L(f.72.9L(f,.%2,9) "V G (9H(9)
converges as= 1. Hence,

Ords—1 (L(f,yz,s)L(f*,yz,s))[L:Q] = 0rds—1 G"(s) +0ords—1 H(S) = ng — ny.

Applying Theoreni 311, we obtain the statement. O
As an application, we get the following.

Proposition 5.2 Suppose that Ais an abelian surface with quaternionic multiplica-
tion. Then,

1
ords—1 L(Ar/Q.5) = 5 (ords1 L(f,.,9)* +1) .
In particular, ords_; L(f,.#1,5)%is an odd integer> —1.

Proof. We have that diml\; = 2, F = Q, andt = 2. It is known that in this case
€ =1 and, thusp; = 1, n, = 0 andLL is a quadratic field. Moreover, the Weil re-
striction Reg ;g (At) is isogenous oveQ to AZ. Then, Theorer 515 gives the desired
formula. O
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