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Abstract

It is known the relationship between cyclic codes and
invariant subspaces. In this work we present a general-
ization considering “generalized” cyclic codes and hy-
perinvariant subspaces.
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1 Introduction

Let ¢ be an endomorphism of a vector space V' over a
field F.

Recall that a p-invariant subspace F' C V is called
hyperinvariant if F' is invariant under all linear maps
commuting with ¢.

The main goal of this work is to establish the rela-
tionship between the set of some “generalized cyclic
codes” and hyperinvariant linear subspaces of F".

Despite of the fact that Commutative Algebra is the
tool mostly used to study linear cyclic codes (see
[MacWilliams and Sloane, 1977], for example), since
linear codes have a structure of linear subspaces of
F™, they can also be studied using Linear Algebra as
[Garcia-Planas, Souidi and Um, 2012; Garcia-Planas,
Souidi and Um, 2013].

2 Preliminaries
2.1 Hyperinvariant Subspaces of Cyclic Permuta-
tion Maps
Let p be a prime number, ¢ = p* for some k& > 1 and
F = GF(q). Let F™ be the n-dimensional vector space
over the field FF.
We consider the following linear map

p:F* — F7
(1., Tn) — (Tn,z1, ..

6]

. 7xn71)

with associated matrix, with respect to the standard ba-
sis,

00...01

10...00
A=101...00] 2)

00...10

This linear map is clearly orthogonal (in the sense
At = A1) and verifies A" = I,,. Cayley Hamilton
Theorem ensures that its characteristic polynomial is

p(s) =det(A —sl,) = (—=1)"(s" — 1).

To study hyperinvariant subspaces (those which are
invariant for all linear maps commmuting with ¢) we
need to compute the centralizer of A.

Proposition 2.1. The centralizer C(A) of A is the set
of circulant matrices

1 T2 ...Tp—-1 ITp

Tn X1 ...Tp-2 Tn-1
X=|%n-1%n .- Tn-3 Tn-2

o I3 ... Tp I

Proof. 1t suffices to solve the matrix equation AX —
XA=0.

Remark 2.1. Two matrices belonging to a given cen-
tralizer do not necessarily commute. But in our case,
given any circulant matrix X commuting with A, its
centralizer is C(X) = C(A).
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Definition 2.1. Two vectors x = (z1,...,2,) andy =
(Y1, .-, Yn) in F™ are called orthogonal when x - y* =
0.

Lemma 2.1.

X eC(A)
if, and only if,

Xt eC(A)

Proof. All circulant matrices satisfy XX? = X'X
(they are normal matrices) and the Lemma follows.

Proposition 2.2. If F' is p-hyperinvariant subspace,
F is also an hyperinvariant subspace.

Proof. Given any w € F*, v € F, X € C(A), we
wish to prove that Xw’ € F-. Since

(Xwh)'' = wX o'

and taking into account Lemma 2.1 we have that
X'yt € F and therefore:

wXtt =0

We conclude that Xw? € F+ and F! is hyperinvari-
ant.

Notice that if v = (vy, ..., v,) is an eigenvector of A,
then the following equalities hold:

Up = A1
v = /\’UQ
3)
Un—2 = >\vn—1
Up—1 = AUy

In particular, we obtain that any eigenvector of A has
the form.

v=A""LAT2 0N

We can derive the following Proposition.

Proposition 2.3. Given any A\ € GF(q)* such that
A" =1, then [v] = A", \"=2 ..\ 1)], the vector
subspace spanned by v, is an hyperinvariant subspace
of ¢.

Corollary 2.1. The subspace F = [(1,1,...
hyperinvariant.

, L D) is
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Euler-Fermat Theorem provides information about the
roots of A" — 1.

Theorem 2.1. IfF = GF(q), then \9~* = 1 has ¢ — 1
different roots.

Example 2.1. Consider F = GF(7) and n = 6. The
characteristic polynomial of A has, in this particular
set-up, six different roots. In particular, the eigenvalues
oanre)\l = ]., )\2 = 2, )\3 = 3, )\4 :4, /\5 = 5,
Ag = 6.

In general, we have the following result.

Proposition 2.4. Let v be an eigenvector of A corre-
sponding to the simple eigenvalue o. Then v is an
eigenvector of X forall X € C(A).

Proof. As a consequence of the definitions,
AXv=XAv = Xav = aXv,

then X v is the zero vector or it is an eigenvector of A
of eigenvalue « for all X € C(A).

Taking into account that «v is a simple root of the char-
acteristic polynomial of a, we have that Xv = \v, and
the proof is completed.

We can compute the value of the eigenvalue associated
to v as follows.

Let v be an eigenvector of A corresponding to the
eigenvalue «.. Taking into account that v # 0 we can

consider v = (v1,...,0i—1,1,Vi11,...,Vp).
v v
r1 T ...Tp_1 Inp 1 1
Tn L1 ...Tp—2 Tp-1
Tp—1 Ty -v. Tp—-3 Tp—2 1 =\ 1
To I3 ... Tp X1 Up, Up,

Then A is equal to the i-th coordinate of Xwv,
Tp—it2V1 + ..o+ Tp—it1Vn.

Not only one-dimensional invariant subspaces are hy-
perinvariant, but all invariant subspaces are also hyper-
invariant.

Proposition 2.5. Let F' be a w-invariant subspace.
Then F' it is hyperinvariant.

Proof. Tt suffices to observe that, for all X € C(A),

X =al+aA" '+ .. 412, 14% + 2, A.

Then F'is an invariant subspace of X.
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2.2 Linear Cyclic Codes

Let us assume that characteristic of F does not divide
the length of the code n. This assumption is an usual
one in the theory of cyclic block-codes in order to guar-
antee that the polynomial s™ — 1 factorize into different
prime polynomials over [F.

Definition 2.2. A code C of length n over the field F is
called cyclic if whenever ¢ = (a1, ...,ay) is in C, its
cycle shift sc = (an,a1,...,a,_1)isalso in C.

Example 2.2. The linear code C = {000,110, 011,
101} over GF(2) is cyclic. To prove that, we compute
the shift sc for all c € C: s(000) = 000, s(110) =
011, s(011) = 101, and s(101) = 110.

It is easy to prove the following statement from the
Definitions.

Let P5; be a full cycle permutation matrix obtained
from the identity matrix I3 by moving its first column
to the last column (observe that P; corresponds to the
matrix A of Equation (2) for n = 3). The shift sc can
be expressed as

001 0101 0011
100 0110]=(0101
010 0011 0110

In general, the shift sc can be expressed as P, ¢t where
P, is a full cycle permutation matrix obtained from the
identity matrix I,, by moving its first column to the last
column.

Taking into account that P, is a linear transformation
of F™ (the map ¢ as defined in Equation (1)), we can
construct a cyclic code, as follows. Take a word ¢, and
consider the set S consisting of ¢ and its successive im-
ages by P,:

S ={c, Py, . . . P}

The linear subspace C, defined as the linear space
spanned by S, C' = [S], is the smallest linear cyclic
code containing c.

Next two Propositions are proved in [Radkova and
Van-Zanten, 2009] and [Radkova, Bojilov and Van-
Zanten, 2007].

Proposition 2.6. A linear code C of length n over the
field B is cyclic if, and only if, C is an A-invariant sub-
space of .

Proposition 2.7. Let C be a cyclic code, and p(s) =
(=D)™p1(s) - ... - pr(s) the decomposition of p(s) in
prime factors. Then C = Kerp;, (A)®...®&Kerp;_(A)
for some minimal p-invariant subspaces Ker p;, (A) of
F™.

After Proposition 2.5 we deduce the following result.
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Proposition 2.8. A linear code C with length n over
the field F is cyclic if, and only if, C is an A-
hyperinvariant subspace of F".

Example 2.3. Consider the matrix A of ¢ forn = 7
and ¢ = 2. Then we have p(s) = s + 1. Factoriz-
ing p(s) into prime factors over GF(2) we have that
P(s) = Pr(S)a()ps(s) = (5 + D) +5 + 1)(° +
52 +1). The factors p;(s) define minimal P,,-invariant
subspaces F; = Kerp;(A), fori =1,2,3.

We define a cyclic linear code C' by

C=F & F,=Ker(pi1(A)) ® Ker (p2(A))

p1(s) - pa(s) =st+s>+s2+1land A* + A3+ A%+ 1
is the following matrix

1001110
0100111
1010011
1101001
1110100
0111010
0011101

Ker (A*+ A3+ A2+ 1) =
[(1,0,1,1,0,0,0),(1,1,1,0,1,0,0),(1,1,0,0,0, 1,0),
(0,1,1,0,0,0,1)] .

3 Generalized Case

If ¢ > 2, we can generalize the above case as follows.

Pa,b,c - Fn > "

(1, yxn) — (@ zp,b-21,¢ T2, ...,C  Tp_1)

with associated matrix with respect to the standard ba-
sis,

00...0a
b0...00
Agpe = 0c...00
00...¢0

for a, b, ¢ such that abe # 0.

The characteristic polynomial of A, ; . is
Pap.e(s) = (=1)"(s™ — c"2ab),

Proposition 3.1. The centralizer C(Aqp.c) Of Aapc iS
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the set of matrices X,y . with:

Xa,b,c =
a a a a a
. Tn Z"L']_ Ex2 be:; . Ebl‘n72 Ebwn71
a

anfl Tn zml ZT'(L? cee a,2 Tn—3 zmn72
b b
2333 T4 5 re ... %331 ijg
b a
cT2 T3 T4 s Tn =Z1

1 ) xrs3 T4

Proof. 1t suffices to solve the matrix equation

Aa,b,ch,b,c - Xa,b,cAa,b,c =0.
Notice that if v = (vy,...,v,) is an eigenvector of
Aqp.c, then:
av, = vy
b’l)1 = /\U2
cvy = Avg ... 4)

CUp—2 = AUp_1
CUp—1 = AUy,

In particular, we obtain that

v = ()\"*11)*107(”*2)7 A2 (=2) et 1)

and we have the following Proposition.

Proposition 3.2. Let A € GF(q)* be an ele-
ment such that \* = abc""%.  Then [v] =
(A= tp—te= (=2 \n=2e=(=2) N\~ 1)] is an
hyperinvariant subspace.

Proof.

Agpcv = Av

and given any X, 5 . € C(Aqp,c), then

Xabcv —

(x1[+ Aabc+ A?m cF
Tn—1 2 xn 1

+ cn—2 Zb et bC” ZAZJJ,C)U -

10 + —/\ + —/\2v+ -+

x 1 T _
R P 2v+—” Ay =
cn— 2 ben —2
av

Wltha—xl—l——)\—&——)\Q
AL e,

o+ +—i§j§ A2 4

bn2

Proposition 3.3. Let F' be an invariant subspace of
Aapc. Then F is hyperinvariant.
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Proof. Tt suffices to observe that, for all X, . €
C(Agp,c) then

abc:
oI+ 2 Aabc+ DA, et
l'n 1 n2 Ty n—1
n—2 ab(‘+ 2“ta,b,c’
cn— »0,C bn »0,C

Therefore, we have that in this case the lattices of in-
variant and hyperinvariant subspaces are equal,i.e.:

HZ"I”LU(ACL,(LC) = ITLU(Aa,b,c)

3.1 Particular Caseb =1
Notice that it suffices to solve the case b = 1 because:

Aa,b,cX - XAa,b,c = D(Aa/b,l,c/bX - XAa/b,l,c/b)

with D = diag (b).
So, we write the results in this simpler case.
Given a, ¢ # 0, we consider the following linear map:

Pa,c i F* — F7

(1,..,&pn) — (@ Tp,T1,C- To...,C" Tp_1)

with associated matrix with respect to the standard ba-
sis,

000...0a
100...00
0c0...00

Aac=100c¢...00
000...¢0

The characteristic polynomial of A, . is
pa,c(s) — (—1)”(8" _ cn—2a)’

Proposition 3.4. The centralizer C(A,..) of Aq.c is the
set of matrices X, . with:

Xac=
a a a a

Tn axry ;mg E‘T?’ N 2‘23'7172 Emn,1
1 a a a a
cIfn—1 Tn T1 2T2 ... 2Tn-3 2TLn-2
1

°T3 Ta Tz Te .- %xl c%:rg
%xg r3 Ta T ... Tn %ml

1 T2 I3 T4 Tn—1 Tn

Proof. Tt follows from Proposition 3.1, when b = 1.
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Notice that if v = (vy, ...
Ag e, then:

,Up) is an eigenvector of

avy, = vy
v = )\’Ug

)
CUp—2 = AUp_1
CUp—1 = AUp,

In particular, we obtain that
v = ()\n—lc—(n—Z)7 )\71,—20—(71—2), e )\—1, 1)

and we have the following Proposition.

Proposition 3.5. Given any A € GF(q)*
such that \" = ac"2,  then v =
(APl (=2) An=2e=(=2) A"l 1)  is  an

hyperinvariant subspace.

Proposition 3.6. Let F' be an invariant subspace of
Ag,c. Then it is hyperinvariant.

Proof. Tt suffices from Proposition 3.3 that for all
Xa.c € C(Aq,c) then

Xae=
T2 L3
ol + = Age+ SAL 4.+
g € o
n— n—2 n n—1
cn—2 Aavc + Cn72Aa7C '

3.2 Two-parametric Quasi-Cyclic Codes
In this section, we will to generalize the concept of
constacyclic code as follows.

Definition 3.1. Let a, c be two nonzero elements of IF.
A code C with length n over the field F is called gener-
alized constancyclic code if whenever ¢ = (aq, . .., ay)
isinC, soissc=(a-ap,a1,¢-a3...,C* Gp_1).

As immediate consequence of definition we have the
following Proposition.

Proposition 3.7. A linear code C with length n over
the field T is generalized constancyclic if, and only if,
C is an A, c-invariant subspace of F™.

After Proposition 3.6 we have the following result.

Proposition 3.8. A linear code C with length n over
the field F is two-parameter cyclic if, and only if, C is
a A, c-hyperinvariant subspace of F".

Suppose now that (n,q) = 1 and pg.(s) =
(—=1)*(s™ — ¢"2a) has no multiple roots and splits
into distinct irreducible monic factors.

Proposition 3.9. Let C' be generalized constancyclic
code, and p, (s) = (—1)"Pa,c, (S) - - .. - Da,c.(s) the
decomposition of p,.(s) in irreducible factors. Then
C = Kerpa,c;, (Aa,e)®...©Kerpa,c, (Aa.c)for some
minimal A, -invariant subspaces Ker Pa.ci, (Aae) of
™.
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Proof. First, it is easy to see that Kerp, ., (Aq,c) for
i=1,...,rare A, c-invariant: let v € Kerpg, ¢, (Aq,c)
then Ag v = pa.c, (Aayc) “ - - Daen(Ag,c)v = 0.

The subspaces Ker Pa.ci, (Aq,c) are minimal because
the polynomials p, ., (s) are irreducible.

Now, we define p;(s) = pa,c(5)/Pac;(s). Taking
into account (p1(s),...,pr(s)) = 1, there exist poly-
nomials ¢1($), ..., q-(s) such that ¢, (s)p1(s) + ... +
4 ()5 (5) = 1.

Let z € C, then x = q1(Aq,c)P1(Aae)r + ... +
¢r(Aa.c)pr(Aac)zr. Calling z; = qi(Aq,c)Pi(Aac)r
and taking into account that C' is A, .-invariant, and
that z; € Kerpg,;(Aqc) we have that z; € C N
Kerpa,ci (Aa,c)-

Example 3.1. Consider the matrix Ag=2c=4 for
n = 8 q = 5  Then we have p(s) =
Pa—2.c=4(8) = s® — 1. Factorizing p(s) into irre-
ducible factors over F = GF(5) we have p(s) =
P1(s)p2(s)ps(s)pa(s)ps(s)ps(s) = (s+1)(s+2)(s +
3)(s + 4)(s% + 2)(s2 + 3). The factors p;(s) define
minimal A, c-invariant subspaces F; = Kerp;(Aq.c),
fori=1,2,3,4,5,6.

We define a generalized constancyclic linear code
Ca,c by

Co,c = F1 @ F5 = Ker (p1(Aa.c)) © Ker (ps(Aa.c))

pi(s) - ps(s) = s° + s> + 25+ 2and A}  + A% .+
24, + 21 is the following matrix

20000133
22000034
24200003
44420000
03442000
00344200
00034420
00003442

Ker (A3, + A2 . +2A,.+2]) =
[(1,4,2,1,3,4,2,1),(1,0,4,0,2,0,1,0),

(0,3,0,4,0,2,0,1)].
3.3 Particular Case: b=c=1

(,0(1 . F?’L 5 ]FTL
(1, 2n) — (@ Ty, 21, ..., Tp_1)
where a # 0 and associated matrix respect to the stan-
dard basis,

00...0a
10...00
A, = 01...00

00...10
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This linear map verifies A, ' = A! /a- The character-
istic polynomial is

p(s) =det(A, — sI,) = (—1)"(s" — a).

Proposition 3.10. The centralizer C(A,) of Ag is the
set of matrices

r1 aAxg ... ATp—-1 aIp

Ty X1 ...0Tp—_2 ATp_1
Xa — Tp—-1 Ly ... aATp_3 AL p_9
xro r3 ... In X1

Proof. Is a particular case of Proposition 3.1.

Remark 3.1. If X, € C(A,) then X, € C(Ay,,). For
that, it suffices to observe suffices to observe that

1 1 1
I E:Un . 1ECE3 E'TQ
T2 T1 .. §$n,3 =Tpn—2
sz = | T3 T2 - 7 Tn—3 ;Tn-2 €C(A),)
Tp Tp—1 .-- T2 I

where y1 = x1 and y; = ax; for all i # 1.

Proposition 3.11. Let F' be a hyperinvariant subspace
of A,. Then, F- is a hyperinvariant subspace of A, Jar

Proof. Given any w € F+, c € F, X € C(4,), if
(w")t = X'w! then, we have:

w'c =wXct =0

and then X'w! = (w')! € F+ and F* is invariant for
any matrix in C(A;,); that is to say, it is an hyperin-
variant subspace for A, /,.

Notice that if v = (vy,...,v,) is an eigenvector of
A,, then the following equalities hold:

av, = A\
v = )\’Ug
(6)
Un—2 = )\Un—l
Up—1 = AUp

In particular, we obtain that
v = (/\"’1,/\”’2, oA

and we have the following Proposition.
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Proposition 3.12. Given any A\ € GF(q)* such that
A" = aq, then [v] = [(A\"~1,A"=2 ... \,1)] is an hy-
perinvariant subspace.

Proposition 3.13. Let F' be an invariant subspace of
A,. Then it is hyperinvariant.

Proof. Tt suffices to observe that, for all X, € C(A,),
Xo=x1] +20A,+ ...+ xn,lAZ*Q + angfl.
Example 3.2. Over F = GF(5) we consider

002
Ay=1100
010

F =[(1,2,4)] is invariant

and also it is hyperinvariant

X1 2x9 223 1
r3 I 2.’1’,‘2 2
4

1
= (1'1 —+ 41’2 —+ 3‘%3) 2
To T3 X1 4

Notice that in fact we have solved the following
slightly more general case with b = ¢

Pab - F?* — F™

(1., 2n) — (@ zp,b-21,..., b Tp_1)

with associated matrix with respect to the standard ba-
sis,

00...0a
0...00
A= |0b...00
00...50

for a, b such that ab # 0 because of
A pX — XAup = D(Agpp X — X Aupp)

with D = diag (b).
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3.4 Constacyclic Codes

A particular case of generalized constacyclic codes
are constancyclic codes which were introduced in
[Berlekamp, 1968].

Definition 3.2. Let a be a nonzero element of F. A
code C with length n over the field F is called consta-
cyclic with respect to a if whenever ¢ = (ay,...,ay)

is in C, so is its cycle constashift sc = (a -
QAn, A1, - - 7an71)~

Obviously, when ¢ = 1 the constacyclic code is
cyclic.

The constashift sc can be expressed as P, ¢! where
P, is a generalized full cycle permutation matrix ob-
tained from the identity matrix I,, by moving its first
column multiplied by a to the last column.

00 ...0a

10 00
P, =

00...10

According to [Radkova and Van-Zanten, 2009], we
have the following Propositions.

Proposition 3.14. A linear code C with length n over
the field F is constacyclic if, and only if, C is an P, -
invariant subspace of F".

Suppose now that (n,q) = land p,(s) = (—1)"(s"—
a) has no multiple roots and splits into distinct irre-
ducible monic factors.

Proposition 3.15. Let C be a constacyclic code, and
Pa(s) = (=1)"pa, (8)-. .. pa,(s) the decomposition of
Pa(8) in irreducible factors. Then C = Kerp,, (A) ®
... ®Kerp,, (A) for some minimal p,-invariant sub-
spaces Ker pa, (A) of ™.

After Proposition 3.13 we deduce the following result.

Proposition 3.16. A linear code C with length n over
the field F is constacyclic if and only if C is an A,-
hyperinvariant subspace of F™.

Example 3.3. Consider the matrix Aq—4 for n = 8,
q = 5. Then we have p(s) = s — 4. Factorizing p(s)
into irreducible factors over GF(5) we have p(s) =
p1(8)pa(s) = (s*—2)(s*+2). The factors p;(s) define
minimal P, -invariant subspaces F; = Ker p;(A,), for
i=1,2.
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We define a constacyclic linear code C,, by

C, = F; =Ker (p1(4))
p1(s) = s* — 2 and A* — 21 is the following matrix

30004000
03000400
00300040
00030004
10003000
01000300
00100030
00010003

Ker (A* —21) =
[(2,0,0,0,1,0,0,0),(0,2,0,0,0,1,0,0),
(0,0,2,0,0,0,1,0),(0,0,0,2,0,0,0,1)] .
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