TWO PARAMETRIC QUASI-CYCLIC CODES AS HYPERINVARIANT SUBSPACES

M. Isabel García-Planas
Dept. de Matemàtica Aplicada I
Universitat Politècnica de Catalunya Spain
maria.isabel.garcia@upc.edu

M. Dolors Magret
Dept. de Matemàtica Aplicada I
Universitat Politècnica de Catalunya
Spain
m.dolors.magret@upc.edu

M. Eulalia Montoro
Dept. d'Àlgebra i Geometria
Universitat de Barcelona Spain
maria.eulalia.montoro@upc.edu

Abstract

It is known the relationship between cyclic codes and invariant subspaces. In this work we present a generalization considering "generalized" cyclic codes and hyperinvariant subspaces.

Key words

Cyclic codes, two-parametric quasi cyclic codes, hyperinvariant subspaces.

1 Introduction

Let φ be an endomorphism of a vector space V over a field \mathbb{F}.
Recall that a φ-invariant subspace $F \subset V$ is called hyperinvariant if F is invariant under all linear maps commuting with φ.
The main goal of this work is to establish the relationship between the set of some "generalized cyclic codes" and hyperinvariant linear subspaces of \mathbb{F}^{n}.
Despite of the fact that Commutative Algebra is the tool mostly used to study linear cyclic codes (see [MacWilliams and Sloane, 1977], for example), since linear codes have a structure of linear subspaces of \mathbb{F}^{n}, they can also be studied using Linear Algebra as [Garcia-Planas, Souidi and Um, 2012; Garcia-Planas, Souidi and Um, 2013].

2 Preliminaries

2.1 Hyperinvariant Subspaces of Cyclic Permutation Maps

Let p be a prime number, $q=p^{k}$ for some $k \geq 1$ and $\mathbb{F}=G F(q)$. Let \mathbb{F}^{n} be the n-dimensional vector space over the field \mathbb{F}.
We consider the following linear map

$$
\begin{align*}
\varphi: \mathbb{F}^{n} & \longrightarrow \mathbb{F}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \longrightarrow\left(x_{n}, x_{1}, \ldots, x_{n-1}\right) \tag{1}
\end{align*}
$$

with associated matrix, with respect to the standard basis,

$$
A=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \tag{2}\\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

This linear map is clearly orthogonal (in the sense $A^{t}=A^{-1}$) and verifies $A^{n}=I_{n}$. Cayley Hamilton Theorem ensures that its characteristic polynomial is

$$
p(s)=\operatorname{det}\left(A-s I_{n}\right)=(-1)^{n}\left(s^{n}-1\right)
$$

To study hyperinvariant subspaces (those which are invariant for all linear maps commmuting with φ) we need to compute the centralizer of A.

Proposition 2.1. The centralizer $\mathcal{C}(A)$ of A is the set of circulant matrices

$$
X=\left(\begin{array}{ccccc}
x_{1} & x_{2} & \ldots & x_{n-1} & x_{n} \\
x_{n} & x_{1} & \ldots & x_{n-2} & x_{n-1} \\
x_{n-1} & x_{n} & \ldots & x_{n-3} & x_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{2} & x_{3} & \ldots & x_{n} & x_{1}
\end{array}\right)
$$

Proof. It suffices to solve the matrix equation $A X-$ $X A=0$.

Remark 2.1. Two matrices belonging to a given centralizer do not necessarily commute. But in our case, given any circulant matrix X commuting with A, its centralizer is $\mathcal{C}(X)=\mathcal{C}(A)$.

Definition 2.1. Two vectors $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{n}\right)$ in \mathbb{F}^{n} are called orthogonal when $x \cdot y^{t}=$ 0 .

Lemma 2.1.

$$
X \in \mathcal{C}(A)
$$

if, and only if,

$$
X^{t} \in \mathcal{C}(A)
$$

Proof. All circulant matrices satisfy $X X^{t}=X^{t} X$ (they are normal matrices) and the Lemma follows.

Proposition 2.2. If F is φ-hyperinvariant subspace, F^{\perp} is also an hyperinvariant subspace.

Proof. Given any $w \in F^{\perp}, v \in F, X \in \mathcal{C}(A)$, we wish to prove that $X w^{t} \in F^{\perp}$. Since

$$
\left(X w^{t}\right)^{t} v^{t}=w X^{t} v^{t}
$$

and taking into account Lemma 2.1 we have that $X^{t} v^{t} \in F$ and therefore:

$$
w X^{t} v^{t}=0
$$

We conclude that $X w^{t} \in F^{\perp}$ and F^{\perp} is hyperinvariant.

Notice that if $v=\left(v_{1}, \ldots, v_{n}\right)$ is an eigenvector of A, then the following equalities hold:

$$
\begin{array}{r}
v_{n}=\lambda v_{1} \\
v_{1}=\lambda v_{2} \\
\cdots \tag{3}\\
v_{n-2}=\lambda v_{n-1} \\
v_{n-1}=\lambda v_{n}
\end{array}
$$

In particular, we obtain that any eigenvector of A has the form.

$$
v=\left(\lambda^{n-1}, \lambda^{n-2}, \ldots, \lambda, 1\right)
$$

We can derive the following Proposition.
Proposition 2.3. Given any $\lambda \in G F(q)^{*}$ such that $\lambda^{n}=1$, then $\left.[v]=\left[\lambda^{n-1}, \lambda^{n-2}, \ldots, \lambda, 1\right)\right]$, the vector subspace spanned by v, is an hyperinvariant subspace of φ.

Corollary 2.1. The subspace $F=[(1,1, \ldots, 1,1)]$ is hyperinvariant.

Euler-Fermat Theorem provides information about the roots of $\lambda^{n}-1$.

Theorem 2.1. If $\mathbb{F}=G F(q)$, then $\lambda^{q-1}=1$ has $q-1$ different roots.

Example 2.1. Consider $\mathbb{F}=G F(7)$ and $n=6$. The characteristic polynomial of A has, in this particular set-up, six different roots. In particular, the eigenvalues of A are $\lambda_{1}=1, \lambda_{2}=2, \lambda_{3}=3, \lambda_{4}=4, \lambda_{5}=5$, $\lambda_{6}=6$.

In general, we have the following result.
Proposition 2.4. Let v be an eigenvector of A corresponding to the simple eigenvalue α. Then v is an eigenvector of X for all $X \in \mathcal{C}(A)$.

Proof. As a consequence of the definitions,

$$
A X v=X A v=X \alpha v=\alpha X v
$$

then $X v$ is the zero vector or it is an eigenvector of A of eigenvalue α for all $X \in \mathcal{C}(A)$.
Taking into account that α is a simple root of the characteristic polynomial of a, we have that $X v=\lambda v$, and the proof is completed.

We can compute the value of the eigenvalue associated to v as follows.
Let v be an eigenvector of A corresponding to the eigenvalue α. Taking into account that $v \neq 0$ we can consider $v=\left(v_{1}, \ldots, v_{i-1}, 1, v_{i+1}, \ldots, v_{n}\right)$.

$$
\left(\begin{array}{ccccc}
x_{1} & x_{2} & \ldots & x_{n-1} & x_{n} \\
x_{n} & x_{1} & \ldots & x_{n-2} & x_{n-1} \\
x_{n-1} & x_{n} & \ldots & x_{n-3} & x_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{2} & x_{3} & \ldots & x_{n} & x_{1}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
1 \\
\vdots \\
v_{n}
\end{array}\right)=\lambda\left(\begin{array}{c}
v_{1} \\
\vdots \\
1 \\
\vdots \\
v_{n}
\end{array}\right)
$$

Then λ is equal to the i-th coordinate of $X v$, $x_{n-i+2} v_{1}+\ldots+x_{n-i+1} v_{n}$.
Not only one-dimensional invariant subspaces are hyperinvariant, but all invariant subspaces are also hyperinvariant.

Proposition 2.5. Let F be a φ-invariant subspace. Then F it is hyperinvariant.

Proof. It suffices to observe that, for all $X \in \mathcal{C}(A)$,

$$
X=x_{1} I+x_{2} A^{n-1}+\ldots+x_{n-1} A^{2}+x_{n} A
$$

Then F is an invariant subspace of X.

2.2 Linear Cyclic Codes

Let us assume that characteristic of \mathbb{F} does not divide the length of the code n. This assumption is an usual one in the theory of cyclic block-codes in order to guarantee that the polynomial $s^{n}-1$ factorize into different prime polynomials over \mathbb{F}.

Definition 2.2. A code C of length n over the field \mathbb{F} is called cyclic if whenever $c=\left(a_{1}, \ldots, a_{n}\right)$ is in C, its cycle shift sc $=\left(a_{n}, a_{1}, \ldots, a_{n-1}\right)$ is also in C.

Example 2.2. The linear code $C=\{000,110,011$, $101\}$ over $G F(2)$ is cyclic. To prove that, we compute the shift sc for all $c \in C: s(000)=000, s(110)=$ 011, $s(011)=101$, and $s(101)=110$.

It is easy to prove the following statement from the Definitions.
Let P_{3} be a full cycle permutation matrix obtained from the identity matrix I_{3} by moving its first column to the last column (observe that P_{3} corresponds to the matrix A of Equation (2) for $n=3$). The shift $s c$ can be expressed as

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

In general, the shift $s c$ can be expressed as $P_{n} c^{t}$ where P_{n} is a full cycle permutation matrix obtained from the identity matrix I_{n} by moving its first column to the last column.
Taking into account that P_{n} is a linear transformation of \mathbb{F}^{n} (the map φ as defined in Equation (1)), we can construct a cyclic code, as follows. Take a word c, and consider the set S consisting of c and its successive images by P_{n} :

$$
S=\left\{c^{t}, P_{n} c^{t}, \ldots, P_{n}^{n-1} c^{t}\right\}
$$

The linear subspace C, defined as the linear space spanned by $S, C=[S]$, is the smallest linear cyclic code containing c.
Next two Propositions are proved in [Radkova and Van-Zanten, 2009] and [Radkova, Bojilov and VanZanten, 2007].

Proposition 2.6. A linear code C of length n over the field \mathbb{F} is cyclic if, and only if, C is an A-invariant subspace of \mathbb{F}^{n}.

Proposition 2.7. Let C be a cyclic code, and $p(s)=$ $(-1)^{n} p_{1}(s) \cdot \ldots \cdot p_{r}(s)$ the decomposition of $p(s)$ in prime factors. Then $C=\operatorname{Ker} p_{i_{1}}(A) \oplus \ldots \oplus \operatorname{Ker} p_{i_{s}}(A)$ for some minimal φ-invariant subspaces $\operatorname{Ker} p_{i_{j}}(A)$ of \mathbb{F}^{n}.

After Proposition 2.5 we deduce the following result.

Proposition 2.8. A linear code C with length n over the field \mathbb{F} is cyclic if, and only if, C is an A hyperinvariant subspace of F^{n}.

Example 2.3. Consider the matrix A of φ for $n=7$ and $q=2$. Then we have $p(s)=s^{7}+1$. Factorizing $p(s)$ into prime factors over $G F(2)$ we have that $p(s)=p_{1}(s) p_{2}(s) p_{3}(s)=(s+1)\left(s^{3}+s+1\right)\left(s^{3}+\right.$ $\left.s^{2}+1\right)$. The factors $p_{i}(s)$ define minimal P_{n}-invariant subspaces $F_{i}=\operatorname{Ker} p_{i}(A)$, for $i=1,2,3$.
We define a cyclic linear code C by

$$
C=F_{1} \oplus F_{2}=\operatorname{Ker}\left(p_{1}(A)\right) \oplus \operatorname{Ker}\left(p_{2}(A)\right)
$$

$p_{1}(s) \cdot p_{2}(s)=s^{4}+s^{3}+s^{2}+1$ and $A^{4}+A^{3}+A^{2}+I$ is the following matrix

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

$\operatorname{Ker}\left(A^{4}+A^{3}+A^{2}+I\right)=$
$[(1,0,1,1,0,0,0),(1,1,1,0,1,0,0),(1,1,0,0,0,1,0)$, $(0,1,1,0,0,0,1)]$.

3 Generalized Case

If $q>2$, we can generalize the above case as follows.

$$
\begin{aligned}
\varphi_{a, b, c}: \mathbb{F}^{n} & \longrightarrow \mathbb{F}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \longrightarrow\left(a \cdot x_{n}, b \cdot x_{1}, c \cdot x_{2}, \ldots, c \cdot x_{n-1}\right)
\end{aligned}
$$

with associated matrix with respect to the standard basis,

$$
A_{a, b, c}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & a \\
b & 0 & \ldots & 0 & 0 \\
0 & c & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & c & 0
\end{array}\right)
$$

for a, b, c such that $a b c \neq 0$.
The characteristic polynomial of $A_{a, b, c}$ is $p_{a, b, c}(s)=(-1)^{n}\left(s^{n}-c^{n-2} a b\right)$,

Proposition 3.1. The centralizer $\mathcal{C}\left(A_{a, b, c}\right)$ of $A_{a, b, c}$ is
the set of matrices $X_{a, b, c}$ with:

$$
\begin{aligned}
& X_{a, b, c}= \\
& \left(\begin{array}{ccccccc}
x_{n} & \frac{a}{b} x_{1} & \frac{a}{c} x_{2} & \frac{a}{c} x_{3} & \ldots & \frac{a}{c} x_{n-2} & \frac{a}{c} x_{n-1} \\
\frac{b}{c} x_{n-1} & x_{n} & \frac{a}{c} x_{1} & \frac{a b}{c^{2}} x_{2} & \ldots & \frac{a b}{c^{2}} x_{n-3} & \frac{a b}{c^{2}} x_{n-2} \\
\vdots & & \ddots & \ddots & & & \\
\vdots & & & \ddots & \ddots & & \\
\frac{b}{c} x_{3} & x_{4} & x_{5} & x_{6} & \ldots & \frac{a}{c} x_{1} & \frac{a b}{c^{2}} x_{2} \\
\frac{b}{c} x_{2} & x_{3} & x_{4} & x_{5} & \ldots & x_{n} & \frac{a}{c} x_{1} \\
x_{1} & x_{2} & x_{3} & x_{4} & \ldots & x_{n-1} & x_{n}
\end{array}\right)
\end{aligned}
$$

Proof. It suffices to solve the matrix equation $A_{a, b, c} X_{a, b, c}-X_{a, b, c} A_{a, b, c}=0$.

Notice that if $v=\left(v_{1}, \ldots, v_{n}\right)$ is an eigenvector of $A_{a, b, c}$, then:

$$
\begin{array}{r}
a v_{n}=\lambda v_{1} \\
b v_{1}=\lambda v_{2} \\
c v_{2}=\lambda v_{3} \ldots \tag{4}\\
c v_{n-2}=\lambda v_{n-1} \\
c v_{n-1}=\lambda v_{n}
\end{array}
$$

In particular, we obtain that

$$
v=\left(\lambda^{n-1} b^{-1} c^{-(n-2)}, \lambda^{n-2} c^{-(n-2)}, \ldots, \lambda c^{-1}, 1\right)
$$

and we have the following Proposition.
Proposition 3.2. Let $\lambda \in G F(q)^{*}$ be an element such that $\lambda^{n}=a b c^{n-2}$. Then $[v]=$ $\left[\left(\lambda^{n-1} b^{-1} c^{-(n-2)}, \lambda^{n-2} c^{-(n-2)}, \ldots, \lambda c^{-1}, 1\right)\right]$ is an hyperinvariant subspace.

Proof.

$$
A_{a, b, c} v=\lambda v
$$

and given any $X_{a, b, c} \in \mathcal{C}\left(A_{a, b, c}\right)$, then

$$
\begin{aligned}
& X_{a, b, c} v= \\
& \left(x_{1} I+\frac{x_{2}}{c} A_{a, b, c}+\frac{x_{3}}{c^{2}} A_{a, b, c}^{2}+\ldots+\right. \\
& \left.+\frac{x_{n-1}}{c^{n-2}} A_{a, b, c}^{n-2}+\frac{x_{n}}{b^{n-2}} A_{a, b, c}^{n-1}\right) v= \\
& x_{1} v+\frac{x_{2}}{c} \lambda v+\frac{x_{3}}{c^{2}} \lambda^{2} v+\ldots+ \\
& +\frac{x_{n-1}}{c^{n-2}} \lambda^{n-2} v+\frac{x_{n}}{b c^{n-2}} \lambda^{n-1} v= \\
& \alpha v
\end{aligned}
$$

with $\alpha=x_{1}+\frac{x_{2}}{c} \lambda+\frac{x_{3}}{c^{2}} \lambda^{2}+\ldots++\frac{x_{n-1}}{c^{n-2}} \lambda^{n-2}+$ $\frac{x_{n}}{b c^{n-2}} \lambda^{n-1} \in \mathbb{F}$.

Proposition 3.3. Let F be an invariant subspace of $A_{a, b, c}$. Then F is hyperinvariant.

Proof. It suffices to observe that, for all $X_{a, b, c} \in$ $\mathcal{C}\left(A_{a, b, c}\right)$ then

$$
\begin{aligned}
& X_{a, b, c}= \\
& x_{1} I+\frac{x_{2}}{c} A_{a, b, c}+\frac{x_{3}}{c^{2}} A_{a, b, c}^{2}+\ldots+ \\
& \quad \frac{x_{n-1}}{c^{n-2}} A_{a, b, c}^{n-2}+\frac{x_{n}}{b c^{n-2}} A_{a, b, c}^{n-1} .
\end{aligned}
$$

Therefore, we have that in this case the lattices of invariant and hyperinvariant subspaces are equal,i.e.:

$$
\operatorname{Hinv}\left(A_{a, b, c}\right)=\operatorname{Inv}\left(A_{a, b, c}\right)
$$

3.1 Particular Case $b=1$

Notice that it suffices to solve the case $b=1$ because:

$$
A_{a, b, c} X-X A_{a, b, c}=D\left(A_{a / b, 1, c / b} X-X A_{a / b, 1, c / b}\right)
$$

with $D=\operatorname{diag}(b)$.
So, we write the results in this simpler case.
Given $a, c \neq 0$, we consider the following linear map:

$$
\begin{aligned}
\varphi_{a, c}: \mathbb{F}^{n} & \longrightarrow \mathbb{F}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \longrightarrow\left(a \cdot x_{n}, x_{1}, c \cdot x_{2} \ldots, c \cdot x_{n-1}\right)
\end{aligned}
$$

with associated matrix with respect to the standard basis,

$$
A_{a, c}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & a \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & c & 0 & \ldots & 0 & 0 \\
0 & 0 & c & \ldots & 0 & 0 \\
\vdots & & \ddots & & \\
0 & 0 & 0 & \ldots & c & 0
\end{array}\right)
$$

The characteristic polynomial of $A_{a, c}$ is $p_{a, c}(s)=(-1)^{n}\left(s^{n}-c^{n-2} a\right)$,

Proposition 3.4. The centralizer $\mathcal{C}\left(A_{a, c}\right)$ of $A_{a, c}$ is the set of matrices $X_{a, c}$ with:

$$
\begin{aligned}
& X_{a, c}= \\
& \left(\begin{array}{ccccccc}
x_{n} & a x_{1} & \frac{a}{c} x_{2} & \frac{a}{c} x_{3} & \ldots & \frac{a}{c} x_{n-2} & \frac{a}{c} x_{n-1} \\
\frac{1}{c} x_{n-1} & x_{n} & \frac{a}{c} x_{1} & \frac{a}{c^{2}} x_{2} & \ldots & \frac{a}{c^{2}} x_{n-3} & \frac{a}{c^{2}} x_{n-2} \\
\vdots & & \ddots & \ddots & & & \\
\vdots & & & \ddots & \ddots & & \\
\frac{1}{c} x_{3} & x_{4} & x_{5} & x_{6} & \ldots & \frac{a}{c} x_{1} & \frac{a}{c^{2}} x_{2} \\
\frac{1}{c} x_{2} & x_{3} & x_{4} & x_{5} & \ldots & x_{n} & \frac{a}{c} x_{1} \\
x_{1} & x_{2} & x_{3} & x_{4} & \ldots & x_{n-1} & x_{n}
\end{array}\right)
\end{aligned}
$$

Proof. It follows from Proposition 3.1, when $b=1$.

Notice that if $v=\left(v_{1}, \ldots, v_{n}\right)$ is an eigenvector of $A_{a, c}$, then:

$$
\begin{array}{r}
a v_{n}=\lambda v_{1} \\
v_{1}=\lambda v_{2} \tag{5}\\
\cdots \\
c v_{n-2}=\lambda v_{n-1} \\
c v_{n-1}=\lambda v_{n}
\end{array}
$$

In particular, we obtain that

$$
v=\left(\lambda^{n-1} c^{-(n-2)}, \lambda^{n-2} c^{-(n-2)}, \ldots, \lambda^{-1}, 1\right)
$$

and we have the following Proposition.
Proposition 3.5. Given any $\lambda \in G F(q)^{*}$ such that $\lambda^{n}=a c^{n-2}$, then $v=$ $\left(\lambda^{n-1} c^{-(n-2)}, \lambda^{n-2} c^{-(n-2)}, \ldots, \lambda c^{-1}, 1\right)$ is an hyperinvariant subspace.

Proposition 3.6. Let F be an invariant subspace of $A_{a, c}$. Then it is hyperinvariant.

Proof. It suffices from Proposition 3.3 that for all $X_{a, c} \in \mathcal{C}\left(A_{a, c}\right)$ then

$$
\begin{aligned}
& X_{a, c}= \\
& x_{1} I+\frac{x_{2}}{c} A_{a, c}+\frac{x_{3}}{c^{2}} A_{a, c}^{2}+\ldots+ \\
& \quad \frac{x_{n-1}}{c^{n-2}} A_{a, c}^{n-2}+\frac{x_{n}}{c^{n-2}} A_{a, c}^{n-1} .
\end{aligned}
$$

3.2 Two-parametric Quasi-Cyclic Codes

In this section, we will to generalize the concept of constacyclic code as follows.
Definition 3.1. Let a, c be two nonzero elements of \mathbb{F}. A code C with length n over the field \mathbb{F} is called generalized constancyclic code if whenever $c=\left(a_{1}, \ldots, a_{n}\right)$ is in C, so is $s c=\left(a \cdot a_{n}, a_{1}, c \cdot a_{2} \ldots, c \cdot a_{n-1}\right)$.
As immediate consequence of definition we have the following Proposition.

Proposition 3.7. A linear code C with length n over the field \mathbb{F} is generalized constancyclic if, and only if, C is an $A_{a, c}$-invariant subspace of \mathbb{F}^{n}.

After Proposition 3.6 we have the following result.
Proposition 3.8. A linear code C with length n over the field \mathbb{F} is two-parameter cyclic if, and only if, C is a $A_{a, c}$-hyperinvariant subspace of \mathbb{F}^{n}.
Suppose now that $(n, q)=1$ and $p_{a, c}(s)=$ $(-1)^{n}\left(s^{n}-c^{n-2} a\right)$ has no multiple roots and splits into distinct irreducible monic factors.

Proposition 3.9. Let C be generalized constancyclic code, and $p_{a, c}(s)=(-1)^{n} p_{a, c_{1}}(s) \cdot \ldots \cdot p_{a, c_{r}}(s)$ the decomposition of $p_{a, c}(s)$ in irreducible factors. Then $C=\operatorname{Ker} p_{a, c_{i_{1}}}\left(A_{a, c}\right) \oplus \ldots \oplus \operatorname{Ker} p_{a, c_{i_{s}}}\left(A_{a, c}\right)$ for some minimal $A_{a, c}$-invariant subspaces $\operatorname{Ker} p_{a, c_{i_{j}}}\left(A_{a, c}\right)$ of \mathbb{F}^{n}.

Proof. First, it is easy to see that $\operatorname{Ker} p_{a, c_{i}}\left(A_{a, c}\right)$ for $i=1, \ldots, r$ are $A_{a, c}$-invariant: let $v \in \operatorname{Ker} p_{a, c_{i}}\left(A_{a, c}\right)$ then $A_{a, c} v=p_{a, c_{1}}\left(A_{a, c}\right) \cdot \ldots \cdot p_{a, c_{r}}\left(A_{a, c}\right) v=0$.
The subspaces $\operatorname{Ker} p_{a, c_{i_{j}}}\left(A_{a, c}\right)$ are minimal because the polynomials $p_{a, c_{i}}(s)$ are irreducible.
Now, we define $\widehat{p}_{i}(s)=p_{a, c}(s) / p_{a, c_{i}}(s)$. Taking into account $\left(\widehat{p}_{1}(s), \ldots, \widehat{p}_{r}(s)\right)=1$, there exist polynomials $q_{1}(s), \ldots, q_{r}(s)$ such that $q_{1}(s) \widehat{p}_{1}(s)+\ldots+$ $q_{r}(s) \widehat{p}_{r}(s)=1$.
Let $x \in C$, then $x=q_{1}\left(A_{a, c}\right) \widehat{p}_{1}\left(A_{a, c}\right) x+\ldots+$ $q_{r}\left(A_{a, c}\right) \widehat{p}_{r}\left(A_{a, c}\right) x$. Calling $x_{i}=q_{i}\left(A_{a, c}\right) \widehat{p}_{i}\left(A_{a, c}\right) x$ and taking into account that C is $A_{a, c}$-invariant, and that $x_{i} \in \operatorname{Ker} p_{a, c_{i}}\left(A_{a, c}\right)$ we have that $x_{i} \in C \cap$ $\operatorname{Ker} p_{a, c_{i}}\left(A_{a, c}\right)$.
Example 3.1. Consider the matrix $A_{a=2, c=4}$ for $n=8, q=5$. Then we have $p(s)=$ $p_{a=2, c=4}(s)=s^{8}-1$. Factorizing $p(s)$ into irreducible factors over $\mathbb{F}=G F(5)$ we have $p(s)=$ $p_{1}(s) p_{2}(s) p_{3}(s) p_{4}(s) p_{5}(s) p_{6}(s)=(s+1)(s+2)(s+$ $3)(s+4)\left(s^{2}+2\right)\left(s^{2}+3\right)$. The factors $p_{i}(s)$ define minimal $A_{a, c}$-invariant subspaces $F_{i}=\operatorname{Ker} p_{i}\left(A_{a, c}\right)$, for $i=1,2,3,4,5,6$.
We define a generalized constancyclic linear code $C_{a, c}$ by

$$
C_{a, c}=F_{1} \oplus F_{5}=\operatorname{Ker}\left(p_{1}\left(A_{a, c}\right)\right) \oplus \operatorname{Ker}\left(p_{5}\left(A_{a, c}\right)\right)
$$

$p_{1}(s) \cdot p_{5}(s)=s^{3}+s^{2}+2 s+2$ and $A_{a, c}^{3}+A_{a, c}^{2}+$ $2 A_{a, c}+2 I$ is the following matrix

$$
\left(\begin{array}{llllllll}
2 & 0 & 0 & 0 & 0 & 1 & 3 & 3 \\
2 & 2 & 0 & 0 & 0 & 0 & 3 & 4 \\
2 & 4 & 2 & 0 & 0 & 0 & 0 & 3 \\
4 & 4 & 4 & 2 & 0 & 0 & 0 & 0 \\
0 & 3 & 4 & 4 & 2 & 0 & 0 & 0 \\
0 & 0 & 3 & 4 & 4 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 4 & 4 & 2 & 0 \\
0 & 0 & 0 & 0 & 3 & 4 & 4 & 2
\end{array}\right)
$$

$$
\begin{aligned}
& \operatorname{Ker}\left(A_{a, c}^{3}+A_{a, c}^{2}+2 A_{a, c}+2 I\right)= \\
& {[(1,4,2,1,3,4,2,1),(1,0,4,0,2,0,1,0),} \\
& \quad(0,3,0,4,0,2,0,1)]
\end{aligned}
$$

3.3 Particular Case: $b=c=1$

$$
\begin{aligned}
\varphi_{a}: \mathbb{F}^{n} & \longrightarrow \mathbb{F}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \longrightarrow\left(a \cdot x_{n}, x_{1}, \ldots, x_{n-1}\right)
\end{aligned}
$$

where $a \neq 0$ and associated matrix respect to the standard basis,

$$
A_{a}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & a \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

This linear map verifies $A_{a}^{-1}=A_{1 / a}^{t}$. The characteristic polynomial is

$$
p(s)=\operatorname{det}\left(A_{a}-s I_{n}\right)=(-1)^{n}\left(s^{n}-a\right) .
$$

Proposition 3.10. The centralizer $\mathcal{C}\left(A_{a}\right)$ of A_{a} is the set of matrices

$$
X_{a}=\left(\begin{array}{ccccc}
x_{1} & a x_{2} & \ldots & a x_{n-1} & a x_{n} \\
x_{n} & x_{1} & \ldots & a x_{n-2} & a x_{n-1} \\
x_{n-1} & x_{n} & \ldots & a x_{n-3} & a x_{n-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
x_{2} & x_{3} & \ldots & x_{n} & x_{1}
\end{array}\right)
$$

Proof. Is a particular case of Proposition 3.1.
Remark 3.1. If $X_{a} \in \mathcal{C}\left(A_{a}\right)$ then $X_{a}^{t} \in \mathcal{C}\left(A_{1 / a}\right)$. For that, it suffices to observe suffices to observe that

$$
X_{a}^{t}=\left(\begin{array}{ccccc}
x_{1} & \frac{1}{a} x_{n} & \ldots & \frac{1}{a} x_{3} & \frac{1}{a} x_{2} \\
x_{2} & x_{1} & \ldots & \frac{1}{a} x_{n-3} & \frac{1}{a} x_{n-2} \\
x_{3} & x_{2} & \ldots & \frac{1}{a} x_{n-3} & \frac{1}{a} x_{n-2} \\
\vdots & \vdots: & \vdots & \ddots & \vdots \\
x_{n} & x_{n-1} & \ldots & x_{2} & x_{1}
\end{array}\right) \in \mathcal{C}\left(A_{1 / a}\right)
$$

where $y_{1}=x_{1}$ and $y_{i}=a x_{i}$ for all $i \neq 1$.
Proposition 3.11. Let F be a hyperinvariant subspace of A_{a}. Then, F^{\perp} is a hyperinvariant subspace of $A_{1 / a}$.

Proof. Given any $w \in F^{\perp}, c \in F, X \in \mathcal{C}\left(A_{a}\right)$, if $\left(w^{\prime}\right)^{t}=X^{t} w^{t}$ then, we have:

$$
w^{\prime} c^{t}=w X c^{t}=0
$$

and then $X^{t} w^{t}=\left(w^{\prime}\right)^{t} \in F^{\perp}$ and F^{\perp} is invariant for any matrix in $\mathcal{C}\left(A_{1 / a}\right)$; that is to say, it is an hyperinvariant subspace for $A_{1 / a}$.

Notice that if $v=\left(v_{1}, \ldots, v_{n}\right)$ is an eigenvector of A_{a}, then the following equalities hold:

$$
\begin{array}{r}
a v_{n}=\lambda v_{1} \\
v_{1}=\lambda v_{2} \tag{6}\\
\ldots \\
v_{n-2}=\lambda v_{n-1} \\
v_{n-1}=\lambda v_{n}
\end{array}
$$

In particular, we obtain that

$$
v=\left(\lambda^{n-1}, \lambda^{n-2}, \ldots, \lambda, 1\right)
$$

and we have the following Proposition.

Proposition 3.12. Given any $\lambda \in G F(q)^{*}$ such that $\lambda^{n}=a$, then $[v]=\left[\left(\lambda^{n-1}, \lambda^{n-2}, \ldots, \lambda, 1\right)\right]$ is an hyperinvariant subspace.

Proposition 3.13. Let F be an invariant subspace of A_{a}. Then it is hyperinvariant.

Proof. It suffices to observe that, for all $X_{a} \in \mathcal{C}\left(A_{a}\right)$,

$$
X_{a}=x_{1} I+x_{2} A_{a}+\ldots+x_{n-1} A_{a}^{n-2}+x_{n} A_{a}^{n-1}
$$

Example 3.2. Over $\mathbb{F}=G F(5)$ we consider

$$
A_{2}=\left(\begin{array}{lll}
0 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$F=[(1,2,4)]$ is invariant

$$
\left(\begin{array}{lll}
0 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)=3\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)
$$

and also it is hyperinvariant

$$
\left(\begin{array}{ccc}
x_{1} & 2 x_{2} & 2 x_{3} \\
x_{3} & x_{1} & 2 x_{2} \\
x_{2} & x_{3} & x_{1}
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right)=\left(x_{1}+4 x_{2}+3 x_{3}\right)\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right) .
$$

Notice that in fact we have solved the following slightly more general case with $b=c$

$$
\begin{aligned}
\varphi_{a b}: \mathbb{F}^{n} & \longrightarrow \mathbb{F}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \longrightarrow\left(a \cdot x_{n}, b \cdot x_{1}, \ldots, b \cdot x_{n-1}\right)
\end{aligned}
$$

with associated matrix with respect to the standard basis,

$$
A_{a b}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & a \\
b & 0 & \ldots & 0 & 0 \\
0 & b & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & b & 0
\end{array}\right) .
$$

for a, b such that $a b \neq 0$ because of

$$
A_{a, b} X-X A_{a, b}=D\left(A_{a / b} X-X A_{a / b}\right)
$$

with $D=\operatorname{diag}(b)$.

3.4 Constacyclic Codes

A particular case of generalized constacyclic codes are constancyclic codes which were introduced in [Berlekamp, 1968].

Definition 3.2. Let a be a nonzero element of \mathbb{F}. A code C with length n over the field \mathbb{F} is called constacyclic with respect to a if whenever $c=\left(a_{1}, \ldots, a_{n}\right)$ is in C, so is its cycle constashift sc $=(a$. $\left.a_{n}, a_{1}, \ldots, a_{n-1}\right)$.

Obviously, when $a=1$ the constacyclic code is cyclic.
The constashift $s c$ can be expressed as $P_{a_{n}} c^{t}$ where $P_{a_{n}}$ is a generalized full cycle permutation matrix obtained from the identity matrix I_{n} by moving its first column multiplied by a to the last column.

$$
P_{a_{n}}=\left(\begin{array}{cccccc}
0 & 0 & \ldots & 0 & a \\
1 & 0 & & 0 & 0 \\
\vdots & \ddots & & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

According to [Radkova and Van-Zanten, 2009], we have the following Propositions.

Proposition 3.14. A linear code C with length n over the field \mathbb{F} is constacyclic if, and only if, C is an $P_{a_{n}}$ invariant subspace of \mathbb{F}^{n}.
Suppose now that $(n, q)=1$ and $p_{a}(s)=(-1)^{n}\left(s^{n}-\right.$ a) has no multiple roots and splits into distinct irreducible monic factors.

Proposition 3.15. Let C be a constacyclic code, and $p_{a}(s)=(-1)^{n} p_{a_{1}}(s) \cdot \ldots \cdot p_{a_{r}}(s)$ the decomposition of $p_{a}(s)$ in irreducible factors. Then $C=\operatorname{Ker} p_{a_{i_{1}}}(A) \oplus$ $\ldots \oplus \operatorname{Ker} p_{a_{i_{s}}}(A)$ for some minimal φ_{a}-invariant subspaces $\operatorname{Ker} p_{a_{i_{j}}}(A)$ of \mathbb{F}^{n}.
After Proposition 3.13 we deduce the following result.
Proposition 3.16. A linear code C with length n over the field \mathbb{F} is constacyclic if and only if C is an A_{a} hyperinvariant subspace of \mathbb{F}^{n}.

Example 3.3. Consider the matrix $A_{a=4}$ for $n=8$, $q=5$. Then we have $p(s)=s^{8}-4$. Factorizing $p(s)$ into irreducible factors over GF(5) we have $p(s)=$ $p_{1}(s) p_{2}(s)=\left(s^{4}-2\right)\left(s^{4}+2\right)$. The factors $p_{i}(s)$ define minimal $P_{a_{n}}$-invariant subspaces $F_{i}=\operatorname{Ker} p_{i}\left(A_{a}\right)$, for $i=1,2$.

We define a constacyclic linear code C_{a} by

$$
C_{a}=F_{1}=\operatorname{Ker}\left(p_{1}(A)\right)
$$

$p_{1}(s)=s^{4}-2$ and $A^{4}-2 I$ is the following matrix

$$
\left(\begin{array}{llllllll}
3 & 0 & 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 & 0 & 4 \\
1 & 0 & 0 & 0 & 3 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 3
\end{array}\right)
$$

$\operatorname{Ker}\left(A^{4}-2 I\right)=$
$[(2,0,0,0,1,0,0,0),(0,2,0,0,0,1,0,0)$,

$$
(0,0,2,0,0,0,1,0),(0,0,0,2,0,0,0,1)] .
$$

References

Astuti, P., and Wimmer, H.K., (2011). Characteristic and hyperinvariant subspaces over the field $G F(2)$. Linear Algebra Appl, doi:10.1016/j.laa.2011.03.047.
Berlekamp, E.R., (1968). Algebraic Coding Theory. Mc Graw-Hill Book Company, New York.
Garcia-Planas M.I., Soudi El M., and Um L.E., (2012). Analysis of control properties of concatenated convolutional codes. Cybernetics and Physics. 1(4), pp. 252-257.
Garcia-Planas, M.I., Soudi, El M., and Um, L.E., (2013). Convolutional codes under control theory point of view. Analysis of output-observability. Recent Advances in Circuits, Communications \& Signal Processing, pp. 131-137.
Gluesing-Luerssen, H., and Schmale, W., (2004) On Cyclic Convolutional Codes. Acta Applicandae Mathematicae, 82, pp. 183-237.
MacWilliams, F.G., and Sloane, N.J.A., (1977). The Theory of Error Correcting Codes. North-Holland Publ. Company, Amsterdam.
Radkova, D., Bojilov, A., and Van Zanten, A.J., (2007). Cyclic Codes and Quasi-Twisted Codes: an Algebraic Approach. Report MICC 07-08, Universiteit Maastricht.
Radkova, D., and Van Zanten, D.J., (2009). Constacyclic codes as invariant subspaces. Linear Algebra and its Applications, 430, pp. 855-864.

