TWO PARAMETRIC QUASI-CYCLIC CODES AS HYPERINVARIANT SUBSPACES

M. Isabel García-Planas

Dept. de Matemàtica Aplicada I Universitat Politècnica de Catalunya Spain maria.isabel.garcia@upc.edu **M. Dolors Magret**

Dept. de Matemàtica Aplicada I Universitat Politècnica de Catalunya Spain m.dolors.magret@upc.edu

M. Eulalia Montoro

Dept. d'Àlgebra i Geometria Universitat de Barcelona Spain maria.eulalia.montoro@upc.edu

Abstract

It is known the relationship between cyclic codes and invariant subspaces. In this work we present a generalization considering "generalized" cyclic codes and hyperinvariant subspaces.

Key words

Cyclic codes, two-parametric quasi cyclic codes, hyperinvariant subspaces.

1 Introduction

Let φ be an endomorphism of a vector space V over a field \mathbb{F} .

Recall that a φ -invariant subspace $F \subset V$ is called hyperinvariant if F is invariant under all linear maps commuting with φ .

The main goal of this work is to establish the relationship between the set of some "generalized cyclic codes" and hyperinvariant linear subspaces of \mathbb{F}^n .

Despite of the fact that Commutative Algebra is the tool mostly used to study linear cyclic codes (see [MacWilliams and Sloane, 1977], for example), since linear codes have a structure of linear subspaces of \mathbb{F}^n , they can also be studied using Linear Algebra as [Garcia-Planas, Souidi and Um, 2012; Garcia-Planas, Souidi and Um, 2013].

2 Preliminaries

2.1 Hyperinvariant Subspaces of Cyclic Permutation Maps

Let p be a prime number, $q = p^k$ for some $k \ge 1$ and $\mathbb{F} = GF(q)$. Let \mathbb{F}^n be the n-dimensional vector space over the field \mathbb{F} .

We consider the following linear map

$$\begin{aligned} \varphi : \mathbb{F}^n &\longrightarrow \mathbb{F}^n \\ (x_1, \dots, x_n) &\longrightarrow (x_n, x_1, \dots, x_{n-1}) \end{aligned} (1)$$

with associated matrix, with respect to the standard basis,

$$A = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}.$$
 (2)

This linear map is clearly orthogonal (in the sense $A^t = A^{-1}$) and verifies $A^n = I_n$. Cayley Hamilton Theorem ensures that its characteristic polynomial is

$$p(s) = \det(A - sI_n) = (-1)^n (s^n - 1).$$

To study hyperinvariant subspaces (those which are invariant for all linear maps commuting with φ) we need to compute the centralizer of A.

Proposition 2.1. The centralizer C(A) of A is the set of circulant matrices

$$X = \begin{pmatrix} x_1 & x_2 \dots x_{n-1} & x_n \\ x_n & x_1 \dots x_{n-2} & x_{n-1} \\ x_{n-1} & x_n \dots & x_{n-3} & x_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_2 & x_3 \dots & x_n & x_1 \end{pmatrix}$$

Proof. It suffices to solve the matrix equation AX - XA = 0.

Remark 2.1. Two matrices belonging to a given centralizer do not necessarily commute. But in our case, given any circulant matrix X commuting with A, its centralizer is C(X) = C(A).

Definition 2.1. *Two vectors* $x = (x_1, ..., x_n)$ *and* $y = (y_1, ..., y_n)$ *in* \mathbb{F}^n *are called orthogonal when* $x \cdot y^t = 0$.

Lemma 2.1.

$$X \in \mathcal{C}(A)$$

if, and only if,

$$X^t \in \mathcal{C}(A)$$

Proof. All circulant matrices satisfy $XX^t = X^tX$ (they are normal matrices) and the Lemma follows.

Proposition 2.2. If F is φ -hyperinvariant subspace, F^{\perp} is also an hyperinvariant subspace.

Proof. Given any $w \in F^{\perp}$, $v \in F$, $X \in C(A)$, we wish to prove that $Xw^t \in F^{\perp}$. Since

$$(Xw^t)^t v^t = wX^t v^t$$

and taking into account Lemma 2.1 we have that $X^t v^t \in F$ and therefore:

$$wX^tv^t = 0$$

We conclude that $Xw^t \in F^{\perp}$ and F^{\perp} is hyperinvariant.

Notice that if $v = (v_1, \ldots, v_n)$ is an eigenvector of A, then the following equalities hold:

$$v_{n} = \lambda v_{1}$$

$$v_{1} = \lambda v_{2}$$

$$\dots$$

$$v_{n-2} = \lambda v_{n-1}$$

$$v_{n-1} = \lambda v_{n}$$
(3)

In particular, we obtain that any eigenvector of A has the form.

$$v = (\lambda^{n-1}, \lambda^{n-2}, \dots, \lambda, 1)$$

We can derive the following Proposition.

Proposition 2.3. Given any $\lambda \in GF(q)^*$ such that $\lambda^n = 1$, then $[v] = [\lambda^{n-1}, \lambda^{n-2}, \dots, \lambda, 1)]$, the vector subspace spanned by v, is an hyperinvariant subspace of φ .

Corollary 2.1. The subspace F = [(1, 1, ..., 1, 1)] is hyperinvariant.

Euler-Fermat Theorem provides information about the roots of $\lambda^n - 1$.

Theorem 2.1. If $\mathbb{F} = GF(q)$, then $\lambda^{q-1} = 1$ has q-1 different roots.

Example 2.1. Consider $\mathbb{F} = GF(7)$ and n = 6. The characteristic polynomial of A has, in this particular set-up, six different roots. In particular, the eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$, $\lambda_4 = 4$, $\lambda_5 = 5$, $\lambda_6 = 6$.

In general, we have the following result.

Proposition 2.4. Let v be an eigenvector of A corresponding to the simple eigenvalue α . Then v is an eigenvector of X for all $X \in C(A)$.

Proof. As a consequence of the definitions,

$$AXv = XAv = X\alpha v = \alpha Xv,$$

then Xv is the zero vector or it is an eigenvector of A of eigenvalue α for all $X \in C(A)$.

Taking into account that α is a simple root of the characteristic polynomial of a, we have that $Xv = \lambda v$, and the proof is completed.

We can compute the value of the eigenvalue associated to v as follows.

Let v be an eigenvector of A corresponding to the eigenvalue α . Taking into account that $v \neq 0$ we can consider $v = (v_1, \ldots, v_{i-1}, 1, v_{i+1}, \ldots, v_n)$.

$$\begin{pmatrix} x_1 & x_2 \dots x_{n-1} & x_n \\ x_n & x_1 \dots x_{n-2} & x_{n-1} \\ x_{n-1} & x_n \dots & x_{n-3} & x_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_2 & x_3 \dots & x_n & x_1 \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ 1 \\ \vdots \\ v_n \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ \vdots \\ 1 \\ \vdots \\ v_n \end{pmatrix}$$

Then λ is equal to the *i*-th coordinate of Xv, $x_{n-i+2}v_1 + \ldots + x_{n-i+1}v_n$.

Not only one-dimensional invariant subspaces are hyperinvariant, but all invariant subspaces are also hyperinvariant.

Proposition 2.5. Let F be a φ -invariant subspace. Then F it is hyperinvariant.

Proof. It suffices to observe that, for all $X \in C(A)$,

$$X = x_1 I + x_2 A^{n-1} + \ldots + x_{n-1} A^2 + x_n A.$$

Then F is an invariant subspace of X.

2.2 Linear Cyclic Codes

Let us assume that characteristic of \mathbb{F} does not divide the length of the code n. This assumption is an usual one in the theory of cyclic block-codes in order to guarantee that the polynomial $s^n - 1$ factorize into different prime polynomials over \mathbb{F} .

Definition 2.2. A code C of length n over the field \mathbb{F} is called cyclic if whenever $c = (a_1, \ldots, a_n)$ is in C, its cycle shift $sc = (a_n, a_1, \ldots, a_{n-1})$ is also in C.

Example 2.2. The linear code $C = \{000, 110, 011, 101\}$ over GF(2) is cyclic. To prove that, we compute the shift sc for all $c \in C$: s(000) = 000, s(110) = 011, s(011) = 101, and s(101) = 110.

It is easy to prove the following statement from the Definitions.

Let P_3 be a full cycle permutation matrix obtained from the identity matrix I_3 by moving its first column to the last column (observe that P_3 corresponds to the matrix A of Equation (2) for n = 3). The shift sc can be expressed as

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

In general, the shift sc can be expressed as P_nc^t where P_n is a full cycle permutation matrix obtained from the identity matrix I_n by moving its first column to the last column.

Taking into account that P_n is a linear transformation of \mathbb{F}^n (the map φ as defined in Equation (1)), we can construct a cyclic code, as follows. Take a word c, and consider the set S consisting of c and its successive images by P_n :

$$S = \{c^{t}, P_{n}c^{t}, \dots, P_{n}^{n-1}c^{t}\}$$

The linear subspace C, defined as the linear space spanned by S, C = [S], is the smallest linear cyclic code containing c.

Next two Propositions are proved in [Radkova and Van-Zanten, 2009] and [Radkova, Bojilov and Van-Zanten, 2007].

Proposition 2.6. A linear code C of length n over the field \mathbb{F} is cyclic if, and only if, C is an A-invariant subspace of \mathbb{F}^n .

Proposition 2.7. Let C be a cyclic code, and $p(s) = (-1)^n p_1(s) \cdot \ldots \cdot p_r(s)$ the decomposition of p(s) in prime factors. Then $C = \text{Ker } p_{i_1}(A) \oplus \ldots \oplus \text{Ker } p_{i_s}(A)$ for some minimal φ -invariant subspaces $\text{Ker } p_{i_j}(A)$ of \mathbb{F}^n .

After Proposition 2.5 we deduce the following result.

Proposition 2.8. A linear code C with length n over the field \mathbb{F} is cyclic if, and only if, C is an Ahyperinvariant subspace of F^n .

Example 2.3. Consider the matrix A of φ for n = 7and q = 2. Then we have $p(s) = s^7 + 1$. Factorizing p(s) into prime factors over GF(2) we have that $p(s) = p_1(s)p_2(s)p_3(s) = (s+1)(s^3 + s+1)(s^3 + s^2 + 1)$. The factors $p_i(s)$ define minimal P_n -invariant subspaces $F_i = \text{Ker } p_i(A)$, for i = 1, 2, 3. We define a cyclic linear code C by

we define a cyclic linear code C by

$$C = F_1 \oplus F_2 = \operatorname{Ker} \left(p_1(A) \right) \oplus \operatorname{Ker} \left(p_2(A) \right)$$

 $p_1(s) \cdot p_2(s) = s^4 + s^3 + s^2 + 1$ and $A^4 + A^3 + A^2 + I$ is the following matrix

(1)	0	0	1	1	1	$0 \rangle$
0	1	0	0	1	1	1
1	0	1	0	0	1	1
1	1	0	1	0	0	1
1	1	1	0	1	0	0
0	1	1	1	0	1	0
$\int 0$	0	1	1	1	0	1

 $\begin{array}{l} \operatorname{Ker}\left(A^4+A^3+A^2+I\right)=\\ \left[(1,0,1,1,0,0,0),(1,1,1,0,1,0,0),(1,1,0,0,0,1,0),\\ (0,1,1,0,0,0,1)\right]. \end{array}$

3 Generalized Case

If q > 2, we can generalize the above case as follows.

$$\begin{aligned} \varphi_{a,b,c} : \mathbb{F}^n &\longrightarrow \mathbb{F}^n \\ (x_1, \dots, x_n) &\longrightarrow (a \cdot x_n, b \cdot x_1, c \cdot x_2, \dots, c \cdot x_{n-1}) \end{aligned}$$

with associated matrix with respect to the standard basis,

$$A_{a,b,c} = \begin{pmatrix} 0 & 0 & \dots & 0 & a \\ b & 0 & \dots & 0 & 0 \\ 0 & c & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & c & 0 \end{pmatrix}$$

for a, b, c such that $abc \neq 0$.

The characteristic polynomial of $A_{a,b,c}$ is $p_{a,b,c}(s) = (-1)^n (s^n - c^{n-2}ab),$

Proposition 3.1. The centralizer $C(A_{a,b,c})$ of $A_{a,b,c}$ is

the set of matrices $X_{a,b,c}$ with:

$$\begin{split} X_{a,b,c} &= \\ \begin{pmatrix} x_n & \frac{a}{b}x_1 & \frac{a}{c}x_2 & \frac{a}{c}x_3 & \dots & \frac{a}{c}x_{n-2} & \frac{a}{c}x_{n-1} \\ \frac{b}{c}x_{n-1} & x_n & \frac{a}{c}x_1 & \frac{ab}{c^2}x_2 & \dots & \frac{ab}{c^2}x_{n-3} & \frac{ab}{c^2}x_{n-2} \\ \vdots & \ddots & \ddots & & & \\ \vdots & & \ddots & \ddots & & \\ \frac{b}{c}x_3 & x_4 & x_5 & x_6 & \dots & \frac{a}{c}x_1 & \frac{ab}{c^2}x_2 \\ \frac{b}{c}x_2 & x_3 & x_4 & x_5 & \dots & x_n & \frac{a}{c}x_1 \\ x_1 & x_2 & x_3 & x_4 & \dots & x_{n-1} & x_n \end{pmatrix} \end{split}$$

Proof. It suffices to solve the matrix equation $A_{a,b,c}X_{a,b,c} - X_{a,b,c}A_{a,b,c} = 0.$

Notice that if $v = (v_1, \ldots, v_n)$ is an eigenvector of $A_{a,b,c}$, then:

$$av_{n} = \lambda v_{1}$$

$$bv_{1} = \lambda v_{2}$$

$$cv_{2} = \lambda v_{3} \dots$$

$$cv_{n-2} = \lambda v_{n-1}$$

$$cv_{n-1} = \lambda v_{n}$$
(4)

In particular, we obtain that

$$v = (\lambda^{n-1}b^{-1}c^{-(n-2)}, \lambda^{n-2}c^{-(n-2)}, \dots, \lambda c^{-1}, 1)$$

and we have the following Proposition.

Proposition 3.2. Let $\lambda \in GF(q)^*$ be an element such that $\lambda^n = abc^{n-2}$. Then $[v] = [(\lambda^{n-1}b^{-1}c^{-(n-2)}, \lambda^{n-2}c^{-(n-2)}, \dots, \lambda c^{-1}, 1)]$ is an hyperinvariant subspace.

Proof.

$$A_{a,b,c}v = \lambda v$$

and given any $X_{a,b,c} \in \mathcal{C}(A_{a,b,c})$, then

$$X_{a,b,c}v = (x_1I + \frac{x_2}{c}A_{a,b,c} + \frac{x_3}{c^2}A_{a,b,c}^2 + \dots + + \frac{x_{n-1}}{c^{n-2}}A_{a,b,c}^{n-2} + \frac{x_n}{bc^{n-2}}A_{a,b,c}^{n-1})v = x_1v + \frac{x_2}{c}\lambda v + \frac{x_3}{c^2}\lambda^2 v + \dots + + \frac{x_{n-1}}{c^{n-2}}\lambda^{n-2}v + \frac{x_n}{bc^{n-2}}\lambda^{n-1}v = \alpha v$$

with $\alpha = x_1 + \frac{x_2}{c}\lambda + \frac{x_3}{c^2}\lambda^2 + \ldots + \frac{x_{n-1}}{c^{n-2}}\lambda^{n-2} + \frac{x_n}{bc^{n-2}}\lambda^{n-1} \in \mathbb{F}.$

Proposition 3.3. Let F be an invariant subspace of $A_{a,b,c}$. Then F is hyperinvariant.

Proof. It suffices to observe that, for all $X_{a,b,c} \in \mathcal{C}(A_{a,b,c})$ then

$$X_{a,b,c} = x_1 I + \frac{x_2}{c} A_{a,b,c} + \frac{x_3}{c^2} A_{a,b,c}^2 + \dots + \frac{x_{n-1}}{c^{n-2}} A_{a,b,c}^{n-2} + \frac{x_n}{bc^{n-2}} A_{a,b,c}^{n-1}$$

Therefore, we have that in this case the lattices of invariant and hyperinvariant subspaces are equal, i.e.:

$$Hinv(A_{a,b,c}) = Inv(A_{a,b,c})$$

3.1 Particular Case b = 1

Notice that it suffices to solve the case b = 1 because:

$$A_{a,b,c}X - XA_{a,b,c} = D(A_{a/b,1,c/b}X - XA_{a/b,1,c/b})$$

with $D = \operatorname{diag}(b)$.

So, we write the results in this simpler case. Given $a, c \neq 0$, we consider the following linear map:

$$\begin{aligned} \varphi_{a,c} : \mathbb{F}^n &\longrightarrow \mathbb{F}^n \\ (x_1, \dots, x_n) &\longrightarrow (a \cdot x_n, x_1, c \cdot x_2 \dots, c \cdot x_{n-1}) \end{aligned}$$

with associated matrix with respect to the standard basis,

$$A_{a,c} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & a \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & c & 0 & \dots & 0 & 0 \\ 0 & 0 & c & \dots & 0 & 0 \\ \vdots & & \ddots & \\ 0 & 0 & 0 & \dots & c & 0 \end{pmatrix}$$

The characteristic polynomial of $A_{a,c}$ is $p_{a,c}(s) = (-1)^n (s^n - c^{n-2}a),$

Proposition 3.4. The centralizer $C(A_{a,c})$ of $A_{a,c}$ is the set of matrices $X_{a,c}$ with:

$$\begin{split} X_{a,c} = \\ \begin{pmatrix} x_n & ax_1 & \frac{a}{c}x_2 & \frac{a}{c}x_3 & \dots & \frac{a}{c}x_{n-2} & \frac{a}{c}x_{n-1} \\ \frac{1}{c}x_{n-1} & x_n & \frac{a}{c}x_1 & \frac{a}{c^2}x_2 & \dots & \frac{a}{c^2}x_{n-3} & \frac{a}{c^2}x_{n-2} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ \frac{1}{c}x_3 & x_4 & x_5 & x_6 & \dots & \frac{a}{c}x_1 & \frac{a}{c^2}x_2 \\ \frac{1}{c}x_2 & x_3 & x_4 & x_5 & \dots & x_n & \frac{a}{c}x_1 \\ x_1 & x_2 & x_3 & x_4 & \dots & x_{n-1} & x_n \end{pmatrix} \end{split}$$

Proof. It follows from Proposition 3.1, when b = 1.

Notice that if $v = (v_1, \ldots, v_n)$ is an eigenvector of $A_{a,c}$, then:

$$av_{n} = \lambda v_{1}$$

$$v_{1} = \lambda v_{2}$$

$$\dots$$

$$cv_{n-2} = \lambda v_{n-1}$$

$$cv_{n-1} = \lambda v_{n}$$
(5)

In particular, we obtain that

$$v = (\lambda^{n-1}c^{-(n-2)}, \lambda^{n-2}c^{-(n-2)}, \dots, \lambda^{-1}, 1)$$

and we have the following Proposition.

Proposition 3.5. Given any $\lambda \in GF(q)^*$ such that $\lambda^n = ac^{n-2}$, then $v = (\lambda^{n-1}c^{-(n-2)}, \lambda^{n-2}c^{-(n-2)}, \dots, \lambda c^{-1}, 1)$ is an hyperinvariant subspace.

Proposition 3.6. Let F be an invariant subspace of $A_{a,c}$. Then it is hyperinvariant.

Proof. It suffices from Proposition 3.3 that for all $X_{a,c} \in \mathcal{C}(A_{a,c})$ then

$$X_{a,c} = x_1 I + \frac{x_2}{c} A_{a,c} + \frac{x_3}{c^2} A_{a,c}^2 + \dots + \frac{x_{n-1}}{c^{n-2}} A_{a,c}^{n-2} + \frac{x_n}{c^{n-2}} A_{a,c}^{n-1}$$

3.2 Two-parametric Quasi-Cyclic Codes

In this section, we will to generalize the concept of constacyclic code as follows.

Definition 3.1. Let a, c be two nonzero elements of \mathbb{F} . A code C with length n over the field \mathbb{F} is called generalized constancyclic code if whenever $c = (a_1, \ldots, a_n)$ is in C, so is $sc = (a \cdot a_n, a_1, c \cdot a_2 \ldots, c \cdot a_{n-1})$.

As immediate consequence of definition we have the following Proposition.

Proposition 3.7. A linear code C with length n over the field \mathbb{F} is generalized constancyclic if, and only if, C is an $A_{a,c}$ -invariant subspace of \mathbb{F}^n .

After Proposition 3.6 we have the following result.

Proposition 3.8. A linear code C with length n over the field \mathbb{F} is two-parameter cyclic if, and only if, C is a $A_{a,c}$ -hyperinvariant subspace of \mathbb{F}^n .

Suppose now that (n,q) = 1 and $p_{a,c}(s) = (-1)^n (s^n - c^{n-2}a)$ has no multiple roots and splits into distinct irreducible monic factors.

Proposition 3.9. Let C be generalized constancyclic code, and $p_{a,c}(s) = (-1)^n p_{a,c_1}(s) \cdot \ldots \cdot p_{a,c_r}(s)$ the decomposition of $p_{a,c}(s)$ in irreducible factors. Then $C = \text{Ker } p_{a,c_{i_1}}(A_{a,c}) \oplus \ldots \oplus \text{Ker } p_{a,c_{i_s}}(A_{a,c})$ for some minimal $A_{a,c}$ -invariant subspaces $\text{Ker } p_{a,c_{i_j}}(A_{a,c})$ of \mathbb{F}^n .

Proof. First, it is easy to see that $\operatorname{Ker} p_{a,c_i}(A_{a,c})$ for $i = 1, \ldots, r$ are $A_{a,c}$ -invariant: let $v \in \operatorname{Ker} p_{a,c_i}(A_{a,c})$ then $A_{a,c}v = p_{a,c_1}(A_{a,c}) \cdot \ldots \cdot p_{a,c_r}(A_{a,c})v = 0$. The subspaces $\operatorname{Ker} p_{a,c_i}(A_{a,c})$ are minimal because the polynomials $p_{a,c_i}(s)$ are irreducible.

Now, we define $\hat{p}_i(s) = p_{a,c}(s)/p_{a,c_i}(s)$. Taking into account $(\hat{p}_1(s), \ldots, \hat{p}_r(s)) = 1$, there exist polynomials $q_1(s), \ldots, q_r(s)$ such that $q_1(s)\hat{p}_1(s) + \ldots + q_r(s)\hat{p}_r(s) = 1$.

Let $x \in C$, then $x = q_1(A_{a,c})\widehat{p}_1(A_{a,c})x + \ldots + q_r(A_{a,c})\widehat{p}_r(A_{a,c})x$. Calling $x_i = q_i(A_{a,c})\widehat{p}_i(A_{a,c})x$ and taking into account that C is $A_{a,c}$ -invariant, and that $x_i \in \text{Ker } p_{a,c_i}(A_{a,c})$ we have that $x_i \in C \cap \text{Ker } p_{a,c_i}(A_{a,c})$.

Example 3.1. Consider the matrix $A_{a=2,c=4}$ for n = 8, q = 5. Then we have $p(s) = p_{a=2,c=4}(s) = s^8 - 1$. Factorizing p(s) into irreducible factors over $\mathbb{F} = GF(5)$ we have $p(s) = p_1(s)p_2(s)p_3(s)p_4(s)p_5(s)p_6(s) = (s+1)(s+2)(s+3)(s+4)(s^2+2)(s^2+3)$. The factors $p_i(s)$ define minimal $A_{a,c}$ -invariant subspaces $F_i = \text{Ker } p_i(A_{a,c})$, for i = 1, 2, 3, 4, 5, 6.

We define a generalized constancyclic linear code $C_{a,c}$ by

$$C_{a,c} = F_1 \oplus F_5 = \operatorname{Ker}\left(p_1(A_{a,c})\right) \oplus \operatorname{Ker}\left(p_5(A_{a,c})\right)$$

 $p_1(s) \cdot p_5(s) = s^3 + s^2 + 2s + 2$ and $A^3_{a,c} + A^2_{a,c} + 2A_{a,c} + 2I$ is the following matrix

(20)	0.0	$0 \ 1$	33
2 2	0.0	0.0	34
24	$2\ 0$	0.0	$0\ 3$
44	4 2	0.0	0.0
03	44	$2\ 0$	0.0
0.0	34	$4\ 2$	0.0
0.0	$0\ 3$	44	$2\ 0$
$\int 0 0$	0.0	$3\ 4$	42)

 $\begin{array}{l} \operatorname{Ker}\left(A_{a,c}^{3}+A_{a,c}^{2}+2A_{a,c}+2I\right)=\\ \left[\left(1,4,2,1,3,4,2,1\right),\left(1,0,4,0,2,0,1,0\right),\right.\\ \left.\left(0,3,0,4,0,2,0,1\right)\right]. \end{array}$

3.3 Particular Case: b = c = 1

$$\begin{aligned} \varphi_a : \mathbb{F}^n &\longrightarrow \mathbb{F}^n \\ (x_1, \dots, x_n) &\longrightarrow (a \cdot x_n, x_1, \dots, x_{n-1}) \end{aligned}$$

where $a \neq 0$ and associated matrix respect to the standard basis,

$$A_a = \begin{pmatrix} 0 & 0 & \dots & 0 & a \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

This linear map verifies $A_a^{-1} = A_{1/a}^t$. The characteristic polynomial is

$$p(s) = \det(A_a - sI_n) = (-1)^n (s^n - a).$$

Proposition 3.10. The centralizer $C(A_a)$ of A_a is the set of matrices

$$X_{a} = \begin{pmatrix} x_{1} & ax_{2} \dots ax_{n-1} & ax_{n} \\ x_{n} & x_{1} \dots ax_{n-2} & ax_{n-1} \\ x_{n-1} & x_{n} \dots ax_{n-3} & ax_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{2} & x_{3} \dots & x_{n} & x_{1} \end{pmatrix}$$

Proof. Is a particular case of Proposition 3.1.

Remark 3.1. If $X_a \in C(A_a)$ then $X_a^t \in C(A_{1/a})$. For that, it suffices to observe suffices to observe that

$$X_{a}^{t} = \begin{pmatrix} x_{1} \quad \frac{1}{a}x_{n} \ \dots \ \frac{1}{a}x_{3} & \frac{1}{a}x_{2} \\ x_{2} \quad x_{1} \ \dots \ \frac{1}{a}x_{n-3} \ \frac{1}{a}x_{n-2} \\ x_{3} \quad x_{2} \ \dots \ \frac{1}{a}x_{n-3} \ \frac{1}{a}x_{n-2} \\ \vdots \ \vdots \ \vdots \ \ddots \ \vdots \ \vdots \\ x_{n} \ x_{n-1} \ \dots \ x_{2} \ x_{1} \end{pmatrix} \in \mathcal{C}(A_{1/a})$$

where $y_1 = x_1$ and $y_i = ax_i$ for all $i \neq 1$.

Proposition 3.11. Let F be a hyperinvariant subspace of A_a . Then, F^{\perp} is a hyperinvariant subspace of $A_{1/a}$.

Proof. Given any $w \in F^{\perp}$, $c \in F$, $X \in C(A_a)$, if $(w')^t = X^t w^t$ then, we have:

$$w'c^t = wXc^t = 0$$

and then $X^t w^t = (w')^t \in F^{\perp}$ and F^{\perp} is invariant for any matrix in $\mathcal{C}(A_{1/a})$; that is to say, it is an hyperinvariant subspace for $A_{1/a}$.

Notice that if $v = (v_1, \ldots, v_n)$ is an eigenvector of A_a , then the following equalities hold:

$$av_{n} = \lambda v_{1}$$

$$v_{1} = \lambda v_{2}$$

$$\dots$$

$$v_{n-2} = \lambda v_{n-1}$$

$$v_{n-1} = \lambda v_{n}$$
(6)

In particular, we obtain that

$$v = (\lambda^{n-1}, \lambda^{n-2}, \dots, \lambda, 1)$$

and we have the following Proposition.

Proposition 3.12. Given any $\lambda \in GF(q)^*$ such that $\lambda^n = a$, then $[v] = [(\lambda^{n-1}, \lambda^{n-2}, \dots, \lambda, 1)]$ is an hyperinvariant subspace.

Proposition 3.13. Let F be an invariant subspace of A_a . Then it is hyperinvariant.

Proof. It suffices to observe that, for all $X_a \in \mathcal{C}(A_a)$,

$$X_a = x_1 I + x_2 A_a + \ldots + x_{n-1} A_a^{n-2} + x_n A_a^{n-1}.$$

Example 3.2. Over $\mathbb{F} = GF(5)$ we consider

$$A_2 = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

F = [(1, 2, 4)] is invariant

$$\begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$$

and also it is hyperinvariant

$$\begin{pmatrix} x_1 & 2x_2 & 2x_3 \\ x_3 & x_1 & 2x_2 \\ x_2 & x_3 & x_1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} = (x_1 + 4x_2 + 3x_3) \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}.$$

Notice that in fact we have solved the following slightly more general case with b = c

$$\varphi_{ab}: \mathbb{F}^n \longrightarrow \mathbb{F}^n$$

(x₁,...,x_n) $\longrightarrow (a \cdot x_n, b \cdot x_1, \dots, b \cdot x_{n-1})$

with associated matrix with respect to the standard basis,

$$A_{ab} = \begin{pmatrix} 0 & 0 & \dots & 0 & a \\ b & 0 & \dots & 0 & 0 \\ 0 & b & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & b & 0 \end{pmatrix}.$$

for a, b such that $ab \neq 0$ because of

$$A_{a,b}X - XA_{a,b} = D(A_{a/b}X - XA_{a/b})$$

with
$$D = \operatorname{diag}(b)$$
.

3.4 Constacyclic Codes

A particular case of generalized constacyclic codes are constancyclic codes which were introduced in [Berlekamp, 1968].

Definition 3.2. Let a be a nonzero element of \mathbb{F} . A code C with length n over the field \mathbb{F} is called constacyclic with respect to a if whenever $c = (a_1, \ldots, a_n)$ is in C, so is its cycle constashift $sc = (a \cdot a_n, a_1, \ldots, a_{n-1})$.

Obviously, when a = 1 the constacyclic code is cyclic.

The constashift sc can be expressed as $P_{a_n}c^t$ where P_{a_n} is a generalized full cycle permutation matrix obtained from the identity matrix I_n by moving its first column multiplied by a to the last column.

$$P_{a_n} = \begin{pmatrix} 0 & 0 & \dots & 0 & a \\ 1 & 0 & & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

According to [Radkova and Van-Zanten, 2009], we have the following Propositions.

Proposition 3.14. A linear code C with length n over the field \mathbb{F} is constacyclic if, and only if, C is an P_{a_n} invariant subspace of \mathbb{F}^n .

Suppose now that (n,q) = 1 and $p_a(s) = (-1)^n (s^n - a)$ has no multiple roots and splits into distinct irreducible monic factors.

Proposition 3.15. Let C be a constacyclic code, and $p_a(s) = (-1)^n p_{a_1}(s) \cdots p_{a_r}(s)$ the decomposition of $p_a(s)$ in irreducible factors. Then $C = \text{Ker } p_{a_{i_1}}(A) \oplus \cdots \oplus \text{Ker } p_{a_{i_s}}(A)$ for some minimal φ_a -invariant subspaces $\text{Ker } p_{a_{i_s}}(A)$ of \mathbb{F}^n .

After Proposition 3.13 we deduce the following result.

Proposition 3.16. A linear code C with length n over the field \mathbb{F} is constacyclic if and only if C is an A_a hyperinvariant subspace of \mathbb{F}^n .

Example 3.3. Consider the matrix $A_{a=4}$ for n = 8, q = 5. Then we have $p(s) = s^8 - 4$. Factorizing p(s) into irreducible factors over GF(5) we have $p(s) = p_1(s)p_2(s) = (s^4-2)(s^4+2)$. The factors $p_i(s)$ define minimal P_{a_n} -invariant subspaces $F_i = \text{Ker } p_i(A_a)$, for i = 1, 2.

We define a constacyclic linear code C_a by

$$C_a = F_1 = \operatorname{Ker}\left(p_1(A)\right)$$

 $p_1(s) = s^4 - 2$ and $A^4 - 2I$ is the following matrix

(3	0	0	0	4	0	0	$0 \rangle$
0	3	0	0	0	4	0	0
0	0	3	0	0	0	4	0
0	0	0	3	0	0	0	4
1	0	0	0	3	0	0	0
0	1	0	0	0	3	0	0
0	0	1	0	0	0	3	0
0	0	0	1	0	0	0	3/

$$\begin{aligned} & \operatorname{Ker} \left(A^4 - 2I \right) = \\ & \left[(2, 0, 0, 0, 1, 0, 0, 0), (0, 2, 0, 0, 0, 1, 0, 0), \\ & \left(0, 0, 2, 0, 0, 0, 1, 0 \right), (0, 0, 0, 2, 0, 0, 0, 1) \right]. \end{aligned}$$

References

- Astuti, P., and Wimmer, H.K., (2011). *Characteristic* and hyperinvariant subspaces over the field GF(2). Linear Algebra Appl, doi:10.1016/j.laa.2011.03.047.
- Berlekamp, E.R., (1968). *Algebraic Coding Theory*. Mc Graw-Hill Book Company, New York.
- Garcia-Planas M.I., Soudi El M., and Um L.E., (2012). Analysis of control properties of concatenated convolutional codes. Cybernetics and Physics. 1(4), pp. 252–257.
- Garcia-Planas, M.I., Soudi, El M., and Um, L.E., (2013). Convolutional codes under control theory point of view. Analysis of output-observability. Recent Advances in Circuits, Communications & Signal Processing, pp. 131–137.
- Gluesing-Luerssen, H., and Schmale, W., (2004) *On Cyclic Convolutional Codes*. Acta Applicandae Mathematicae, 82, pp. 183–237.
- MacWilliams, F.G., and Sloane, N.J.A., (1977). *The Theory of Error Correcting Codes*. North-Holland Publ. Company, Amsterdam.
- Radkova, D., Bojilov, A., and Van Zanten, A.J., (2007). Cyclic Codes and Quasi-Twisted Codes: an Algebraic Approach. Report MICC 07-08, Universiteit Maastricht.
- Radkova, D., and Van Zanten, D.J., (2009). *Constacyclic codes as invariant subspaces*. Linear Algebra and its Applications, 430, pp. 855–864.