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Abstract. We extend the covariance matrix description of atom–light quantum
interfaces, originally developed for real and effective spin-1/2 atoms, to include
‘spin alignment’ degrees of freedom. This allows accurate modelling of
optically probed spin-1 ensembles in arbitrary magnetic fields. We also include
technical noise terms that are very common in experimental situations. These
include magnetic field noise, variable atom number and the effect of magnetic
field inhomogeneities. We demonstrate the validity of our extended model
by comparing numerical simulations to a free–induction decay measurement
of polarized 87Rb atoms in the f = 1 ground state. We qualitatively and
quantitatively reproduce experimental results with no free parameters. The
model can be easily extended to larger spin systems, and adapted to more
complicated experimental situations.
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1. Introduction

Atomic ensembles play an essential and growing role in quantum optics [1], with applications
in quantum networking [2], generation of optical quantum resources [3, 4] and quantum-
enhanced instruments [5–8]. The continuous-variable (CV) approach [9] efficiently describes
experiments involving many quanta. The great majority of CV atomic ensemble experiments are
performed with Gaussian states, although non-Gaussian atomic states [10] are required for some
tasks [11]. Gaussian states can be described very economically in terms of mean values and
variances, whereas general states require a description exponential in the size of the system. The
Gaussian approximation can be justified via the Holstein–Primakoff approximation, including
extensions to larger-spin systems [12]. We follow the approach of Kraus et al [13], Madsen and
Mølmer [14], Hammerer et al [15] and Mølmer and Madsen [16] and use covariance matrix
techniques to describe the collective atom and light variables and their interaction.

A wide variety of effects, including spatial and temporal inhomogeneities, loss,
decoherence, atomic transport and projective measurements have been incorporated into this
framework [17]. An important omission until now has been the description of larger-spin
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systems. Most atomic ensemble experiments are performed with alkali atoms and thus have
ground-state spin of at least 1, which implies tensorial light shifts [14] and generalized Faraday
rotation effects [18]. An extension of the covariance matrix techniques to include these effects
will allow statistical description of many large-spin applications [19], including quantum
state characterization [20] and preparation [21], quantum chaos [22], optical magnetometry
[8, 23, 24] and quantum non-demolition measurement [25, 26].

While several earlier works have applied the spin-1/2 framework to spin-1 or larger systems
through the identification of a two-state ‘pseudo spin-1/2’ sub-system, there are scenarios in
which the dynamics naturally involves more than two levels, and requires a more expanded
description. A clear example is a spin-1 or larger atom in the presence of both magnetic and
optical fields. The magnetic field couples Zeeman states differing by 1m = ±1, whereas the
optical fields couple also states with 1m = ±2 through tensorial light shifts. This system has
been much studied using density-matrix approaches [20], which describe fully the average
single-atom properties but not the noise properties, which arise from correlations among the
atoms. Consideration of the quantum noise in these systems motivates the current work, in
which we extend the covariance matrix approach to spin-1 atoms. To the suite of techniques
available for spin-1/2 ensembles [14, 17], we add the ability to treat both vectorial and tensorial
light shifts, technical noise due to uncertainty in the atom number and dephasing due to magnetic
field inhomogeneities.

The paper is organized as follows. In section 2 we present the formalism, which employs
eight orientation and alignment operators to describe the F = 1 collective atomic spin. In
section 3 we analyse the spin dynamics in the presence of probing light and an external
magnetic field, including coherent evolution, decoherence due to scattering of probe photons
and dephasing due to inhomogeneous magnetic fields. In section 4 we review the description of
optical measurement within the covariance matrix formalism. In section 5 we describe the initial
state including technical noise from uncertain atom number. In sections 6 and 7 we compare
numerical results of our model with experimental data and identify the practical limits of the
Gaussian approximation in this system.

2. Formalism

We work with collective operators describing macroscopic numbers of particles, for which a
CV description is appropriate. Throughout, we use the covariance matrix techniques [14, 17],
which are sufficient to describe the Gaussian states encountered in the great majority of CV
experiments.

2.1. Quantum polarization description

Polarized light in CVs can be described with Stokes operators:

Ŝx ≡
1
2 â†σ x â, Ŝy ≡

1
2 â†σ y â, Ŝz ≡

1
2 â†σ zâ, Ŝ0 ≡

1
2 â†1â, (1)

where â ≡ (â+, â−)T and â+, â− are the annihilation operators for the left and right circular
polarization and σ x , σ y , σ z the Pauli matrices and 1 is the identity matrix. The Ŝx , Ŝy , Ŝz and
Ŝ0 Stokes operators represent, respectively, linearly polarized light horizontally or vertically,
linearly polarized light on the ±45◦ direction, left and right circularly polarized light and
the pulse energy. They have the same commutation relations as angular momentum operators,
[Ŝx , Ŝy] = iŜz and cyclic permutations and they all commute with Ŝ0.
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2.2. Description of spin-1 ensembles

A single spin-1 atom is described by a density matrix with eight degrees of freedom, which we
express in terms of eight single-particle operators λ̂i . These generalize the Pauli matrices, in the
sense that they are traceless, Hermitian, and obey the orthonormality relation Tr(λiλ j) = 2δi j .
The first three operators are the components of the spin vector f̂, obeying [ f̂ x , f̂ y] = i f̂ z. For
illustration, we give the spin-1 matrix representation:

f̂ x
F=1
−→

1
√

2

0 1 0
1 0 1

0 1 0

 ,

f̂ y
F=1
−→

1
√

2

0 −i 0

i 0 −i

0 i 0

 ,

f̂ z
F=1
−→

1 0 0

0 0 0

0 0 −1

 .

The others are rank-2 tensor operators, for which we use the symbol ĵ, with components (again
with the spin-1 representation for illustration):

̂ x ≡ f̂ 2
x − f̂ 2

y
F=1
−→

0 0 1

0 0 0

1 0 0

 ,

̂ y ≡ f̂ x f̂ y + f̂ y f̂ x
F=1
−→

0 0 −i

0 0 0

i 0 0

 ,

̂ k ≡ f̂ x f̂ z + f̂ z f̂ x
F=1
−→

1
√

2

0 1 0

1 0 −1

0 −1 0

 ,

̂ l ≡ f̂ y f̂ z + f̂ z f̂ y
F=1
−→

1
√

2

0 −i 0

i 0 i
0 −i 0

 ,

̂m ≡
1

√
3
(2 f̂ 2

z − f̂ 2
x − f̂ 2

y)
F=1
−→

1
√

3

1 0 0

0 −2 0

0 0 1

 .
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Figure 1. Contribution dW/dλ̄i of the f and j operators to the Wigner
distribution Wρ(θ, φ) representing the state ρ =

1
3I + 1

2

∑
i λ̂i λ̄i , as described

in [28]. Radius indicates magnitude, warm (cold) colours indicate positive
(negative) contributions. Axis markers indicate unity.

With quantization axis along z, ̂m describes the population imbalance between m F = 0 and
other states, while ̂ x,y describe m F = ±1 coherences. ̂ k,l represent m F = ±1 coherences in
other quantization axes.

We note that the above operator definitions are spin-independent, and that the results in this
paper follow from these operator definitions, not from the spin-1-specific matrix representations.
As we shall see below, the most important coherent interactions: Larmor precession, Faraday
rotation and tensorial light shifts, can be fully described using the above operators, even for
larger spin. The formalism developed here is thus applicable to some scenarios involving
spin-3/2 and higher. Not all processes can be explained using just f̂ and ĵ operators, however.
For example, with spin-2 atoms modulated optical pumping in the presence of a B-field has
been used to produce hexadecapole moment due to coherence between Zeeman states with
1m F = 4 [27].

2.3. Spin visualization

From the orthogonality relation Tr[λiλ j ] = 2δi j , an arbitrary single-atom density matrix ρ can
be expressed as

ρ =
1

3
I +

1

2

∑
i

λ̂i λ̄ j , (2)

where λ̄i ≡ Tr[ρλ̂i ]. This suggests a visualization in terms of the spin Wigner distribution W (ρ),
which is efficiently calculated as in Dowling et al [28]. In figure 1 we show the differential
contribution to the Wigner distribution dW/dλ̄i . This shows, for example, that any of ̂ x , ̂ y , ̂ k

and ̂ l can be obtained by rotation of ̂ x , whereas ̂m cannot.
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Table 1. Commutation relationships for single-atom operators.

[ , ] f̂ x f̂ y f̂ z ̂ x ̂ y ̂ k ̂ l ̂m

f̂ x 0 f̂ z − f̂ y −̂ l ̂ k −̂ y

√
3̂m + ̂ x −

√
3̂ l

f̂ y − f̂ z 0 f̂ x −̂ k −̂ l −
√

3̂m + ̂ x ̂ y

√
3̂ k

f̂ z f̂ y − f̂ x 0 2̂ y −2̂ x ̂ l −̂ k 0

̂ x ̂ l ̂ k −2̂ y 0 2 f̂ z − f̂ y f̂ x 0

̂ y −̂ k ̂ l 2̂ x −2 f̂ z 0 f̂ x − f̂ y 0

̂ k ̂ y

√
3̂m − ̂ x −̂ l f̂ y − f̂ x 0 f̂ z −

√
3 f̂ y

̂ l −
√

3̂m − ̂ x −̂ y ̂ k f̂ x f̂ y − f̂ z 0
√

3 f̂ x

̂m

√
3̂ l −

√
3̂ k 0 0 0

√
3 f̂ y −

√
3 f̂ x 0

2.4. Commutation relationships

The operators f̂, ĵ and Ŝ have commutators given by

[λ̂a, λ̂b] = icλ̂a λ̂b

λ̂k
λ̂k, (3)

where the λ̂ are f̂ or ĵ components and a sum is over k is implied. The structure constants cλ̂a λ̂b

λ̂k

are completely antisymmetric in the three indexes, and

c
f̂x f̂y

f̂z
= 1, c

̂ x ̂ y

f̂z
= 2, c f̂x ̂ l

̂m
= c

f̂y ̂m

̂ k
=

√
3, (4)

c
f̂x ̂ y

̂ k
= c f̂x ̂ l

̂ x
= c

f̂y ̂ k

̂ x
= c f̂z ̂ k

̂ l
= 1. (5)

To this we can add

c
Ŝx Ŝy

Ŝz
= 1. (6)

All structure constants not given above are zero. The commutators are given explicitly in table 1.

2.5. Collective spin operators

To describe the ensemble we define collective operators. If λ̂
(i)

describes atomic operators acting

the i th of NA atoms, then 3̂ ≡
∑NA

i λ̂
(i)

. Explicitly for the vector (f̂) and tensor (ĵ) collective
spin operators:

F̂ ≡

NA∑
i=1

f̂(i), Ĵ ≡

NA∑
i=1

ĵ(i). (7)

We note that these inherit their commutation relations from the microscopic operators:

[3̂a, 3̂b] = icλ̂a λ̂b

λ̂k
3̂k . Finally, we define a phase-space vector to describe the state of the whole

system

V̂ = B ⊕ F̂ ⊕ Ĵ ⊕

Npulses⊕
i=1

Ŝ(i), (8)
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where ⊕ indicates the direct sum and B is the magnetic field vector at the location of the
ensemble. It should be noted that B is here a classical field, whereas the other components
of V̂ are operators. The inclusion of B in V̂ allows for classical uncertainty about the field to be
incorporated in a natural way into the calculations [14], as we describe below.

2.6. Covariance matrix

We work within the Gaussian approximation, i.e. we assume that V̂ is fully characterized by its
average 〈V̂〉 and by its covariance matrix 0V:

0V ≡
1
2〈V̂ ∧ V̂ + (V̂ ∧ V̂)T

〉 − 〈V̂〉 ∧ 〈V̂〉, (9)

where ∧ indicates the outer product. It will be convenient to define δV̂ ≡ V̂ − 〈V̂〉, the
fluctuations of V̂ about the mean, from which 0V =

1
2〈δV̂ ∧ δV̂ + (δV̂ ∧ δV̂)T

〉.

3. Dynamics

We describe the most important dynamical effects for light–matter interfaces, namely the
light–matter interaction that occurs when a pulse of probe light passes the ensemble, and the
rotation due to a magnetic field. Both of these interactions produce coherent rotations, loss of
coherence and addition of noise.

3.1. Light–atom interactions

The light–atom interaction is described by an effective Hamiltonian which describes the
dispersive effects of the electric dipole interaction in second order [29–31]. In simulations and in
practice, it is very convenient to employ a train of optical pulses for probing the ensemble. Even
for continuous probing it is useful to treat the probe as a train of continuous pulses, as this allows
a course-grained description of the polarization evolution [14, 16]. In F = 1 atomic ensembles,
during the time the mth pulse is passing through the ensemble, the effective Hamiltonian is

H (m)

eff = G1
Ŝ(m)

z

τ
F̂z + G2

(
Ŝ(m)

x

τ
Ĵ x +

Ŝ(m)
y

τ
Ĵ y +

1
√

3

Ŝ(m)

0

τ
Ĵ m

)
, (10)

where G1 and G2 are coupling constants that depend on the geometry of the atomic ensemble
and probe beam, the atomic structure and the detuning from resonance [30]. In situations where
the approximation of homogeneous interaction breaks down, it is possible to model the system
as in [17] by breaking it into smaller subsystems each of which is effectively homogeneous.
In the situations simulated in sections 6 and 7, the inhomogeneous coupling is due to the
spatial distribution of atoms within a Gaussian probe beam, and is estimated to be a small
effect for the examples discussed in this paper. We label the Stokes operators as Ŝ(m)(t),
m = 1, . . . , Npulses where tm indicates the time of arrival at the ensemble. Thus Ŝ(m)(t < tm)

describes the polarization of the mth pulse before entering the ensemble, while Ŝ(m)(t > tm + τ),
where τ is the pulse duration, describes the polarization of the same pulse after exiting the
ensemble. At time tm + τ , the mth pulse has left the ensemble (we assume the transit time is
much less than τ ) and the change in the system is described by

3̂(tm + τ) = 3̂(tm) − iτ [3̂(tm), H (m)

eff ] (11)
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and

Ŝ(m)(tm + τ) = Ŝ(m)(tm) − iτ [Ŝ(m)(tm), H (m)

eff ]. (12)

All other polarizations Ŝ(n), n 6= m are unchanged. These first-order difference equations will
be accurate for sufficiently low-energy pulses, i.e. for small G1,2〈Ŝ〉. For any given physical
situation these conditions can be satisfied by subdividing long- or high-energy pulses into
subpulses with smaller τ , at the cost of additional computation time. Similarly, if the full
ensemble produces large rotations of Ŝ, the 3̂ can be subdivided as in Koschorreck and
Mitchell [17]. In the simulations described below we subdivide Ŝ until the results converge.

The evolution is compactly expressed in terms of a tensor H(m) containing the coupling

constants G1,2 and gFµ0 and the structure factors c
V̂i V̂ j

V̂k
:

V̂i(tm + τ) = V̂i(tm) + V̂ j(tm)H i(m)

jk V̂k(tm) where (13)

H i(m)

jk ≡ G1δ
Ŝ(m)

z

V̂ j
cV̂i f̂z

V̂k
+ G2

(
δ

Ŝ(m)
x

V̂ j
cV̂i ̂ x

V̂k
+ δ

Ŝ(m)
y

V̂ j
c

V̂i ̂ y

V̂k
+

1
√

3
δ

Ŝ(m)
0

V̂ j
cV̂i Jm

V̂k

)
, (14)

where δ
V̂ j

V̂i
is 1 for V̂i = V̂ j and 0 for V̂i 6= V̂ j , and we assume summation over repeated indices.

3.2. Linearization

The difference equation (13) are bilinear in the components of V̂. Although nonlinearity can
in some cases lead to non-Gaussian phase-space distributions [22, 32], in practice Gaussian
or near-Gaussian distributions are far more common, and indeed producing measurably non-
Gaussian distributions is non-trivial [10]. This motivates a linearization of the above equations.
Symbolically we write

V̂(tm + τ) = V̂(tm) + V̂(tm) · H(m)
· V̂(tm) (15)

and separate V̂ into the average V̄ and the fluctuations δV̂:

V̂(tm + τ) = V̄(tm + τ) + δV̂(tm + τ)

= V̄(tm) + V̄(tm) · H(m)
· V̄(tm) + δV̂(tm) + V̄(tm) · H(m)

· δV̂(tm)

+δV̂(tm) · H(m)
· V̄(tm) + δV̂(tm) · H(m)

· δV̂(tm). (16)

When the last term can be neglected, the dynamics reduce to

V̄(tm + τ) = V̄(tm) + V̄(tm) · H(m)
· V̄(tm) (17)

= V̄(tm) + U(m)
· V̄(tm), (18)

where U(m)
≡ V̄(tm) · H(m), which describes a nonlinear evolution of the average V̄, and

δV̂(tm + τ) = δV̂(tm) + V̄(tm) · H(m)
· δV̂(tm) + δV̂(tm) · H(m)

· V̄(tm)

= T(m)
· δV̂(tm), (19)

which describes a linear evolution of the fluctuations δV̂ in terms of the matrix

T (m)

ik ≡ δk
i + V j H

i(m)+H i(m)
k j

jk V j . (20)

The covariance matrix 0 evolves as

0(tm + τ) = T(m)
· 0(tm) · [T(m)]T. (21)
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3.3. Optically induced decoherence

The above coherent rotations are necessarily accompanied by spontaneous scattering of photons,
which produces decoherence of the atomic state [17, 30]. An accurate treatment is possible [33],
but requires a detailed accounting of the scattering channels. Here we describe a simple noise
model, based on that of Madsen and Mølmer [14], which agrees reasonably well with more
sophisticated models [33].

We treat the decoherence as removal of a fraction 1 −X of the NA atoms, followed by
the re-addition of a fraction p of the removed atoms, with random polarizations. A common
source of ‘loss’ of atoms from the system is optical pumping into dark states [30, 33]. In this
paper we take p = 1, i.e. no loss, which gives an upper bound on the introduced decoherence.
As demonstrated in appendix A, this alters the phase-space distribution as

3̄ → X 3̄, (22)

03 → X 203 +X (1 −X )NA0λ + p(1 −X ) 2
3 NA18×8, (23)

where 3̄ ≡ 〈3̂〉, 03 ≡
1
2〈3̂ ∧ 3̂ + (3̂ ∧ 3̂)T

〉 − 〈3̂〉 ∧ 〈3̂〉 is the atomic part of the covariance

matrix 0V, 0λ ≡
1
2〈λ̂ ∧ λ̂ + (λ̂ ∧ λ̂)T

〉 − 〈λ̂〉 ∧ 〈λ̂〉 is the single-atom covariance matrix, and the
expectations are taken with respect to the average single-atom state ρ. As derived in appendix A,
0λ can be found from V̄ as

0λ =
2
318×8 − λ̄ ∧ λ̄ +

∑
k λ̄kM(k),

M (k)

i j ≡
1
4Tr[λ̂k{λ̂i , λ̂ j}],

(24)

where λ̄ ≡ 〈λ〉ρ is the single-atom average and {·, ·} indicates the anti-commutator.
The transformation of the atomic covariance matrix due to optically induced decoherence

is then

03(tm + τ) =D(m)

3 · 03(tm + τ) · [D(m)

3 ]T +N (m)

3 , (25)

where 0Λ(tm + τ) is given by equation (21) and

D(m)

3 ≡ X18×8, (26)

N (m)

3 ≡ X (1 −X )NA0λ + p(1 −X ) 2
3 NA18×8. (27)

The fraction of atoms 1 −X that experience incoherent scattering of probe photons during
a single pulse of duration τ is given by X = exp(−ηγ nL), where ηγ is the probability for an
atom to scatter a photon and nL is the number of photons in the pulse. A similar decoherence
applies to the optical polarization Ŝ(m) [17], where the fraction of photons scattered is 1 − ε and
ε = exp(−ηγ NA), leading to decoherence and noise terms

D(m)

S ≡ ε13×3, (28)

N (m)

S ≡ ε(1 − ε)nL0S, (29)

where 0S = (1/4)13×3 is the single photon covariance matrix. Because scattered photons are lost
from the pulse, there is no photonic analogue of the last term of equation (27). In the scenarios
described below the decoherence of the optical pulses is negligible, because the number of
photons is much larger than the number of atoms, and we set ε = 1.

The full covariance matrix 0 then evolves as

0(tm + τ) = D(m)
· T(m)

· 0(tm) · [T(m)]T
· [D(m)]T + N(m), (30)

where D(m)
≡ 13×3 ⊕D(m)

3 ⊕D(m)

S and N(m)
≡ O3×3 ⊕N (m)

3 ⊕N (m)

S .
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3.4. Atom–field interaction

In contrast to the atom–light interaction, the interaction of the atoms with the magnetic field is
purely linear, so that precession by large angles can be described in a single step. At the same
time, inhomogeneities in the magnetic field introduce dephasing, which requires a different
description than given above for scattering-induced decoherence6.

To describe these effects, we first split the field into homogeneous and inhomogeneous
parts as B(x) = B0 + B̃1(x), with the assumption that |B0| � |B̃1(x)| for x within the atomic
cloud. Specifically, if ρat(x) is the atomic density, we take B0 =

∫
d3x ρat(x)B(x), the average

over the atoms.
Local rotation under B(x) can be described by the unitary operator

U (x, t) = exp[iγ t |B(x)| f̂ B(x)], (31)

where f̂ B(x) is the component of F̂ parallel to the local field and γ = µBgF/h̄ is the
gyromagnetic ratio, where gF is the Landé factor and µB is the Bohr magneton. We note that
f̂ n+2

B (x) = f̂ n
B(x) for n > 1, (true for any F = 1 spin component), so that a Taylor expansion of

U gives

U (x, t) = 1 + f̂B(x) sin(γ |B(x)|t) + f̂ 2
B(x)[cos(γ |B(x)|t) − 1]. (32)

We can now see a qualitative difference between B‖(x), the component of B̃1(x) parallel to B0,
and B⊥(x) the perpendicular components. The effect of B‖(x) is to change |B| and thus the
precession frequency, causing a deviation from the behaviour under B0 that accumulates with
time. In contrast, B⊥(x) principally changes the direction of f̂ B, a non-accumulating effect.
For this reason we focus on the effects of B‖(x). We consider the evolution of operators λ̂(x)

that describe a single atom at a position x. Using the Heisenberg equations of motion and the
commutation relations of equation (3), we find dynamical equations

d

dt
λ̂(x) = −µBgF |B(x)|A(x) · λ̂(x), (33)

where

A≡



· −bz by · · · · ·

bz · −bx · · · · ·

−by bx · · · · · ·

· · · · −2bz by bx ·

· · · 2bz · −bx by ·

· · · −by bx · −bz

√
3by

· · · −bx −by bz · −
√

3bx

· · · · · −
√

3by

√
3bx ·


(34)

is a block-diagonal matrix and b ≡ B/|B|. Here and in subsequent matrices the dots represent
zeros. The equation is solved by

λ̂(x, t) =

∑
i

e−ω(x)ai t Pi · λ̂(x, 0), (35)

6 Here we assume that the magnetic fields are static, but time-varying fields can also be modelled, as described in
Petersen and Mølmer [34].
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where ω(x) = µBgF |B(x)|, ai , vi are the eigenvalues and eigenvectors of A with
corresponding projectors Pi ≡ vi ∧ vi . The eigenvectors are imaginary integers {a} =

i{−2, −1, −1, 0, 0, 1, 1, 2}, indicating the half-period behaviour of some ĵ variables. The
macroscopic operators evolve as

3̂(t) =

∫
d3x ρat(x)

∑
i

e−ω(x)ai t Pi · λ̂(x, 0) (36)

=

∑
i

e−ω0ai t

∫
d3x ρat(x) e−ω̃(x)ai t Pi · λ̂(x, 0), (37)

where ω(x) = ω0 + ω̃(x). We now assume that λ̂(x, 0) is uniform7, so that the x-dependent terms
can be collected as ri(t) ≡

∫
d3x ρat(x) e−ω̃(x)ai t . This gives

3̂(t) =

∑
i

e−ω0ai tri(t)Pi · 3̂(0)

=DB(t) ·T B(t) · 3̂(0), (38)

where T B(t) =
∑

i e−ω0ai t Pi describes the coherent evolution andDB(t) =
∑

i ri(t)Pi describes
the dephasing.

In many situations it is reasonable to assume a Lorentzian distribution for ω̃. For
example, in the highly elongated trap described below, we observe an atomic density ρ(z) well
approximated by a Lorentzian ρ(z) = w/π(z2 + w2) where w = 4.8 mm is the full-width half-
maximum (FWHM) extent of the ensemble. The decay term is then ri(t) = e−wγ |ai ∂ B‖/∂z|t or
ri(t) = e−t/Ti with 1/Ti = wγ |ai∂ B‖/∂z|, and

DB(t) =

∑
i

e−t/Ti Pi . (39)

To preserve the uncertainty principle in the presence of the decay implied by equation (39),
we must introduce a noise contribution N(t) to the covariance matrix [17]. The transformation
due to evolution under an inhomogeneous field is thus

03(t) =DB(t) ·T B(t) · 03(0) ·T T
B(t) ·DT

B(t) +N (t), (40)

where the added noise obeys

N B(t)>
∣∣i6′

− iDB(t) · 6 ·DT
B(t)

∣∣ , (41)

where | · | indicates the matrix absolute value and i6i j ≡ 〈[3̂i , 3̂ j ]〉 andΣ′ are the commutation
matrices before and after the transformation [35]. Absent an indication that the dephasing should
be extra noisy, we take the equality sign in equation (41). We note that dephasing due to arbitrary
field inhomogeneity can be included in the model by spatially partitioning the ensemble into
subensembles with different local fields [17].

In addition to the dephasing of the atomic terms described above, the covariance matrix 0

undergoes a coherent evolution as described by equation (21) in terms of the matrix

TB(t) =

 13×3 · ·

γF(t) γ |B(x)|A ·

· · 13×3

 , (42)

7 This assumption is clearly violated in some cases, for example in spin–echo experiments. However, it works
remarkably well in many other situations.
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where the matrix A is described above in equation (34) and

FB(t) ≡



· Fz(t) −Fy(t)

−Fz(t) · Fx(t)

Fy(t) −Fx(t) ·

Jl(t) Jk(t) −2Jy(t)

−Jk(t) Jl(t) 2Jx(t)

Jy(t)
√

3Jm(t) − Jx(t) −Jl(t)

−
√

3Jm(t) − Jx(t) −Jy(t) Jk(t)
√

3Jl(t) −
√

3Jk(t) ·


. (43)

Since the terms in FB(t) explicitly depend on the average atomic vector 3̄(t) at time t , we
update the covariance matrix in small time steps τ � ω0 and keep track of the 0(t) and V̄(t) at
each step. The covariance matrix finally evolves according to

0(t + τ) = DB · TB · 0(t) · [TB]T
· [DB]T + NB, (44)

where DB ≡ 13×3 ⊕DB ⊕ 13×3 and NB ≡ O3×3 ⊕NB ⊕ O3×3.

3.5. Combined effects

To combine the coherent rotations with decoherence, we follow Koschorreck and
Mitchell [17] and apply alternately equations (17) and (21), equations (22) and (30) and
equations (38) and (44) after subdividing the time interval into sufficiently small steps τ . Note
that τ is typically much smaller during the optical pulses than in the time between them, but in
both cases we continue to subdivide the time evolution until the results converge.

4. Measurement

After passing through the ensemble, the optical pulses are typically measured by balanced
polarimetry. This allows one component Ŝ(m)

det of Ŝ(m) to be detected. In the process, the pulse
is absorbed by the detector and any possible information about the other components of Ŝ(m)

is lost. We can describe the projective measurement by a unit vector p(m), defined such that
p(m)

· V̂ = Ŝ(m)

det .
The result of the measurement is random and Gaussian-distributed, with a variance

var(Ŝdet) = p(m)
· 0V · p(m). The correlation of Ŝ(m)

det with other variables are given by the vector
0V · p(m). Finally, we can calculate the post-measurement uncertainty in V̂, in light of the
measurement result and the known correlations, to find the posterior uncertainty

0′

V = 0V −
(0V · p(m)) ∧ (0V · p(m))

p(m) · 0V · p(m)
,

= 0V − 0V[5p(m)0V5p(m)](MP)0T
V (45)

where the superscript (MP) indicates the Moore–Penrose pseudo-inverse and 5p(m) = p(m)
∧ p(m)

is a projector.
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It should be noted that there is nothing stochastic in the simulation method: only the average
values, variances and covariances are computed. This again relies on the assumption that the
fluctuations remain within a linear regime.

5. Initial state and technical noise contributions

A variety of initial states can be used with this approach, subject to a few limitations: the
average value V̄ must be physical, i.e. within the range of V̂ for NA atoms and NL photons.
The Robertson–Schrödinger uncertainty principle

δA2δB2 > 1
4 |〈[A, B]〉|2 (46)

places lower limits on the uncertainty implied by 0V. Given any two scalar operators â ≡ a · V̂,
b̂ ≡ b · V̂

δa2 δb2
= (a · 0V · a)(b · 0V · b)> 1

4

∣∣∣ai b j c
V̂i V̂ j

V̂k
v̄k

∣∣∣2 . (47)

In many situations it is appropriate to assume an initial state of the form R ≡ ρ⊗NA for
the atoms. For example, if optical pumping is used to initialize the state it is often reasonable
to assume the atoms are independently pumped into a state ρ. This gives 3̄ = NATr[λ̂ρ] and
0Λ = NA0λ. If ρ is a pure state, then R describes a coherent spin state (CSS).

We note an important subtlety about using CSSs for practical modelling: if ρ is a pure
state, it is fully polarized along some spin direction λρ , with no uncertainty in that direction.
This manifests as a zero eigenvalue of 0λ, and, if we naively apply the above, also in 0Λ.
This is unrealistic, however. In practice, NA is usually determined by a physical process
with significant uncertainty, e.g. trap loading. Indeed, δN 2

A is often larger than the quantum
variances NA0λ ∼ NA. This contributes a significant ‘atomic technical noise’ to 0Λ. As shown
in appendix B, for a state of the form R = ρ⊗NA , where NA has average N̄A and variance δN 2

A,

03 = N̄A0λ + δN 2
A(λ̄ ∧ λ̄). (48)

In most situations of interest the input light state is a coherent state. For example, in the
experiments described below, we use an Ŝx -polarized input, i.e. S̄ = (NL/2, 0, 0), which has a
covariance matrix 0S = diag(NL/4, NL/4, NL/4). The input average magnetic field components
B̄ and covariance matrix 0B will depend on the modelled experiment.

In the experiments described below the atoms and light are independently initialized, and
we assume that the atom, light and magnetic field variables are initially uncorrelated. Thus the
initial covariance matrix of equation (9) can be written:

0V = 0B ⊕ 03 ⊕ 0S. (49)

6. An example: free-induction decay of collective atomic spin

We illustrate the formalism described above with a simple example. We study, experimentally
and theoretically, a paramagnetic Faraday rotation measurement of the free-induction decay
(FID) of input F̂z and F̂y-polarized CSS precessing in a magnetic field. As described in Behbood
et al [36], neglecting tensorial light shifts described by the G2 term of equation (10), this leads
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to a measurable polarization rotation angle

〈φ(t)〉 =
G1

|B|2
×

{[
By Bz

(
1 − cos(γ |B|t) e−t/T

)
+ Bx |B| sin(γ Bt) e−t/T

]
〈F̂y(0)〉[

B2
z + [B2

x + B2
y ] cos(γ |B|t) e−t/T

]
〈F̂z(0)〉

(50)

for the input F̂z and F̂y-polarized CSS, respectively. The transverse relaxation time T =

1/(wγ |B ′

‖
|) is due to the field-parallel gradient component B ′

‖
≡ ∂|B|/∂z, and a Lorentzian

distribution (FWHM w) of atoms along z, the trap axis, as described in appendix C. Tensorial
light shifts induce an additional nonlinear rotation of the atomic spins, as described in Smith
et al [20] and Deutsch and Jessen [31]. This measurement can be used to estimate an unknown
vector magnetic field, as in Behbood et al [36], and is the basis of a proposal to prepare a
planar-squeezed atomic spin state [37].

Our experimental apparatus, illustrated in figure 2, has been described in detail
elsewhere [8, 25, 38, 39]. In brief, we work with an ensemble of up to one million 87Rb
atoms held in a weakly focused single beam optical dipole trap and probed by µs duration
pulses of near-resonant light propagating along the trap axis and focused to a spot matching
the radial width of the atomic cloud. This geometry produces a strong atom–light coupling,
characterized by the effective on-resonance optical depth d0 ≡ (σ0/A)NA, where σ0 is the
effective on–resonance scattering cross-section, A is an effective atom–light interaction area
and NA is the number of atoms [39]. In this experiment we observe an effective optical depth
d0 = 29.0(2). The optical readout can achieve projection-noise-limited sensitivity, calibrated
against a thermal spin state [38], and using dynamical decoupling techniques [25] has been
used to demonstrate spin squeezing and entanglement-enhanced measurement sensitivity of the
collective atomic spin [8].

For the FID measurement the atoms are initially polarized via optical pumping with a 5 µs
duration pulse of circularly polarized light tuned to the f = 1 → f ′

= 1 transition of the D2 line.
The optical pumping pulse propagates either along the trap axis to produce an Fz-polarized CSS
(〈F̂z(0)〉 = NA), or perpendicular to the trap to produce an Fy-polarized CSS (〈F̂y(0)〉 = NA).
Simultaneously with the optical pumping pulse, light tuned to the f = 2 → f ′

= 2 transition
of the D2 line is applied to prevent atoms collecting in the f = 2 hyperfine state. This ensures
that we prepare the initial CSS with good fidelity. We estimate an optical pumping efficiency
of >99% for both the F̂z-polarized and F̂y-polarized CSSs. The remaining unpolarized atoms
make a negligible contribution to the observed var(φ).

The atoms are then probed with a sequence of 1 µs long pulses of linearly polarized light
(〈Ŝ(in)

x 〉 = ±NL/2) detuned about 1 GHz from resonance with the f = 1 → f ′
= 0 transition on

the D2 line and propagating along the trap axis. After each pulse, the Faraday rotation signal
φ = Ŝ(out)

y /Ŝ(in)
x is recorded by a shot-noise limited polarimeter [40]. The pulses are either (a)

all h–polarized and sent through the atoms at P1 = 10 µs intervals, or (b) pairs of alternately h-
and v-polarized pulses separated by 3 µs and sent through the atoms P2 = 20 µs intervals. The
entire experimental sequence is repeated up to 400 times to collect statistics.

Typical experimental data are shown in figure 2; we plot the evolution of the average
signal φ̄ for an input F̂y– and F̂z–polarized CSS, and the evolution of the variance var(φ)

for the same input states. The observed signal initially oscillates at the Larmor precession
frequency ω0 = 2π × 9.2 kHz with an exponential decay, as described by equation (50). On
top of this there is a collapse and revival of the oscillations driven by tensorial light shifts,
as described in Smith et al [20] and Deutsch and Jessen [31], which rotate population out of
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Figure 2. (a) Experimental setup. PD: photodiode; L: lens; WP: wave plate; BS:
beam splitter; PBS: polarizing beam splitter. Atoms are loaded into a single-
beam optical dipole trap and probed with pulses of light propagating along the
trap axis. An external magnetic field is applied to coherently rotate the atomic
spins, and gradient field components ∂ Bi/∂z are actively cancelled. The initial
atomic state is prepared via optical pumping with circularly polarized light either
propagating perpendicular to or along the trap axis, to prepare an F̂y-polarized
or F̂z-polarized CSS, respectively. Also shown are experimental data of (b) the
average signal φ̄ for an input F̂y—and F̂z—polarized CSS (blue and orange,
respectively), and (c) the evolution of the variance var(φ) for the same input
states. Error bars represent ±1σ statistical errors. The lines connect experimental
points to aid visualization.

F̂z and into the alignment variables Ĵ x,y at a rate ωG2 = (G2Sx/2)(1/P1) = 2π × 0.43 kHz.
The revival is accompanied by a π phase shift in the oscillations (see figure 3 below for an
illustration of this effect). The observed variance var(φ) oscillates at a frequency 2ω0 and
undergoes a similar but much more pronounced collapse and revival driven by the tensorial light
shifts. Note that the observed variance in this experiment is dominated by technical noise; for
our experimental parameters, the quantum noise contributions from both the atomic and light
variables are � 1 mrad2. The dominant technical noise contributions are due to uncertainty
in the atom number δN 2

A, and magnetic field noise, described by the covariance matrix 0B ,
coupled into the observed variable via tensorial light shifts. We illustrate the effect of these terms
separately in figure 3, by running numerical simulations, as described in detail in section 7, using
experimental parameters from the data shown in figure 2 and setting variously the 0B, δN 2 and
G2 terms equal to zero.
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Figure 3. Theoretical curves illustrating the effect of technical noise terms and
tensorial light shifts on the mean φ̄ and variance var(φ) of the observed signal.
(a) Tensorial light shifts rotate population out of F̂z and into the alignment
variables Ĵ x,y leading to a collapse and revival of the mean φ̄. The revival is
accompanied by a π phase shift in the oscillations, as is evident in the simulation
with G2 = 0, which removes the effect of tensorial light shifts. (b)–(d) The
observed variance var(φ) undergoes a more pronounced collapse and revival
driven by the tensorial light shifts, which couple technical noise from the atomic
variables 3̂ and the magnetic field covariance matrix 0B into the observed
variable. The contribution to the observed signal in (b) is due to magnetic field
noise. Technical noise in the atomic variables due to uncertainty δN 2

A in the atom
number only adds significant noise only during the early stages of the evolution.
This is illustrated more clearly in the magnified plots (c) and (d). The dot-dashed
magenta line in plot (d) illustrates the quantum noise contributions due to the
light (shot-noise) and atoms (projection-noise).

7. Simulation of free-induction decay

In order to simulate the FID experiment, we need to estimate a number of experimental
parameters, including the input state vector V̄ and covariance matrix 0V, the coupling constants
of equation (10) and the decoherence terms in equations (26)–(29) and (39). The atom–light
coupling constant G1 is calibrated in an auxiliary experiment as described in Kubasik et al [39].
From this calibration we calculate the effective atom–light interaction area A, the coupling
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constant G2 of equation (10) and the single-photon scattering probability ηγ used to describe
the optically induced decoherence terms in equations (26)–(29) (see [41] for details).

We estimate the average magnetic field B̄ for a single experimental data set by fitting the
observed signal 〈φ(t)〉 with equation (50), as described detail in Behbood et al [36]. Since
equation (50) neglects the effect of tensorial light shifts, we fit only the first 250 µs of each
measured signal to minimize the systematic error that this approximation introduces. From the
fits we also determine the coherence time T that is used in equation (39) From the same fits we
estimate the number of atoms 〈F̂i(0)〉 = NA/2. Assuming an input state of the form R ≡ ρ

⊗NA

f̂ i

for the atoms, this specifies the initial atomic state via 3̄ = NATr[λ̂ρ f̂ i
]. The number of photons

NL in each pulse is independently measured via a reference detector, as shown in figure 2.
Together, these estimates specify the initial state of the vector V̄.

Statistics from the fits to equation (50) across the data set allow us to estimate the
covariance matrix 0B. Similarly, we estimate the uncertainty δN 2

A in the atom number
from var(F̂i) = var(NA/2) (which includes contributions from variable trap loading and state
preparation efficiency as well as measurement uncertainty). This allows us to estimate the initial
covariance matrix 0Λ using equation (48). Since the measurement is shot-noise limited, the
input light covariance matrix is 0S = (NL/4, NL/4, NL/4). Together, via equation (49), these
specify the initial covariance matrix 0V(0).

As an example, we give the experimental parameters in detail of the first example described
in section 6, shown in figures 2(b) and (c). For this experiment, we set the detuning of the probe
to 1 = −700 MHz and probe with a sequence of 1 µs long h-polarized pulses of light with on
average NL = 7.19 × 106 photons per pulse at 10 µs intervals. The measured average magnetic
field was B = (11.92, −4.08, −3.23) mG, with a covariance matrix

0B =

 0.091 0.005 −0.023

0.005 0.116 0.010

−0.023 0.011 0.007

mG2. (51)

We estimate NA = 6.05 × 105 and 1NA = 1.6 × 103, giving an initial atomic vector for the
F̂y–polarized input Λ(t = 0) = (0, 1, 0, −0.5, 0, 0, 0, −0.29) × NA and covariance matrix

03(t = 0) =



0.5 0 0 0 0.5 0 0 0

0 4.98 0 −2.49 0 0 0 −1.43

0 0 0.5 0 0 0 0.5 0

0 −2.49 0 1.49 0 0 0 0.28

0.5 0 0 0 0.5 0 0 0

0 0 0 0 0 1 0 0

0 0 0.5 0 0 0 0.5 0

0 −1.43 0 0.28 0 0 0 1.16


× NA. (52)

We further estimate a coherence time T = 450 ± 10 µs. The calibrated coupling
constants were G1 = 1.8 ± 0.2 × 10−7 rad atom−1 and G2 = −9.3 ± 0.8 × 10−9 rad atom−1, and
the atom–light scattering parameter ηγ = 1.1 × 10−9.
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Together these parameters determine the initial state vector V̄(t = 0) and covariance matrix
0V(t = 0) as described in section 5, the atom–light coupling constants of equation (10), the
magnetic field components of equation (33), and the decoherence terms in equations (26)–(29)
and equation (39). With these input parameters, we then run numerical simulations of the
evolution of the state vector V̄ and covariance matrix 0V following the procedure described
in section 3, keeping track of V(tm) and 0V(tm) at each time step. As in the experiment, we
alternate between a time interval of 1 µs in which the light is present and an interval of 9 µs
with no light present. For the numerical calculations, we divide these intervals into 50 and 100
sub-steps, respectively, which is sufficient to ensure numerical convergence of the results. The
results of the simulations (dark blue curves) are plotted along with the experimental data (light
blue circles) in figures 4(a) and (b) for both the mean φ̄ and variance var(φ) with an input
F̂y-polarized atomic state.

We observe excellent qualitative and quantitative agreement between the simulations and
the observed mean φ̄ and variance var(φ) in the rotation angle with no further free parameters
adjusted in the calculations. For the mean φ̄, we reproduce the observed behaviour in our
simulations over the entire 1 ms of observation, as shown in figures 4(b) and (d). For the variance
var(φ) the quantitative agreement is initially good, but breaks down at longer times. This can
be explained by the effect of the uncertainty in the magnetic field, described by the covariance
matrix 0B, which eventually drives the atomic variables out of the Gaussian approximation.

Because magnetic precession is cyclic, not linear, an initially Gaussian spin distribution
will become non-Gaussian due to uncertainty in the precession frequency. As some parts of
the distribution precess faster than others, the distribution begins to ‘wrap around’ the Bloch
sphere, forcing a non-Gaussian shape on the distribution. It is convenient to define a time
τgauss ≡ π/(γF1B‖), where 1B‖ is the uncertainty in B along the average field direction, found
using 0B of equation (51). τgauss indicates the moment at which the precession angle uncertainty
becomes π . Perhaps surprisingly, the observed and predicted variances (see figures 2(c) and (e))
agree very well up to nearly t = τgauss ≈ 0.45 ms, showing that the theory gives accurate results
even for significant departures from Gaussianity. The agreement in the average values persists
even for t > τgauss. This changes accumulates with time and becomes much more significant
than the technical noise in the number of atoms so that while the atomic noise is important early
on, the dephasing effect of magnetic field inhomogeneities becomes the dominant contribution
for larger times.

The collapse and revival of the oscillations in figures 4(a) and (b) is due to rotations driven
by the tensorial light shift. The effect of the tensorial light shifts can be reduced either by
probing further off resonance, or by probing the atoms alternately with h– and v–polarized
pulses, as described in detail in [38]. We illustrate this in figures 4(c)–(d), where we compare
these data to FID measurements (and simulations) made with two alternate probing strategies.
In figures 4(c) and (d) we set the detuning to 1 = −1.5 GHz and repeat the single–polarization
probing sequence. In figures 4(e) and (f) we set the detuning to 1 = −700 MHz and probe with
pairs of alternately h- and v-polarized pulses separated by 3 µs are sent through the atoms 20 µs
intervals (for clarity we plot only the h–polarized pulses). This results in the same total number
of photons used per unit time as in the single polarization probing strategy. With these data
we observe similar behaviour in the mean φ̄ and variance var(φ) at both detunings, indicating
the effective cancellation of tensorial light shifts in these experiments. We also observe non-zero
minima in var(φ) at all phases in the experimental data for t > 0.5 ms, which are not reproduced
in our calculations. Looking at the data globally, we also note that lower envelope rises more
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Figure 4. Comparison of experimental data (light blue circles) with numerical
simulations (dark blue curves) of the mean φ̄ (a), (c) and (e) and variance
var(φ) (b), (d) and (f) of the optical rotation of the probing light. For (a)
and (b) we set the detuning of the probe to 1 = −700 MHz and probed the
atoms with a sequence of 1 µs long h–polarized pulses of light with on average
NL = 7.19 × 106 photons per pulse at 10 µs intervals. For (c) and (d) we set the
detuning of the probe to 1 = −1.5 GHz and probed with the same measurement
sequence with on average NL = 1.35 × 107 photons per pulse. For (e) and (f)
we set the detuning of the probe to 1 = −700 MHz and probed the atoms with
a sequence pairs of 1 µs long pulses with alternating h– and v–polarization,
separated by 3 µs and sent through the atoms 20 µs intervals with on average
NL = 2.10 × 106 photons per pulse. Error bars represent ±1σ statistical errors.
See text for details.
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in the data than in the simulation. This may due to the curvature of the Bloch sphere: for small
uncertainty in precession angle 1θ = tγF1B‖, we will have 1Fz ∝ 1θ∂θ Fz. For flat parts of
the curve Fz(θ) there will be zero ∂θ Fz and thus zero 1Fz but for larger 1θ , we need to take
into account higher derivatives, i.e. the curvature ∂2

θ Fz and higher. This implies a first-order
insensitivity of the measured component to rotations, and thus (to first order) zero contribution
to the measured 1θ . When the distribution describing the state ‘wraps around’ the Bloch sphere,
the second-order effects, which are not taken into account in the Gaussian approximation,
become important and give a contribution to the measured variance proportional to δB2. This
contribution is necessarily positive, and raises the lower envelope above the level predicted by
the simulations.

8. Conclusions

We have presented a method for describing the quantum dynamics of spin-1 atomic ensembles,
extending the method introduced for quantum light interfaces [13, 15, 16], developed for
spin-1/2 atomic ensembles by Madsen and Mølmer [14] and generalized by Koschorreck
et al [17] and Toth et al [42]. Our approach, which explicitly includes the so-called ‘spin
alignment’ degrees of freedom, fits naturally with the light–matter interaction, which couples
both spin alignment and spin orientation to the optical Stokes parameters. For spin-1 our
description is complete within the Gaussian approximation, while for larger spins it is still
useful when octopole and higher spin moments can be neglected. We also include the important
technical noise associated with magnetic fields and noise due to uncertain atom number, as
typically arises due to stochastic trap-loading processes. Finally, we give explicit formulae for
the noise introduced by spontaneous scattering during the optical probing process and due to
dephasing in an inhomogeneous magnetic field.

We have tested the model against experiment in a scenario involving all of these effects. We
compute the evolution of the spin orientation average and variance for atomic ensembles with
uncertain atom number, undergoing a combination of free-induction decay and alignment-to-
orientation conversion in the presence of a noisy magnetic field. The simulation is compared to
experimental observations made with a cold 87Rb ensemble held in an optical dipole trap, probed
by shot-noise-limited Faraday rotation with near-resonant light. We find good agreement within
the Gaussian regime. In addition to validating the model, the experiments provide a heuristic
guide to the limits of the Gaussian approximation in these systems.

Given that most atomic ensemble experiments are performed with spin-1 or larger atoms,
the technique described here will allow more accurate modelling of established quantum
optical protocols, e.g. quantum memory [15], quantum non-demolition measurement [26, 38],
dynamical decoupling [25], spin squeezing [8] and vector magnetometry [36], as well as
proposed applications such as generation of macroscopic singlet states [42, 43] and planar
squeezed states [37].
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Appendix A. Proof of equations (23) and (24)

For brevity, we write the covariance as

C(A, B) ≡
1
2〈A ∧ B + (B ∧ A)〉 − 〈A〉 ∧ 〈B〉, (A.1)

where the expectation is taken on the state of the ensemble. In this notation, 03 ≡ C(3̂, 3̂)

where as above 3̂ =
∑

i λ̂
(i)

. We assume that all atoms are statistically equivalent, so that

〈λ̂
(i)

∧ λ̂
( j)

〉 = 〈λ̂
(1)

∧ λ̂
(2)

〉 for all i 6= j and 〈λ̂
(i)

∧ λ̂
(i)

〉 = 〈λ̂
(1)

∧ λ̂
(1)

〉 for all i . We then have

03 =

∑
i, j

C(λ̂
(i)

, λ̂
( j)

) = NAC(λ̂
(1)

, λ̂
(1)

) + NA(NA − 1)C(λ̂
(1)

, λ̂
(2)

), (A.2)

which we solve for C(λ̂
(1)

, λ̂
(2)

) to get

C(λ̂
(1)

, λ̂
(2)

) =
03 − NAC(λ̂

(1)
, λ̂

(1)
)

NA(NA − 1)
. (A.3)

Because of the symmetry, removing atoms does not change C(λ̂
(1)

, λ̂
(1)

) or C(λ̂
(1)

, λ̂
(2)

). If a
fraction 1 −X of the atoms is removed, the covariance matrix 0

(X NA)

3 of the remaining atoms
can be calculated as in equation (A.2), but summing i and j from 1 to X NA. We find

0
(X NA)

3 = X NAC(λ̂
(1)

, λ̂
(1)

) +X NA(X NA − 1)C(λ̂
(1)

, λ̂
(2)

)

= 0
(NA)

3

X (X NA − 1)

NA − 1
+ 0λ

(
X (1 −X )N 2

A

NA − 1

)
,

where

0λ ≡ C(λ̂
(1)

, λ̂
(1)

) (A.4)

is the single-atom covariance matrix. Dropping terms of order 1/NA and smaller,

0
(X NA)

3 = 0
(NA)

3 X 2 + 0λX (1 −X )NA. (A.5)

This accounts for the change in 0Λ due to removing (1 −X )NA atoms. We must also account
for the noise of returning a fraction p of these atoms to the ensemble in a decohered state. We
assume they are completely random, and thus add the noise of a thermal state (i.e. variance
f ( f + 1)/3 per atom).

0
(X NA)

3 = 0
(NA)

3 X 2 + 0λX (1 −X )NA + 2p(1 −X )NA1/3. (A.6)

Here

0λ =
2
318×8 − λ̄ ∧ λ̄ +

∑
k λ̄kM(k),

M (k)

i j ≡
1
4Tr[λ̂k{λ̂i , λ̂ j}],

(A.7)

where {·, ·} indicates the anti-commutator. This can be shown using the expectation Tr[ρλ̂i ] = λ̄i

and the orthonormality condition Tr[λiλ j ] = 2δi j from which Tr[{λi , λ j}] = 4δi j . We find the
single-particle state ρ =

1
31 + 1

2

∑
i λ̄i λ̂i and the covariances

cov(λi , λ j) ≡
1
2〈{λ̂i , λ̂ j}〉 − 〈λ̂i〉〈λ̂ j〉

=
2
3δi, j + 1

4

∑
k λ̄kTr[λ̂k{λ̂i , λ̂ j}] − λ̄i λ̄ j . (A.8)
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Appendix B. Noise from uncertain atom number

We consider the statistics of 3̂ for ensembles with NA atoms in a permutationally invariant
product state R(NA)

= ρ⊗NA , and taking a statistical average over NA. We indicate averages
with subscripts, e.g. 〈3̂〉R = Tr[3̂R] indicates an expectation with respect to the state R, while
〈3̂〉R,NA = 〈Tr[3̂R(NA)]〉NA indicates a statistical average of 〈3̂〉R over the distribution of NA .

Due to the structure of R(NA), 〈λ̂
(k)

〉R(NA) = 〈λ̂
(1)

〉ρ ≡ 〈λ̂〉ρ is independent of both k and of NA, so
that

〈3̂i3̂ j〉R =

NA∑
k,l=1

〈λ̂
(k)

i λ̂
(l)
j 〉ρ

= NA〈λ̂i λ̂ j〉ρ + NA(NA − 1)〈λ̂i〉ρ〈λ̂ j〉ρ, (B.1)

and thus

〈3̂i3̂ j〉R,NA = N̄A〈λ̂i λ̂ j〉ρ + (δN 2
A + N̄ 2

A − N̄A)〈λ̂i〉ρ〈λ̂ j〉ρ, (B.2)

where δN 2
A ≡ 〈N 2

A〉 − 〈NA〉
2 indicates the variance. At the same time

〈3̂i〉R,NA = N̄A〈λ̂i〉ρ, (B.3)

so that

cov(3̂i , 3̂ j)R,NA ≡
1
2〈3̂i3̂ j + 3̂ j3̂i〉R,NA − 〈3̂i〉R,NA〈3̂ j〉R,NA (B.4)

= N̄Acov(λ̂i , λ̂ j)ρ + δN 2
A〈λ̂i〉ρ〈λ̂ j〉ρ. (B.5)

In terms of the single-atom covariance matrix 0λ of equation (A.4),

0 = N̄A0λ + δN 2
A(λ̄ ∧ λ̄). (B.6)

Appendix C. Inhomogeneous magnetic fields

The microscopic spin operators evolve as

f i(t) = R(zi , t)f i(0), (C.1)

where f i is the spin of the i th atom with position zi and

R(z, t) = exp[γF t |B(z)|AB], (C.2)

where

AB ≡


0 −B̂z B̂y

B̂z 0 −B̂x

−B̂y B̂x 0

 (C.3)

is the generator of rotations about B and B̂ ≡ B/|B|. Expanding the field as B(z) ≈ B0 + (B′

‖
+

B′

⊥
)z + O(z2), where B′

‖
is parallel to B0 and B′

⊥
is perpendicular. We note that a change in the

magnitude of B has an accumulating effect on the spin precession, i.e. the change in f grows
with t . In contrast, a change in the direction of B has a fixed effect: from the perspective of the
measurement, a rotation of B is equivalent to a rotation of both the initial state and the measured
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component Fz. For small gradients ∂zB � B/ latoms, where latoms is the length of the cloud, we
can ignore B′

⊥
. This approximation, along with the fact that An+2

B = −An
B , allows us to write

R(z, t) ≈ I+ AB0 sin ω(z)t + A2
B0

[1 − cos ω(z)t], (C.4)

where ω(z) = γF |B0 + zB′

‖
|.

In our trap, we observe an atomic density ρ(z) well approximated by a Lorentzian ρ(z) =

w/π(z2 + w2) where w is the FWHM extent of the ensemble. The collective spin F ≡
∑

i f i

then evolves as

F(t) =

∫
dz ρ(z)R(z, t)f(0) (C.5)

= [I + A2
B0

]F(0) + e−wγF |B′

‖
|t(AB0 sin ω0t − A2

B0
cos ω0t)F(0). (C.6)

In the first term I + A2
B0

describes a projector onto the direction of B0. This is the steady-state
polarization. The second line describes a decaying oscillation about B0 of the perpendicular
components with a coherence time T = 1/(wγF |B′

‖
|).
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