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Abstract

We develop a new randomization-based general-purposeothéth the computation of
the interval availability distribution of systems modellg continuous-time Markov chains
(CTMCs). The basic idea of the new method is the use of a raimion construct with
different randomization rates for up and down states. The method is numerically stable
and computes the measure with well-controlled truncatiooreIn addition, for large CTMC
models, when the maximum output rates from up and down sta¢esgnificantly different, and
when the interval availability has to be guaranteed to hdeeel close to one, the new method
is significantly or moderately less costly in terms of CPUdithan a previous randomization-
based state-of-the-art method, depending on whether thiemam output rate from down states
is larger than the maximum output rate from up states or vécsa: Otherwise, the new method
can be more costly, but a relatively inexpensive for largeleh® switch of reasonable quality
can be easily developed to choose the fastest method. Alenway, we show the correct-
ness of a generalized randomization construct, in whictrariy different randomization rates
can be associated with different states, for both finite CEM@h infinitesimal generator and
uniformizable CTMCs with denumerable state space.
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1 Introduction

The interval availability is defined as the fraction of tirmed time interval in which a system is
operational. There has been much interest in computingigtebdition of the interval availability.
Most of the work has dealt with the case in which the behaviahe system is captured by an
(homogeneous) continuous-time Markov chain (CTMC) modefitng up (operational) and down
states. Computing the distribution of the interval avaligbof systems modeled by a CTMC has
been proved to be a challenging problem (see Carrasco 2@044, Goyal and Tantawi 1988;
Ross 1983; Rubino and Sericola 1992, 1993, 1995; Sericé&l@; I Souza e Silva and Gail 1986;
Takacs 1957). The first effort is reported in Takacs (19%Here a closed-form integral expression
was obtained for a two-state CTMC model. In Ross (1983), aaniziation was used to obtain the
distribution of the operational time in a time interval oéteame two-state CTMC model. The first
method able to deal with arbitrary finite CTMC models was ttgyed by de Souza e Silva and
Gail (1986) using randomization. Goyal and Tantawi (1988)edboped a numerical approximate
method without error bounds. Sericola (1990) obtained sedeform solution in terms of growing
size matrices. Rubino and Sericola (1992) developed anesffinumerical method for the particu-
lar case in which operational and down periods are indepegndperational periods are identically
distributed except, perhaps, the first one, and down pesdcelgdentically distributed. Rubino and
Sericola (1993) also developed two randomization-basettiads which reduce the computational
requirements of the randomization-based method develbpet: Souza e Silva and Gail (1986).
The first of such methods is guaranteed to reduce the CPU gmérements; the second one is
guaranteed to reduce the memory requirements and oftemeslaoes the CPU time requirements.
That second method was reviewed in Rubino and Sericola j1&9%lgorithm A, where it was
taken as starting point to develop another method (AlgariB) that is competitive when the num-
ber of operational states of the model is small and, furtieemcan deal with some class of CTMC
models with denumerable state space. Recently, we havéogedea method in Carrasco (2004a),
which will be called heraegenerative transformatigriargeted at a class of CTMC models, class
C1, including both exact and bounding failure/repair CTMC reledbf fault-tolerant systems with
increasing structure function (Barlow and Proschan 1984)pnential failure and repair time dis-
tributions, and repair in every state with failed composentith failure rates much smaller than
repair rates, which can be significantly less costly in teoffSPU time than Algorithm A if the in-
terval availability has to be guaranteed to have a levekdo®ne. The regenerative transformation
method was taken as starting point in Carrasco (2011) tdaleeemethodbounding regenerative
transformation to compute bounds for the interval availability distribat For a class of CTMC
models slightly less general than clasg the version that seems to be computationally less costly
in terms of CPU time seems to be computationally little gostlative to the model size when that
model size is large, provided the interval availability ha$e guaranteed to have a level close to
one. Furthermore, under additional conditions that ansfgad by both exact and bounding fail-
ure/repair CTMC models of fault-tolerant systems with @asing structure function, exponential
failure and repair time distributions and repair in evetestwith failed components, with failure
rates much smaller than repair rates, the bounds seem ghivéaii any time interval for some initial



probability distributions, and for time intervals not tamall in case of other distributions.

The interval availability distribution can be looked at ggaaticular case of the distribution of
the reward earned in a time interval by a Markov reward preoedgth reward rates associated with
states, and several methods have been proposed to comatudissthibution (Donatiello and Grassi
1991; Islam and Ammar 1989; Nabli and Sericola 1996; Pditgtaal. 1993; Qureshi and Sanders
1996; Smith et al. 1988; de Souza e Silva and Gail 1989; 8uak 2010) or bounds for it (Carrasco
2006; Racz et al. 2002).

Because of its numerical stability, well-controlled tration error, and moderate memory and
CPU time requirements, Algorithm A can be considered theeatiistate-of-the-art general-purpose
method for computing the interval availability distribori for finite CTMCs. In this paper, we
develop a new method for computing the interval availabditstribution for systems modeled with
finite CTMCs. The basic idea of the new method is the use of argéired randomization construct
with different randomization rates for the up and down statéke Algorithm A, the new method is
numerically stable and computes the interval availabdistribution with well-controlled truncation
error. In addition, for large CTMC models, when the maximumpait rates from the up and down
states are significantly different, and when the intervalilability has to be guaranteed to have a
level close to one, the new method is significantly or moadydess costly in terms of CPU time,
depending on whether the maximum output rate from downssistarger than the maximum output
rate from up states, or vice versa. Otherwise, the new meathnde more costly, but a relatively
inexpensive switch for large models of reasonable quatitthat case can be easily developed to
choose the fastest method.

The rest of the paper is organized as follows. Section 2 deforenally the measure that will
be computed by the new method, reviews the randomizatiostieart on which Algorithm A and
most previously proposed methods for computing the intervailability distribution are based, and
reviews Algorithm A. Section 3 develops the new method agdes that it can be significantly less
costly in terms of CPU time than Algorithm A. It also defines gwitch between the new method
and Algorithm A. Most of the effort is developed to the detiwa of computationally inexpensive
and good truncation points. Section 4 begins by analyziagntmerical stability of the new method
using a CTMC model with closed-form solution. Then, we use lavge CTMC models to illustrate
that the new method can be significantly less costly in terf@RU time than Algorithm A, con-
firming the analysis performed §8. Using those two large CTMC models we also asses the quality
of the switch. Section 5 presents the conclusions.

2 Preliminaries

Let X = {X(¢);t > 0} be a CTMC with finite state spaée = U U D, whereU is the subset of
up states and is the subset of down states. The interval availability clementary distribution at



timet is defined as .
1
IAVCD(t,p) = P [;/ 1x(ryev dr > p] :
0

where 1. denotes the indicator function returning value 1 if comuditc is satisfied and value O
otherwise. In other worddAVCD(t, p) is the probability that the fraction of time that the system i
up in the time intervalo, ¢] is greater thap. To simplify the presentation, we will assume throughout
the papett > 0 and0 < p < 1.

Algorithm A is based on the randomization construct. Aet (a; ;)i jen denote the infinitesi-
mal generator of, wherea; ; = —A;, A\; denoting the output rate of from statei, anda; ; = \; ;,
J # i, \i; denoting the transition rate of from statei to statej, leta = (o;);cqo denote the
initial probability distribution column vector ok, whereo; = P[X(0) = i], i € §; and assume
max;cq —|ai;| > 0. Consider anyA > max;cq —a;; and define the (homogeneous) discrete-time
Markov chain (DTMC)X’ = {)?n;n = 0,1,2,...} with same state space and initial probability
distribution asX and transition matri¥> = (P ;); jeo = I+ A/A, I denoting the identity matrix.
LetQ = {Q(t):t > 0} be a Poisson process with arrival raténdependent ofC. In the random-
ization construct,X is interpreted as the DTMQ subordinated to the Poisson procégsin the
sense thak (¢) is the state in whiclX is at the step given by the number of occurrences in the time
interval [0, t] of the Poisson proces3. In fact, we have thak and{)?Q(t);t > 0} are probabilis-
tically identical (Kijima 1997, Theorem 4.19), and anythidepending solely on the probabilistic
path behavior ofX can be computed usin{g}?@(t);t > 0} instead. The DTMCX is said to be
randomized with raté\ when building{)?Q(t);t > 0}. Beacuse the output rate is uniformized in
the randomization construct, the construct is also knowmésrmization.

The randomization construct underpins the so-called nandidion (uniformization) methods
for the computation of transient probability distributieactors of CTMCs, expected values of func-
tions of the state of CTMCs at a given time, expected timeagas, and variances of time averages
(Grassmann 1977a, b, 1987; Gross and Miller 1984; ReibmdnTamedi 1989; Sufié and Ca-
rrasco 2005). A major advantage of most randomization nastietheir numerical stability. Here,
a method is considered to be numerically stable when théuwelarror in the computed solution,
and in each component of the computed solution if the condpatdution is a vector, resulting
from round-off errors can be expected to be small. This tedtbm the fact that, apart from the
computation of the diagonal elementsBfand some methods for computing Poisson probabili-
ties, they only involve additions of positive quantitiesheTissue has been rigorously examined
in Grassmann (1993) in relation to the computation of thasient probability vector of a finite
CTMC. Computing Poisson probabilities avoiding internaéeiunderflows and overflows is not a
trivial problem, and several methods have been proposezbfoputing them (Fox and Glynn 1988,
Knisel 1986, van Moorsel and Sanders 1997). In the new rdethd in our implementation of
Algorithm A we will use the method described in Kniisel (1986. 1028-29), which is reason-
ably efficient and numerically stable. Several variantsasfdomization methods have also been
proposed, including selective and compressed selectidoraization (Melamed and Yadin 1984),
uniformization with stationarity detection (Reibman ariV&di 1988, Sericola 1999), adaptive uni-
formization (van Moorsel and Sanders 1994), adaptive mmifzation/standard uniformization (van



Moorsel and Sanders 1997), regenerative randomizationg&a 2003, 2005), and randomization
with quasistationarity detection (Carrasco 2004b). Adapaniformization is somehow related to
the new method, the difference being that in adaptive umipation the randomization rate depends
on the subset of states in which the randomized DTMC can lee afparticular number of steps,
whereas in the new method it depends on whether the statedvisy the randomized DTMC is up
or down.

Algorithm A'is based on the formulation fbAVCD(¢, p) which results from the randomization
construct

IAVCD(¢, p) Z Z ‘At< > PP —p) " Yk, 1)

n=0 k=0

wherey,, , = P[#(Xo.n € U) > k] and#(Xo.,, € B) denotes the number of indicgs0 < k < n,
for which )?k € B holds. In the method, three truncations are performed tguhemations of (1).
With ¢ being an error control parameter, the three truncationdgefired by the parameters
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which satisfies
IAVCD(t, p) = IAVCD?V,C',C” (t, p) + €N7C/7C// (t, p) s

with 0 < eN,C’,C" (t,p) <e.

Let X* denote a version ok with initial statei € €, let Y= = P[#(X{, € U) > k] and
let Y, be the column vecto@Yj, )ica. Clearly,Y,, r» = aTY, ;, with T denoting the transpose
operator. LeD and1 denote column vectors of appropriate dimensions with alineints equal to,
respectively, 0 and 1, Ierik andYﬁk denote the subvectors &f,, ;. including the components
associated with, respectively, the up and down states; el s - denote the submatrix dP
collecting the components with index pairs fhx C. Then, the vector,, ; in the domain of
(n, k) pairs for whichY;,  have to be obtained to comput&VCDY; - - (¢, p) can be obtained for
increasingn and, for each, for increasingk using the recurrence‘s’mk =PyaY,_1r-1,n>0,



initial conditions Yy = 1, Y{, = 0.

As A increases, the truncation poimtg C’ andC” increase and the computational cost of the
method tends to increase, making= max;cq —a;; a reasonable best selection for We will
assume that selection. Alsfy () will denote the probability that a Poisson random variabia w
parameten has valuet. Of courseP,(0) = 1.

3 The New Method

To simplify, we will exclude the cases in which = 0, D = (), maxcy —a;; = 0, or
max;ep —a;; = 0. These are not severe restrictions, since,for= (), IAVCD(¢,p) = 0,
for D = ), IAVCD(¢,p) = 1, for U # 0 andmax;cpy —a;; = 0, all up states are absorbing
andIAVCD(t,p) = P[X((1 — p)t) € U], which is simpler to compute, and, fd» # ( and
max;cp —a;; = 0, all down states are absorbing allVCD(¢,p) = P[X(pt) € U], which is
simpler to compute.

We will start by obtaining a new closed-form formulation I&VCD(t, p). After that, we will
deal with the issues necessary to derive the method froneltsed-form formulation.

3.1 Formulation

To obtain the new closed-form formulation fbAVCD(¢, p), we will consider a randomization
construct in which a DTMCX is randomized with rate\y = max;cy —a;; in the states in

U and rateAp = max;ep —a;; in the states inD. The DTMC X has same state space and
initial probability distribution asX and transiton matrixP = I + A; A, whereAyp =
diag[l,cuAy + liepAplicq, diagd;];cq denoting a2| x |©2| diagonal matrix with diagonal
elementsd;, i € Q. LetY = {Y(¢);t > 0} be the stochastic process resulting from the con-
struct. That construct was considered in Carrasco (200#hran be looked at as a particular case
of a more general construct in which arbitrarily differeabhdomization rated; > —a;,;, A; > 0,

i € Q are associated with the states of a DTMC In that generalized construck, has, of course,
same state space and initial probability distributionXasind transition matri®® = I + A~'A,

A = diag[A;licq. Let{E;,.,i € Q,n > 1} be a collection of exponentially distributed ran-
dom variables that are mutually independent and indepemﬁeﬁ, with E;,, having parameter
A;. Then, in that generalized constru&t,can be formally defined, respecting the fact that visits
durations ofX to i are exponentially distributed with parametey, asy = {X’T(t);t > 0} with
7(t) =min{n >0: >, Eg w1 > t}. The following theorem asserts thatis probabilistically
identical toX, allowing the use ot instead ofX when computing anything depending solely on
the probabilistic path behavior of.

Theorem 1. Let X = {X(¢);t > 0} be either a finite CTMC with state spa@eor a uniformizable
CTMC with denumerable state spaeeand letA = (a; ;) jcq be the infinitesimal generator of .



LetA;, i € 2 be such that\; > —a;;, A; > 0 and theA;, ¢ € 2 are uniformly bounded from above.
Let X be the DTMC with same state space and initial probabilityribiation as X and transition
matrix P = I+ A7A, A = diag[A;]icq. ThenY = {X’T(t);t > 0} with 7(t) = min{n > 0 :
ZZI} Eg 1> t} is probabilistically identical taX .

Proof. By the monotone convergence theorem,

n o 1
lim E Es = E — =00
n— o0 X kt1 As ’
k=0 k=0 " Xk

limy, 00 Y pep EXMH will be oo with probability one (see, for instance, Kijima 1997, p. 18¢
the argument), for any arbitrary> 0, 7(¢) will be defined and finite with probability one, implying
that7(s), 0 < s < t will be defined and finite with probability one, and, becatisearbitrary, that
7(t), t > 0 will be defined and finite with probability one. This showsttha= {)?T(t);t > 0}is
defined with probability one. Becauseis defined with probability one and the stochastic behavior
of either a finite CTMC with infinitesimal generator or a umifozable CTMC with denumerable
state space is defined by its initial probability distribatitogether with its infinitesimal generator
(Kijima 1997), it is enough to prove that the initial probitlyi distribution of Y coincides with
that of X and thatY” is a CTMC with infinitesimal generatoA. The first is rather obvious, since
7(0) = 0 with probability one, and, then, the initial probabilitystfibution of Y coincides with
that of)?, and X. For the second, it suffices to show that, for arbitraties 0 and: €  with
PIX, ) =1 >0,

E

P[Xo iy =i | Xoqy = 1]

= Q4 j, ‘7697]7&27

=a;;.
h—0+ h B

Both follow if, for arbitrariest > 0,7 € 2 andk > 0 with P[)?k =i A T(t)=k] >0,
. P[XT(t+h):j‘Xk:iAT(t):k]
im
h—07t h
. P[)?T(t_i_h):“)?k:i/\T(t):k?]—l
lim
h—0*t h

:ai7j7 36973#27

= Q-

But, using the memoryless property of exponential randorables and the fact thaX and the
collection of random variable§E; ,,,i € Q,n > 1} are independent, we have
P[XT(t+h) :j‘)/(:k:i A T(t):k]
= P[Eij11 <h)P[Xp1 =3 | X =] +o(h)
= P jAih+o(h) = aijh+o(h), j€Q,j#i,

PlX,pm=i|Xp=i A 7(t)=Fk] -1
= _P[XT(t+h) £i| Xp=1i A T(t) = k]
= —P[Eijs1 < h|P[Xpp1 #i| X =] +o(h)
= —(1—Pi;j))Aih+o(h) =a;ih+o(h). O



With X andY being probabilistically identical, we can base the comatiaof IAVCD(¢, p) on
the analysis ol". Because the exponential visit durations in up and dowestat the randomized
DTMC X are, in general, different, the use of two randomizatioesatill force us to count the
number of visits ofX to up states during a given number of steps’?ofThis is also necessary in
Algorithm A, so essentially no computational burden is atldg the consideration of two random-
ization rates in the new method. Informally, using two ramilation rates can be advantageous
whenAy andAp are significantly different. This is because, in Algorithmarandomization rate
equal tomax{Ay, Ap} is used, and the number of steps)%ithat have to be considered to capture
well enough the behavior of in the time interval0, ¢] will tend to be significantly larger than in the
method with two randomization rates. This is the intuitibatthas motivated the new method. On
the other hand, the use of two randomization rates will reardg complicate both the formulation
of the measure and its truncation.

We will obtain a closed-form expression feAVCD(¢, p) in terms of probabilities of sets of
realizations ot = {X,(;t > 0} with 7(t) = min{n >0 : Sheo(lg co Btz cpBER) >
t}, BY, k = 1,2,3,... denoting exponential random variables with paramaigrand EC, k =
1,2,3,... denoting exponential random variables with paramdtgr with all random variables
independent among them and independeni’oﬂ'hen, conditioning on the number of steps given
by X at timet, on the number of up states visited By on those steps, and on whether the last
visited state was up or down, using the theorem of total doitibaand the fact that the random
variablesE! and EP are independent o, we have

IAVCD(t, p)
oo n+l R R k—1 ntl—k
SN P #Xpc )=k AKX cUNYEV+ 3 EP <t
n=0 k=1 =1 i=1
n+1—k
SR
n+1—k
X P t— Z EiD>pt‘#(X0:n€U):k7/\Xn€U
=1
n+l-k n+1—k
/\ZEU—i— Z ED<t/\ZEU—|— Z EP >t
n—k

ALt

n=0 k=0

#(Xom €U) =k A X,, GD/\ZEU ZED<t
i=1 =1

n+l—k

AZEUJr Z EP >t

ZEiU>pt‘#(X'0:n€U):k/\X'n€D
=1

n+l—k

/\ZEU+ZED<t/\ZEU+ Z EP >t



co n+1

Y3 P#(XoneU)=k A X, € U]

R n+l1-—k n+l—k
ZEUJr Z ED<t/\ZEU+ Z ED>t]
n+1—k nt+1—k n+l—k
Z ED>pt‘ ZEU+ Z ED<t/\ZEU+ Z ED>t]

+ZZP[#()?O,L ceU)=k A X, € D]

n=0 k=0
n+l—k
ZEU+ZED<t/\ZEU—|— Z EP >t
n+l—k
ZEU>pt‘ ZEU+ZED<t/\ZEU+ Z ED>t]
oo n+1
= DD L F(tp) +ZZan we(t.p), 2)
n=0 k=1 n=0 k=0
with
OV = P#(Xom € U) =k A X, € U], A3)
P, = P[#(Xon €U) =k A X, € D], (4)
n+1—k n+1—k n+l-—k
FY, ZEU+ZED<t/\ZEU+ZED>t/\t—ZED>pt]
and

n+l1—k

ZEU+ZED<75/\ ZEU+ Z EP >t A ZEU>pt

The following theorem gives integral expressions Rﬁk(t,p), n>01<k<n+1and
EP (t,p),n>0,0 <k <n.

Theorem 2. For n > 0,

—~

AUt)n e_AUt

an+1( 7p): n!

Forn > 0, Fy(t,p) = 0. Forn > 1and1 < k < n, F{\(t,p) = ApLyx(t,p), F2(t,p) =
AUImk(t,p), where

(1-p)t (AU(t _ x))k_l (A :E)"_k
I t — —Ay (t—z) D —Apzx .

Proof. See the online supplement (availabl&stp://dx.doi.org/10.1287/ijoc.1120.0539).
O



Three issues have to be solved to complete the method. Therigds the truncation of the
infinite summations in (2) with control of the truncation@tr The second one is the computation
of the quantitieﬂgk andQﬁk. The third one is the efficient evaluation with numericabgity of
the integrals/,, (¢, p). We will deal with those issues in that order. After that, enparison of the
computational costs of the new method and Algorithm A wilibade.

3.2 Truncation of the infinite summations

Lete be an arbitrarily small error control parameter. We willfpem two truncations to the summa-
tions in (2). Each truncation will introduce a nonnegativeewhich will be bounded from above
by ¢/4, yielding a formulation folAVCD(t, p) with nonnegative truncation erref /2. The first
truncation deletes the terms in (2) corresponding to vabies > N’, where N’ is a truncation
parameter> 0. This gives, taking into accouﬂnf?o(t,p) =0,n > 0 (Theorem 2),

TAVCD(t,p) = IAVCD/\. (¢, p) + €y (t, p) ,

N’ n+1
IAVCDY, (t,p) = > > QY FVy (¢, p) +ZZQM De(tp), (5)
n=0 k=1 n=1k=1
e’} n+1
0<ey(t,p)= D > QF(tp)+ Z Zan wi(tp) -
n=N'41k=1 n=N'+1k=1

UsingQl, >0,n>1,1<k<n+1,00, >0,n>1,1<k<n, Y010V +370 QP <1,
n > 1, and Theorem 2, and lettingy = max{AU, Ap},

o
U
eni(t,p) < EN’—i-lmaX{l Sr,glggHFn,k(t,p) m,gan (p)}
n=

= Z max{M e Mt max AImk(t,p)} )

n! 1<k<
n=N’'+1

Direct use of the previous upper bound &y, (¢, p) to determine the truncation point’ is impracti-
cal due to the need to determinex; <<, A, 1 (t, p). The following theorem gives an inexpensive
upper bound for that maximum.

Theorem 3. Letn > 1. Then,

lr<n]§LX AL, ,(t,p) < Un(Avu,Ap,t,p),

where, forn < (AU + (1 —p)AD)/AU,

— n—1
Un(Au,Ap,t,p) = (1 —p)At (€ (5)_Af)tl) e—PAUt

and, otherwise,

(1 . p)At (AUt)k*_l ((1 _p)ADt)n_k* e—pAUt

Un(AUaAD7t>p) = (k‘* — 1)| (TL — k?*)'

with &* = |(Ay/(Ay + (1 — p)Ap))n| + 1.

10
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Figure 1: Truncation point®” and N’ as a function of\p /Ay for e = 1078,

Proof. See the online supplement. O

Using Theorem 3, the truncation poilt can be chosen using

N’zmin{nZO: Z max{Me_AUt,Um(AU,AD,t,p)} §Z}

|
m=n+1 me

Direct computation ot/,,,(Ay, Ap, t, p) might be problematic due to possible underflows and over-
flows. The problem can be solved by taking the logarithmd efp)At, ((1—p)Apt)™ 1, (m—1)!,

e PAUt (Apt)F =1, (B* — 1)), (1 — p)Apt)™*", and(m — k*)!, adding/subtracting those loga-
rithms to obtain the logarithm df’,,,(Ay, Ap,t,p), and applying the exponential function to the
result to obtainl,,,(Ay, Ap,t,p), wherelog k! for large k£ can be computed using a suitable Stir-
ling approximation. We next analyze the quality of that traion pointN’ and how it compares
with the corresponding truncation poiit used by Algorithm A. The truncation poi¢’ is a func-
tion of ¢, Ayt, Ap/Ay, andp. Figure 1 plotsN and N’ as a function ofAp /Ay for e = 1078,
Ayt = 10, 10,000, angh = 0.99, 0.999. Fo\, > Ay, N’ < N. The truncation parametéey’
increases smoothly with , /A till the condition (1 — p)Ap = Ay is satisfied and increases ap-
proximately linearly withA , /Ay beyond that point. Figure 2 plof§/N’ as a function of\p /Ay
fore = 1078, Ayt = 10, 10,000, angp = 0.99, 0.999. We can note that/N’ increases with
Ap /Ay up to a value which increases agets closer to 1.

The behavior of the truncation poidt’ is not completely satisfactory. This is due to the
coarseness of the upper bound fo#ix; <<, Al, 1 (t,p) given by Theorem 3. We will, therefore,
strive to obtain a tighter upper bound for that maximum. @ersagain the integrals, ;. (¢, p) given
by Theorem 2. Because, in the integration domaing ¢t —xz < ¢, forn > 1 and1 < k < n, where
for the expression for the definite integral see, for instadramowitz and Stegun (1970, 4.2.55),

(Apt)*=" A t/(l_p)t (Apz)"*
]’ pPAU DT
nalt:p) < ST e 0 m-mr ¢
_ n—k m
_ L (Ayt)i=1 oPhut |1 _ Z (1 —=p)Apt) o~ (1-p)Apt
AD (k — 1)' 0 m!
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Figure 2: N/N' as a function of\ p /Ay for e = 1078,

L (Aot e = (=A™ e
i T e m:%—:l_k - e . (6)

From the tightening process, it should be clear that the @lpper bound fof,, 1 (¢, p) is tight for
p close enough to 1.

Noting that(Ay¢)*—1/(k — 1)! achieves its maximum &t = ko = |Ayt| + 1 and decreases
toward zero fork > ko, let, fors =1,2,3,...,
A (AUt)k_l

Al(s):min{k‘Zkg : E (l{}—l)'

et <10}, @
A,(s) = min{k > (1 — p)Apt]

“Ap (ko —1)! m!

m=k

ko—1 0 m
A (AUt) 0 e—pAUt Z ((1 _p)ADt) e—(l—p)ADt < 10—3} ) (8)

Then, since, giver > 1,

A Aot prge g (LZDADD” e

m)!

1)
Ap (k—1)! m=n+1—Fk

is smaller than or equal tth—* for A;(s) < k <nandforl <k <n+1— A,(s), the maximum
of the above forl < k < n is smaller than or equal tt0~* for n > A(s) = A(s) + A(s) — 1.
Then, noting thatPAvt = e(1-P)Auvte=Aut 'we can bound from aboveax; i<, AT, (¢, p) by

A

1-p)A i
Ul (Ay,Ap,t,p) = Ap lrmt it n < A,
10~ max{mm=1n=Am)} > A1),

and have the new truncation point

. e (Avt)™  _api
N = mm{nz |[Apt + (1 — p)Apt] : mzzn:ﬂmax{Te vt

] ™

min{Um(AUaADytvp)7 Uyln(AUaAth7p)}} <

}- 9)
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Direct computation of the left-hand side of the inequality#) might be problematic due to possible
underflows and overflows. The problem can be solved by takie¢pgarithms of\ /A p, (Agt)*~1,

(k — 1)!, ande~PAvt, adding/subtracting those logarithms to obtain the Idgariof the left-hand
side, and applying the exponential function to the resubltain the value of the left-hand side.
Direct computation of the left-hand side of the inequality8) might also be problematic. First, the
computation of the sum could lead to underflow. This makesfieasible to compute the sum in
terms of P,,,((1 — p)Apt). There could also be underflows and overflows in what is leftsdlve
those problems, we rewrite the left-hand side as

ko— s m
A Aot e L g (L= PABOT e
Ap (ko —1)! z m!

m=k

andlog z is selected so that the first term of the scaled summationuiglég one. This yields
logz = (1 — p)Apt + log k! — klog((1 — p)Apt).

The scaled summation can then be computed iteratively updagh accuracy without problems.
Then, the left-hand side can be computed without problemsaking the logarithms of\ /Ap,
(Ayt)ko=1, (ko—1)!, e~PAut 1/2, and the scaled summation, and applying the exponentiatitum
to the result.

The new truncation poind’ is also a function ot, Ayt, Ap/Ay, andp. Figure 3 plotsV
and the new truncation poir¥’ as a function ofA, /Ay for e = 1078, Ayt = 10, 10,000, and
p = 0.99, 0.999. Figure 4 ploty/N’ for the new truncation poin¥’ as a function ofA , /Ay for
e =107%, Ayt = 10, 10,000, angh = 0.99, 0.999. By comparing Figures 1 and 3, we can note that
for Ap(1 —p) > Ay the new truncation poin¥’ is significantly better than the previous truncation
point N’. As Figure 4 illustrates, for smadl the reduction factoiV/N’ tends forAp /Ay — oo to
a value approximately equal 1g/(1 — p). Informally, this is because, for largé — p)Apt, A, (s)
is only slightly larger thar{l — p)Apt and, forAp /Ay — oo, Ay(s) is much smaller thar\, (s),
making A(s) and, for smalk, N’ only slightly larger than(1 — p)Apt, whereas, for largé\¢ and
smalle, N is only slightly larger tham\t which, for Ap > Ay, is equal toApt. The method will
use the new truncation poin¥’.

The second truncation will delete the terms in (5) corredpunto values oft < n — C",
whereC" is a second truncation parametei0. This gives, using Theorem 2,

IAVCD(t,p) = IAVCDQV/7C///(t,p) + eQV/ (t,p) + 6/]\[/70/// (t,p) s

n+1
n=0 k=max{l,n— C”’} n=1 k=max{l,n— C”’}

- Zamﬂ S S SR A

n=1 k=max{1,n—C""}

T Z Z Qg,kAUIn,k(t7p) ) (10)

n=1k=max{1,n—C""}
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Figure 3: Truncation poinv and new truncation poin¥’ as a function of\p /Ay for e = 1078,
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Figure 4:N/N' for the new truncation poin¥’ as a function of\A , /Ay, for e = 1078,
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l n— C/// 1 / n— Clll_l

EEREID D SR AR S Sl )

n= C/// +2 — n= C///+2 —

Using QY QP > 0,C" +2 <n < N, 1<k <n-C"-1 520" 1ol +
pZCTElQD < 1,0" 42 <n < N, Theorem 2 and (6), we get

N/

/ U D
eonltr) < 3 max{ mes FEp. max, R
n=C""+2
N/
- Z 1§k§r2§)é”'—1AI"’k(t’p)
n=C""+2
N’ o0
S A (Apt)F- e—pAUt $ (A =A™ _-p)apt
1<k<n A 1Ap (k—1) m!
n=C"" 49 m=n+1—k

The factor(Ayt)*~!/(k — 1)! achieves its maximum &t= ky = |Ayt| + 1. Then, we have

N’ o
A (Apt)ko—1 1 A m
e?\n’c///(t,p) < E _— % —pAyt ma E m e_(l_P)ADt

(ko — 1)! 1<kSnatm—1 m!

n—= C///+2 m=n+1—k

_ AUt —pAyt = (@ —pApt)™ —(1-p)Apt
N Z AD 0—1) © Z m! ¢

n=C""+2 m=C""42
A (AUt)kO_l _ A
= 1,m ’_ N/— ///—1—7 pAyt
crsn=a (N = CF = D g
i (A= P)Ap)™ _(1-p)rpt
' )
m=C""142 m
andC"’ can be chosen as
ko—1
C" = min<c>max{|[(1 —p)Apt] —2,0} : lecy/_ (N —c— 1)A Aut)™™"  _pape
o AD (k?(] - 1)'
m=c+2 m:

A comment similar to the one addressing the computationefdfi-hand side of the inequal-
ity in (8) can be made concerning the computation of theHaftd side of the inequality in the
expression foC"”.

The truncation poin€” is a function ofs, Apt, Ay/Ap, andp. It can be compared with the
truncation pointC” used in Algorithm A. Figure 5 plot€”’ andC"” as a function ofA;; /Ap for
e = 1078, Apt = 10, 10,000, ang = 0.99, 0.999. Figure 6 plots’/C"" as a function of\;; /Ap
fore = 1078, Apt = 10, 10,000, angh = 0.99, 0.999. For largd pt but A;;/Ap around 1.C™ is
slightly larger thanC". For Ay significantly larger tham p, C”” is moderately smaller thafy’.

The new method uses the formulation f8A/CD(¢, p) given by (10), withN’ andC"” selected
using, respectively, (9) and (11), guaranteeing a nonivegatincation errox /2.
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Figure 5: Truncation point§” andC"” as a function of\;; /A p for e = 1075,
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Figure 6:C’/C"" as a function of\;; /A p for e = 1078.

16



3.3 Computation of QY, and Q7

We discuss next how th@? , andQP,. involved in (10) can be computed. L8f, , = P[#(Xo., €
U)=Fk A X, = i] and letQ2,, ;, be the column vectom;,k),-eg. Then, it is clear (3), (4) that
Q=i U andQl, =37, Q. This translates the problem of computing g, and
ng involved inTAVCD ' om(t, p) to the problem of computing the vectds, ;. for the required
(n,k) pairs:0 < n < N/, max{l,n — C"} < k < n+ 1. Leta” anda” denote the column
subvectors ot including the components with indices in, respectivélyand D, and |et95{7,€ and
ng denote the column subvectors$yf, ;, including the components with indices in, respectively,
U andD. Then, the vector®,, ;, for the requiredn, k) pairs can be computed using for increasing
n,0 < n < N’, and, for each, for increasingt, max{0,n — C""} < k < n + 1, the recurrences

Q)" =0 1, Pou, n>1,1<k<n+1, (12)
@) =9, Pap, n>1,0<k<n, (13)
Q),=0, n>0, (14)
Q),1=0, n>0 (15)
with initial conditions
Qf, =a", (16)
Qfy =a”. (17)

3.4 Computation of I, (¢, p)

It remains to discuss the computation of the integials(t, p) appearing in (10):1,, x(t,p), 1 <
n < N’, max{1,n — C""} < k < n. Computation of these integrals can be tricky. It will tunrt o
convenient to calculate instead

=t (Ap(t—a)t (Apz)"*
— — —Ay (t—z) D —Apzx
Ini(t,p) = AL, 1 (t,p) /0 A k=1 e (n— )l e dx
whereA = max{Ay,Ap}, and obtain, ;(t,p) from J, i (t,p) using I, x(t,p) = Jni(t,p)/A.
The following theorem identifies recurrences that can be tseompute most of thé,, (¢, p).

Theorem 4. For Ay > Ap, assume thatl, ,(t,p), 1 < n < N"and Jy (¢, p), max{l, N' —
C"} < k < N’ —1 are known with absolute errors. §. Then, in exact arithmetic/], 1 (¢, p),
2<n< N —1max{1l,n — C"} <k <n—1canbe computed with absolute errorsé from
Inn(t,p), 1 <n < N andJy i (t, p), max{l, N — C""} < k < N'—1 for decreasing: and, for
eachn, for decreasing: using the recurrence

Ay — A A
Jnk(t,p) = UTJD Jnt1,k+1(t,p) + A_i Jnk+1(t, D)
— (pAkU't)k e—PAut ((1 _(p)AIS)t')n_k e_(l—P)ADt .
. n — .
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For Ay < Ap, assume thatl,, . .cq1n—cy(t,p), 1 < n < N"and Jy i (t, p), max{l, N —
C"} +1 < k < N’ are known with absolute errors. §. Then, in exact arithmetic], 1 (¢, p),
2 <n <N —1,max{l,n — C"} +1 < k < n can be computed with absolute errorsé from
T max{1,n—cy(t,p), 1 < n < N andJys (¢, p), max{1, N'—=C"} +1 < k < N’ for decreasing
n and, for eac, for increasingk using the recurrence

Ap — Ay

A
Jn,k(tap) = T Jn-i—l,k’(tap) + —h Jn,k—l(tap)
Ap Ap
n (pAyt)* ! o—PAUt (1 =p)Apt)"+i-F o~ (1-p)Apt
(k—1)! (n+1-—k)! ’
Proof. See the online supplement. O

Note that having absolute errors § in J, x(t,p) implies having absolute errors § in
ADImk(t,p) = (AD/A)Jmk(t,p) andAUIn,k(t,p) = (AU/A)Jmk(t,p), and, sinc@g,k, ng >0,
I1<n< N ymax{l,n-C"}<k<n andzzzmax{l,n_c,,,} Q%k"'zzzmax{l,n—c*”/} ng <1,

1 < n < N/, it implies having an absolute erret N’§ in IAVCD/, ,70,,,(t,p). If we pick

d = ¢/(2N"), we can allow an absolute truncation erfop in a numerical evaluation of the integrals
Jn.k(t,p) on which the recurrences are based with the result of intioduin IAVCD’N,C,,, (t,p)
an absolute truncation errer ¢ /2, that added to the truncation error with whickVCD'y, - (¢, p)
givesIAVCD(t, p) results in the computation ®@AVCD (¢, p) with absolute truncation erret .

Allowing an absolute errog § in the numerical evaluation of the integrals ;. (¢, p) assumed
in the recurrences given by Theorem 4 makes it in many caseshbe to restrict the integration
domain to a much narrower interval thgn (1 — p)t], reducing substantially the computational cost
of the numerical evaluation. As numerical integration métlve chose Romberg’s method (see,
for instance, Dahlquist and Bjorch 1974), which is effitiéor smooth integrands. To truncate
the integration interval we identify a reasonably tigheiwkl for A > 0 out of which the Poisson
probability P,(\) = (\¥/k!) e=*, k > 0 is smaller than a given smajl > 0. To identify that
integration interval, the basic idea is to consider tRgt)\), as a function of\, is the probability
density function of & + 1-Erlang random variable with parameter 1, which has nieanl and
standard deviatior/% + 1. Furthermore,P; () is increasing fol0 < A < k and decreasing for
A > k. Then, for largek, P;.(\) should get tiny for values of severah/k + 1 apart fromk + 1. Let
Tr(k,n) = k+1+mg(k,n)Vk + 1withmpg(k,n) = min{m >0 : Py(k+1+myk +1) < n}.
Also, fork = 0ork > 0andPy(k+1—|vk + 1]k + 1) > n, defineTy (k,n) = 0 and, otherwise,
defineTy (k,n) = k+1—myp(k,n)Vk + Twithmp(k,n) = min{m > 1: Py(k+1-mvVk + 1) <
n}. We haveP,(\) < n for A outside the interva|Ty(k,n), Tr(k,n)]. The following theorem
defines the truncation of the integration interfal(1 — p)t] in terms of these truncation points for
Poisson probabilities.

Theorem 5. Letd > 0,t > 0,0 <p <1,k >1,n > k. Letg, ,(x) be the integrand in/,, (¢, p)
and letr; = min{n — k, Ap(1 — p)t}, ro = max {pAyt, min{k — 1, Ayt}},

5
1 f— J—
Ti="1 (k L, 2(1 — p)AtPn_k(r1)> ’
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1)
1 _ —_
Tp =Tr (k L, 2(1 _p)AtPn_k(T1)> 7

0
L (” T p)Ath_l(r2)> ’
)
Th = Tr <n -k 2(1 — p)Ath_l(r2)> ’
Ly = max{0,t — T} /Au}, Ry = min{(1 — p)t,t — T} /Au}, Lo = T? /Ap, and Ry = min{(1 —
p)t,T]%/AD}. Then; forLy > Ry or Ly > Roor Ly < Ry, Ly < Ry, L1 < Ly, andR; < Lo,
or L1 < Ry, Ly < Ry, L1 > Ly, and Ry < Ly, Jy, i (t,p) = 0 with nonnegative truncation error
< o;for L1 < Ry, Ly < Ry, L1 > Lo, Ry > Ly, and Ry < Ry, J, 1 (t,p) = fLP‘f Gn, k() dz with
nonnegative truncation errok 9; for Ly < Ry, Ly < Ro, L1 > Lo, Ry > Ly, and Ry > Ro,
Ini(t,p) = fLRf gn.k(x) dz with nonnegative truncation erro< o; for Ly < Ry, Ly < Ry,
Ly < Ly, Ry > Ly, and Ry > Ry, Jp, i(t,p) = fﬁl gn,k () dz with nonnegative truncation error
< é;and, forLy < Ry, Ly < Ry, Ly < Ly, Ry > Ly, and Ry < Ry, Jyi(t,p) = [1 gn(z) da
with nonnegative truncation errok 4.

5
I

Proof. See the online supplement. O

By extensive experimentation, we recognized that Rombengthod used with 1,024 integra-
tion subintervals was enough to perform the numerical natign with negligible relative error, and
we use Romberg’s method with that setting. The integratmmaln truncation procedure seems to
be very efficient. When the number @f, k) pairs for whichJ, (¢, p) have to be computed directly
is large, often, most of the integrals which have to be evatbaumerically are detected to be 0 with
absolute errox ¢, and the number of integrals that are actually evaluatedenigaily is relatively
small, reducing considerably the average computatiorstl@the evaluation of the integrals.

3.5 Description and computational cost

To clarify, we provide next a short description of the newmmoet After that, the numerical stability
and the computational cost of the method will be discussed.aggume thatAVCD(t, p) has to
be computed at a singlg, p) pair. First, we determine the truncation poiNt using (9) and the
truncation pointC”” using (11). Next, we obtain the transition matix = I + A[}})A of the
randomized DTMCX considered in the method. After that, we obtain the vediyg, 0 < n <
N', max{0,n — C""} < k < n + 1 for increasingn and, for each, for increasingk using the
recurrences (12)—(17). As those vectors are obtained, wpate and storélfik = > it Yo
0<n< N, max{l,n—C"} <k<n+1 andQﬁk = ZieDQi,k- 1<n< N, max{l,n—
C"} <k <n.Next, if Ay > Ap, we compute, as described by Theorem 4, the integialst, p),

1 <n < N max{1l,n — C"} <k <n, with the integrals/,, ,,(t,p), 1 <n < N andJy x(t,p),
max{1,N' — C"} < k < N’ — 1 evaluated numerically with nonnegative truncation eror
e/(2N') using Theorem 5. If\;; < Ap, we compute, as described by Theorem 4, the integrals
Jnk(t;p), 1 < n < N, max{1l,n — C"} < k < n, with the integralS/, ax(1n—c (t,p),

1 < n < N andJy (t,p), max{l,N' — C""} + 1 < k < N’ evaluated numerically with
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nonnegative truncation erret ¢/(2N’) using Theorem 5. Ad), 1.(¢,p), 1 <n < N/, max{1,n —
C"} < k < n are obtained, we computg, 1(t,p), 1 < n < N, max{l,n —C"} <k <n
using I, (t,p) = Jnk(t,p)/A and accumulate terms in the approximate valuelfo¥CD(¢, p),
IAVCD nv o (t,p), given by (10).

The numerical stability of the method comes from the fact, thace the truncation parameters
N’ andC"" are known, no subtractions are involved in the computatieading to the approximate
value forTAVCD(t,p) except in the computation of the diagonal elements of ma#ixn the
method we use for computing Poisson probabilities, in th@iegtion of Romberg’s method to the
numerical evaluation of somg, ;. (¢, p), and in the recurrences of Theorem 4. The diagonal elements
of P either are very small or are computed with numerical stgbillrhe method we use (Knisel
1986, pp. 1028-1029) for computing Poisson probabilisaaimerically stable. Romberg’s method
applied to nonnegative smooth integrands is also numaristable, and the recurrence iy 1. (t, p)
will not introduce significant relative round-off errorsrfthe caseAy < Ap and is very unlikely
to do so for the casd;; > Ap, because, in that case, significant cancellations can @appdn
when theJ,, ;.(t,p) computed in the recurrence is very small compared to eifhe§ (¢, p) or
Jn.k+1(t, p), and the integrald,, ; (¢, p) can be expected to be smooth functions of bodndk for
largen andk. In summary, the new method will be numerically stable. Wil be confirmed in
84.1 through thorough experimentation.

We next compare the computational costs of the new methodAdgatithm A, and start
by discussing the CPU time. The average cost of computingirttegrals J,, ;(¢,p) in the
new method does not seem to be much larger than the averag®efcosmputing the factors
(At)/nl)) e M ()p*(1 — p)»~* in Algorithm A and the cost of computing the truncation pa-
rameters in both methods will often be similar. Then, the bers of points in the domain ¢f, k)
pairs for which, in the new method?, , has to be obtained and, in Algorithm A/, ; has to
be obtained, are reasonable relative estimates of the tostsms of CPU times of both meth-
ods for large models. Rough estimates for those numbersiofspare P’ = (N’ + 1)(C” + 2)
for the new method an® = (N + 1)(C’ + 1) for Algorithm A. Then, a reasonable, approx-
imate measure of the speedup of the new method with respedgarithm A for large models
is S = P/P'. Figure 7 plotsS as a function ofAp /Ay for e = 1078, At = 100, 100,000,
andp = 0,2, 0.5, 0.9, 0.95, 0.99, 0.999, 0.9999. balose to 1, there are small regions around
Ap/Ay = 1in which S < 1; further apart fromAp /Ay = 1, S becomes> 1. The speedup
measureS is significantly larger than 1 foAp > Ay and moderately fol\p < Ay and in-
creases withAt. This suggests that the new method can be much faster tharithlg A for
Ap > Ay and moderately faster fakp < Ay, and that the speedup will increase with. In
§4.2 we will numerically corroborate this approximate asayand will illustrate thatS is a rea-
sonable approximate measure of the speedup for large modlkeés truncation pointsv, C’, N’
and C"" can be computed a priori. From them, we can comfitend decide to use the new
method ifS > 1 and to use Algorithm A otherwise. Because, for large modbkéscomputational
cost associated with the determination/éf C’, N’, andC"” will be relatively small, the switch
between the new method and Algorithm A will be relativelyxpensive in that case. Regarding
memory cost, assuming matrlk rewrites matrixA, Algorithm A has a cosO((C’ + 3)|€?|) be-
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Figure 7:S as a function of\ , /Ay fore = 1078,

cause of the”” 4 3 vectors of sizd2| needed to holdY,, ;, taking into account the ordering in
which theY,, ;, are obtained. Assuming matr rewrites matrixA, the new method has memory
costO((C" +3)|Q] +2P" + C" + 3) = O((C" + 3)|Q| + 2N'C""), because of th€"” + 3
vectors of sizé2| needed to hold,, ;, taking into account the ordering in which tf¥, ,, are ob-
tained, the storage required to hdkﬂ[’k, 0<n< N, max{l,n-C"} <k<n+1 andQﬁk,

1 <n < N’ max{l,n — C"} < k < n, and the storage required to holg ;.(¢,p), 1 <n < N’,
max{1,n — C"} < k < n, taking into account the ordering in which those integraéscmputed.

To end, ifTAVCD(¢, p) had to be computed at sevefalp) pairs, a plausible, simple approach
would be to compute the requiréd’ andC"” for each(¢, p) pair, obtain the vector®,, . anngk,
Qﬁk for the (n, k) domains obtained by taking the maximusi and the maximunt””, but when
using (10) for eaclit, p) pair, take theV’ andC"” corresponding to that pair.

4 Numerical Analysis

This section analyzes the new method for the computatiohefrterval availability distribution
developed ir§3. The section includes two subsections.gdnl, we analyze the numerical stability
of the method using a CTMC example with closed-form solutiBaction 4.2 illustrates, using two
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large CTMC models, that the new method can be significansly destly in terms of CPU time than
Algorithm A, corroborating numerically the approximateaysis regarding the relative costs of both
methods performed at the end§#. Another goal ok4.2 is to validate the switch between the new
method and Algorithm A described §8, which is based on the approximate speedup measure
All floating-point computations were performed in an enkimeent conforming to the standard IEEE
754 for floating-point arithmetic (IEEE 1985), using the dmuformat and the default rounding
mode Round to Nearest. In that environmdiBS = 2.2204 x 10~'6, whereEPS is the machine
epsilon of the computer (difference between the smallemttgxrepresentable number greater than
1 and 1 (Higham 2002)), and the absolute relative round+offréntroduced when performing a
basic arithmetic operation resulting in a normalized nungtiés can be expected to always be the
case) is bounded from above BYS/2.

4.1 Test of numerical stability using an example

We will use the CTMC model with the state diagram of Figures®t{hand side), subset of up states
{11,...,150,21,...,250} and initial statel;. In that CTMC model, there is a transition rate with
valuep/50 from every statd; to every stat@;; a transition rate with valug/50 from every state;

to every statd ;; a transition rate with valug from every state; and every state; to state 3; and
a transition rate with valug /100 from state 3 to every statg and every state;. That CTMC is
ordinarily lumpable with respect to the partition of thetstspace {11, ..., 150,21,.--,250}, {3}}
(see, for instance, Buchholz 1994) and the lumped CTMC hasttite diagram of Figure 8 (right-
hand side) and initial state 1. That lumped two-state CTM&OWith subset of up stat€d } the same
interval availability distribution as the CTMC model. Wekéa\ = 5 x 1074, 1 = 1, and values of
p varying betweerd x 104 and10® — 5 x 1074, so thatAp /Ay = p/ (A + p) varies between0—3
and 1,000. For the CTMC model, = max{\ + p, u} and, for each value gf, we consider two
values oft: the first one chosen so that = 10 and the second one chosen so that= 100,000.
We consider three values fpr 0.99, 0.999 and0.9999. We ran the method with a tiny truncation
error targete = 10720 to isolate the impact of round-off errors, and, using a kn@lased-form
solution (see Takacs (1957)) for the interval availapititstribution of the lumped two-state CTMC
model, computed the absolute relative error in the numlesiglaition given by the method. That
closed-form solution is

TAVCD(t,p) = e " |1+ /Aupt / o %h@x/W) dy| .

0
wherel; (z) is the modified Bessel function of first kind and order 1. ko= 10, the exact value of
IAVCD(t, p) ranged from 0.995017948786 to 0.999995050507 .Fo+ 100,000, the exact value
of TAVCD(t,p) ranged from 0.000000024579 to 1,000000000000. Figure &sgive absolute
relative errors forAt = 10 (left) and At = 100,000 (right) againsl’. The reason is that we can
expect round-off errors i@% i andQ,’a . to increase withV’ because the longest dependency chain
in the recurrences (12)—(15) has length We note that the absolute relative errors are very small
in all cases and depend aW approximately linearly. For the CTMC model considered amal t
quite representative cases considered, we get in the wasstapproximately 10 digits of accuracy.
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Figure 8: State diagram of CTMC model (left) and state diago@lumped two-state CTMC model
(right).
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Figure 9: Absolute relative errors in the new method agakist

In the CTMC model considered, the number of non-zero elesnengévery column oPq, ;s is 51
and the number of non-zero elements in the single columB®p is 100. Certainly, the errors
should get larger as the numbers of non-zero elements irothenas of P, iy and the numbers of
non-zero elements in the columns®B§, p increase, but the CTMC model considered looks like a
hard enough test to support the numerical stability of theéhot

4.2 Analysis of computational cost using two examples

The first large CTMC model corresponds to a software systeimpvbgressive software upgrades.
The system includes three software subsystems. Each sefsu#system is subject to ten up-
grades. The mean time between consecutive upgrades iseaxily distributed with parameter
p = 1/720h~!, yielding an average time between successive upgradesof abe month. Software
upgrades reduce the failure rate of the software subsySthanfailure rate of the first software sub-
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Figure 10: Measured speedup of the new method over Algor&htand .S for the CTMC model of
the software system.

system after théth upgrade is\; ; = 107* + (10 —4)(4 x 10~°) h~L. The failure rate of the second
software subsystem after thth upgrade iS\a; = 5x 1075+ (10—i)(2x 10~5)h~L. The failure rate

of the third software subsystem after tie upgrade is\3 ; = 2x 107>+ (10—i)(8 x107%)h~L. The
three software subsystems have to be operational for titersyte be up. Software subsystems can
fail in two modes. The first mode occurs with probability and is recovered by a restart operation
whose duration has an exponential distribution with patame= 6 h—!. The second mode occurs
with probability 0.2 and is recovered by a manual repair operation whose duratiexponentially
distributed with parameter = 0.5 h—'. When the system is down, software subsystems do not fail
and software upgrades are suspended. The initial stateedETMC model is the state in which
the three software subsystems are operational and witlpmgrades. The CTMC model has 9,317
states, 19,602 transitiond;; = 5.0167 x 1073 h~!, andAp = 6 h~!, yielding Ap /Ay = 1,196.
Thus, according to the analysis performed3ab, we can expect the new method to be significantly
faster than Algorithm A fomp close to 1. Table 1 giveBAVCD(t,p) for p = 0.999, 0.9999 and
several values of varying from 100 to 20,00@. The table also gives the CPU times in seconds
of the new method and Algorithm A for ea¢h p) pair. The methods were run with a truncation
error targets: = 10~% and CPU times were measured on a multiprocessor with 16 X&@bX
2.93 GHz cores, with the method running on a single core atttbwi any other significant process
running. Figure 10 compares measured speedups of the newedneter Algorithm A with the
speedup measure We can note that, as expected, the new method is much faarerAlgorithm

A. Measured speedups differ somehow fr6nm some cases. Those differences must be attributed
to the different costs of the computation of the truncatianameters in both methods and to the
difference between the average cost of the computatioredgftigrals’, ;. (¢, p) in the new method
and the average cost of the computation of the fagtats)” /n!)e = () p* (1 —p)"~* in Algorithm

A. For larger CTMC modelsS will be a more accurate speedup measure.

The second large CTMC model corresponds to a fault-tolerantrol system including six
control sites. Each site includes two hardware modules wgrk dual configuration. The failure
rates of the hardware modules are= 5 x 10~* h~! for modules in site 1\, = 4.5 x 10~*h~!
for modules in site 2)\5 = 4 x 10~*h~! for modules in site 34 = 3.5 x 10~*h~! for modules in
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Table 1:TAVCD(¢, p) and CPU times in seconds of the new method (N) and Algorithm)Af¢r
the CTMC model of the software system.

¢ (h) p  IAVCD(t,p) CPUtime (N) CPU time (A)
100  0.999  0.94806210 0.09201 2.092
100  0.9999 0.92265401 0.04400 1.268
200  0.999 0.93025187 0.1240 4.988
200 0.9999 0.85846616 0.06400 2.288
500 0.999  0.91603409 0.2720 16.06
500 0.9999 0.72102120 0.1120 7.004
1,000 0.999  0.89734409 0.4720 45.57
1,000 0.9999 0.59391149 0.1920 17.05
2,000 0.999 0.87869758 0.9921 131.9
2,000 0.9999 0.48085218 0.2360 43.83
5,000 0.999 0.91580678 3.308 585.5
5,000 0.9999 0.39794869 0.6840 150.1
10,000 0.999  0.97648531 8.705 1,924
10,000 0.9999  0.43142930 1.408 433.9
20,000 0.999  0.99860736 26.42 6,486
20,000 0.9999 0.47579569 3.452 1,274
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Figure 11: Measured speedup of the new method over Algorhand .S for the CTMC model of
the fault-tolerant control system.

site 4,\5 = 3 x 10~*h~! for modules in site 5, andls = 2.5 x 10~*h~! for modules in site 6. The
system is up if all sites are operational. A site is operatidfit has no failed module or one module
in covered fault. The coverage to faults of hardware modslés= 0.98. Modules in covered fault
are repaired at ratec = 6 h~'. Modules in uncovered fault or failed modules in sites wittho
modules failed are repaired at rate = 0.2 h—'. When both modules of a site are failed and one
is repaired, the other one is considered to become in covaudtd The much higher repair rate of
modules in covered fault is explained by the fact that thairegf those modules only involves the
replacement of the module, while, otherwise, the repainefbodule, in addition to its replacement,
requires a lengthy diagnosis process. Hardware moduldgaerto fail when the system is down.
There is a single repairman who gives preemptive prioritnamules in uncovered fault and who is
shared by all failed modules with same repair priority. Tiigidl state of the CTMC model is the
state in which all sites are operational with no failed medurhe CTMC model has 4,096 states,
37,056 transitionsA; = 6.00425h~1, andAp = 0.20425h !, yielding Ap /Ay = 0.03402. Then,
according to the analysis performedsB.5, we can expect the new method to be moderately faster
than Algorithm A forp close to 1. Table 2 giveRAVCD(t, p) for p = 0.999, 0.9999 and several
values oft varying from 100 to 20,008. The table also gives the CPU times in seconds of the new
method and Algorithm A for eaclt, p) pair. The methods were run with a truncation error target
e = 10~® and CPU times were measured as for the first large CTMC modglird=11 compares
measured speedups of the new method over Algorithm A witlspeedup measur® We can note
that the new method is, in most cases, moderately fastertgamithm A. The differences between
measured speedups aficcan be attributed to the same causes as for the first large QTibtel.
Again, for larger CTMC modelsS will be a more accurate speedup measure.

5 Conclusions

We have developed a new randomization-based generalgmirpethod for the computation of the
interval availability distribution of systems modeled by X&Cs. The basic idea of the new method
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Table 2:TAVCD(¢, p) and CPU times in seconds of the new method (N) and Algorithm\)Af@r
the CTMC model of the fault-tolerant control system.

¢ (h) p  IAVCD(t,p) CPUtime (N) CPU time (A)
100  0.999 0.99119876 2.260 2.944
100  0.9999 0.99103160 1.432 1.664
200 0.999 0.98281885 4.932 7.152
200 0.9999 0.98217893 3.396 3.104
500 0.999  0.96001411 13.26 24.05
500 0.9999 0.95629808 7.772 9.857
1,000 0.999  0.92876245 35.99 68.06
1,000 0.9999 0.91531894 18.34 24.81
2,000 0.999 0.88544726 97.85 197.2
2,000 0.9999 0.84074059 42.47 63.94
5,000 0.999 0.83650699 408.6 880.4
5,000 0.9999 0.66442446 137.0 222.5
10,000 0.999  0.83797806 1,389 2,914
10,000 0.9999 0.47477429 336.9 646.3
20,000 0.999  0.87505490 5,125 9,849
20,000 0.9999 0.28008887 929.2 1,905

27



is the use of a randomization construct with different rantation rates for the up and down states.
The new method is numerically stable and computes the aitexailability distribution with well-
controlled truncation error. In addition, for large CTMC dats, when the maximum output rates
from up and down states are significantly different, and wtherinterval availability has to be guar-
anteed to have a level close to one, the new method is sigmtifjaar moderately less costly in terms
of CPU time than a previous randomization-based statbesftt method, depending on whether the
maximum output rate from down states is larger than the maxiroutput rate from up states, or
vice versa. The new method can be more costly, but a rekatrekpensive switch for large models
of reasonably quality can be easily implemented to choosdastest method. Along the way, we
have shown the correctness of a generalized randomizatiostract, in which arbitrarily different
randomization rates can be associated with differentstideboth finite CTMCs with infinitesimal
generator and uniformizable CTMCs with denumerable stadees A direction in which this work
could be continued is the development of another randomirdtased general-purpose method for
the computation of the interval availability distributiofisystems models by CTMCs that for large
CTMC models id less costly interms of CPU time than the previcandomization-based state-of-
the-art method.

6 Electronic companion

An electronic companion to this paper is available as patti@bnline version at
http://dx.doi.org/10.1287/ijoc.1120.0539.
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