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Abstract

We develop a new randomization-based general-purpose method for the computation of

the interval availability distribution of systems modeledby continuous-time Markov chains

(CTMCs). The basic idea of the new method is the use of a randomization construct with

different randomization rates for up and down states. The new method is numerically stable

and computes the measure with well-controlled truncation error. In addition, for large CTMC

models, when the maximum output rates from up and down statesare significantly different, and

when the interval availability has to be guaranteed to have alevel close to one, the new method

is significantly or moderately less costly in terms of CPU time than a previous randomization-

based state-of-the-art method, depending on whether the maximum output rate from down states

is larger than the maximum output rate from up states or vice versa. Otherwise, the new method

can be more costly, but a relatively inexpensive for large models switch of reasonable quality

can be easily developed to choose the fastest method. Along the way, we show the correct-

ness of a generalized randomization construct, in which arbitrarily different randomization rates

can be associated with different states, for both finite CTMCs with infinitesimal generator and

uniformizable CTMCs with denumerable state space.

Keywords: Engineering, probability, Markov processes, availability.



1 Introduction

The interval availability is defined as the fraction of time in a time interval in which a system is

operational. There has been much interest in computing the distribution of the interval availability.

Most of the work has dealt with the case in which the behavior of the system is captured by an

(homogeneous) continuous-time Markov chain (CTMC) model having up (operational) and down

states. Computing the distribution of the interval availability of systems modeled by a CTMC has

been proved to be a challenging problem (see Carrasco 2004a,2011; Goyal and Tantawi 1988;

Ross 1983; Rubino and Sericola 1992, 1993, 1995; Sericola 1990; de Souza e Silva and Gail 1986;

Takács 1957). The first effort is reported in Takács (1957), where a closed-form integral expression

was obtained for a two-state CTMC model. In Ross (1983), randomization was used to obtain the

distribution of the operational time in a time interval of the same two-state CTMC model. The first

method able to deal with arbitrary finite CTMC models was developed by de Souza e Silva and

Gail (1986) using randomization. Goyal and Tantawi (1988) developed a numerical approximate

method without error bounds. Sericola (1990) obtained a closed-form solution in terms of growing

size matrices. Rubino and Sericola (1992) developed an efficient numerical method for the particu-

lar case in which operational and down periods are independent, operational periods are identically

distributed except, perhaps, the first one, and down periodsare identically distributed. Rubino and

Sericola (1993) also developed two randomization-based methods which reduce the computational

requirements of the randomization-based method developedby de Souza e Silva and Gail (1986).

The first of such methods is guaranteed to reduce the CPU time requirements; the second one is

guaranteed to reduce the memory requirements and often alsoreduces the CPU time requirements.

That second method was reviewed in Rubino and Sericola (1995) as Algorithm A, where it was

taken as starting point to develop another method (Algorithm B) that is competitive when the num-

ber of operational states of the model is small and, furthermore, can deal with some class of CTMC

models with denumerable state space. Recently, we have developed a method in Carrasco (2004a),

which will be called hereregenerative transformation, targeted at a class of CTMC models, class

C1, including both exact and bounding failure/repair CTMC models of fault-tolerant systems with

increasing structure function (Barlow and Proschan 1981),exponential failure and repair time dis-

tributions, and repair in every state with failed components, with failure rates much smaller than

repair rates, which can be significantly less costly in termsof CPU time than Algorithm A if the in-

terval availability has to be guaranteed to have a level close to one. The regenerative transformation

method was taken as starting point in Carrasco (2011) to develop a method,bounding regenerative

transformation, to compute bounds for the interval availability distribution. For a class of CTMC

models slightly less general than classC1, the version that seems to be computationally less costly

in terms of CPU time seems to be computationally little costly relative to the model size when that

model size is large, provided the interval availability hasto be guaranteed to have a level close to

one. Furthermore, under additional conditions that are satisfied by both exact and bounding fail-

ure/repair CTMC models of fault-tolerant systems with increasing structure function, exponential

failure and repair time distributions and repair in every state with failed components, with failure

rates much smaller than repair rates, the bounds seem to be tight for any time interval for some initial
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probability distributions, and for time intervals not too small in case of other distributions.

The interval availability distribution can be looked at as aparticular case of the distribution of

the reward earned in a time interval by a Markov reward process with reward rates associated with

states, and several methods have been proposed to compute that distribution (Donatiello and Grassi

1991; Islam and Ammar 1989; Nabli and Sericola 1996; Pattipati et al. 1993; Qureshi and Sanders

1996; Smith et al. 1988; de Souza e Silva and Gail 1989; Suñéet al. 2010) or bounds for it (Carrasco

2006; Rácz et al. 2002).

Because of its numerical stability, well-controlled truncation error, and moderate memory and

CPU time requirements, Algorithm A can be considered the current state-of-the-art general-purpose

method for computing the interval availability distribution for finite CTMCs. In this paper, we

develop a new method for computing the interval availability distribution for systems modeled with

finite CTMCs. The basic idea of the new method is the use of a generalized randomization construct

with different randomization rates for the up and down states. Like Algorithm A, the new method is

numerically stable and computes the interval availabilitydistribution with well-controlled truncation

error. In addition, for large CTMC models, when the maximum output rates from the up and down

states are significantly different, and when the interval availability has to be guaranteed to have a

level close to one, the new method is significantly or moderately less costly in terms of CPU time,

depending on whether the maximum output rate from down states is larger than the maximum output

rate from up states, or vice versa. Otherwise, the new methodcan be more costly, but a relatively

inexpensive switch for large models of reasonable quality in that case can be easily developed to

choose the fastest method.

The rest of the paper is organized as follows. Section 2 defines formally the measure that will

be computed by the new method, reviews the randomization construct on which Algorithm A and

most previously proposed methods for computing the interval availability distribution are based, and

reviews Algorithm A. Section 3 develops the new method and argues that it can be significantly less

costly in terms of CPU time than Algorithm A. It also defines the switch between the new method

and Algorithm A. Most of the effort is developed to the derivation of computationally inexpensive

and good truncation points. Section 4 begins by analyzing the numerical stability of the new method

using a CTMC model with closed-form solution. Then, we use two large CTMC models to illustrate

that the new method can be significantly less costly in terms of CPU time than Algorithm A, con-

firming the analysis performed in§3. Using those two large CTMC models we also asses the quality

of the switch. Section 5 presents the conclusions.

2 Preliminaries

Let X = {X(t); t ≥ 0} be a CTMC with finite state spaceΩ = U ∪ D, whereU is the subset of

up states andD is the subset of down states. The interval availability complementary distribution at
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time t is defined as

IAVCD(t, p) = P

[
1

t

∫ t

0
1X(τ)∈U dτ > p

]
,

where1c denotes the indicator function returning value 1 if condition c is satisfied and value 0

otherwise. In other words,IAVCD(t, p) is the probability that the fraction of time that the system is

up in the time interval[0, t] is greater thanp. To simplify the presentation, we will assume throughout

the papert > 0 and0 < p < 1.

Algorithm A is based on the randomization construct. LetA = (ai,j)i,j∈Ω denote the infinitesi-

mal generator ofX, whereai,i = −λi, λi denoting the output rate ofX from statei, andai,j = λi,j,

j 6= i, λi,j denoting the transition rate ofX from statei to statej, let ααα = (αi)i∈Ω denote the

initial probability distribution column vector ofX, whereαi = P [X(0) = i], i ∈ Ω; and assume

maxi∈Ω−|ai,i| > 0. Consider anyΛ ≥ maxi∈Ω−ai,i and define the (homogeneous) discrete-time

Markov chain (DTMC)X̂ = {X̂n;n = 0, 1, 2, . . .} with same state space and initial probability

distribution asX and transition matrixP = (Pi,j)i,j∈Ω = I+A/Λ, I denoting the identity matrix.

Let Q = {Q(t); t ≥ 0} be a Poisson process with arrival rateΛ independent of̂X. In the random-

ization construct,X is interpreted as the DTMĈX subordinated to the Poisson processQ, in the

sense thatX(t) is the state in whicĥX is at the step given by the number of occurrences in the time

interval [0, t] of the Poisson processQ. In fact, we have thatX and{X̂Q(t); t ≥ 0} are probabilis-

tically identical (Kijima 1997, Theorem 4.19), and anything depending solely on the probabilistic

path behavior ofX can be computed using{X̂Q(t); t ≥ 0} instead. The DTMCX̂ is said to be

randomized with rateΛ when building{X̂Q(t); t ≥ 0}. Beacuse the output rate is uniformized in

the randomization construct, the construct is also known asuniformization.

The randomization construct underpins the so-called randomization (uniformization) methods

for the computation of transient probability distributionvectors of CTMCs, expected values of func-

tions of the state of CTMCs at a given time, expected time averages, and variances of time averages

(Grassmann 1977a, b, 1987; Gross and Miller 1984; Reibman and Trivedi 1989; Suñé and Ca-

rrasco 2005). A major advantage of most randomization methods is their numerical stability. Here,

a method is considered to be numerically stable when the relative error in the computed solution,

and in each component of the computed solution if the computed solution is a vector, resulting

from round-off errors can be expected to be small. This results from the fact that, apart from the

computation of the diagonal elements ofP and some methods for computing Poisson probabili-

ties, they only involve additions of positive quantities. The issue has been rigorously examined

in Grassmann (1993) in relation to the computation of the transient probability vector of a finite

CTMC. Computing Poisson probabilities avoiding intermediate underflows and overflows is not a

trivial problem, and several methods have been proposed forcomputing them (Fox and Glynn 1988,

Knüsel 1986, van Moorsel and Sanders 1997). In the new method and in our implementation of

Algorithm A we will use the method described in Knüsel (1986, pp. 1028–29), which is reason-

ably efficient and numerically stable. Several variants of randomization methods have also been

proposed, including selective and compressed selective randomization (Melamed and Yadin 1984),

uniformization with stationarity detection (Reibman and Trivedi 1988, Sericola 1999), adaptive uni-

formization (van Moorsel and Sanders 1994), adaptive uniformization/standard uniformization (van
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Moorsel and Sanders 1997), regenerative randomization (Carrasco 2003, 2005), and randomization

with quasistationarity detection (Carrasco 2004b). Adaptive uniformization is somehow related to

the new method, the difference being that in adaptive uniformization the randomization rate depends

on the subset of states in which the randomized DTMC can be after a particular number of steps,

whereas in the new method it depends on whether the state visited by the randomized DTMC is up

or down.

Algorithm A is based on the formulation forIAVCD(t, p) which results from the randomization

construct

IAVCD(t, p) =
∞∑

n=0

n∑

k=0

(Λt)n

n!
e−Λt

(
n

k

)
pk(1− p)n−kYn,k , (1)

whereYn,k = P [#(X̂0:n ∈ U) > k] and#(X̂0:n ∈ B) denotes the number of indicesk, 0 ≤ k ≤ n,

for which X̂k ∈ B holds. In the method, three truncations are performed to thesummations of (1).

With ε being an error control parameter, the three truncations aredefined by the parameters

N = min

{
n ≥ 0 :

∞∑

k=n+1

(Λt)k

k!
e−Λt ≤ ε

2

}
,

C ′′ =





max

{
c : 0 ≤ c ≤ N ∧

c∑

k=0

((1− p)Λt)k

k!
e−(1−p)Λt ≤ ε

4

}
if e−(1−p)Λt ≤ ε

4

−1 if e−(1−p)Λt >
ε

4

,

C ′ =





min

{
N,min

{
c ≥ 0 :

∞∑

k=c+1

((1− p)Λt)k

k!
e−(1−p)Λt ≤ ε

4

}}
if C ′′ 6= −1

min

{
c ≥ 0 :

∞∑

k=c+1

((1− p)Λt)k

k!
e−(1−p)Λt ≤ ε

2

}
if C ′′ = −1

.

This gives the approximate value forIAVCD(t, p)

IAVCDa
N,C′,C′′(t, p) =

N∑

n=0

min{n,N−C′′−1}∑

k=max{0,n−C′}

(Λt)n

n!
e−Λt

(
n

k

)
pk(1− p)n−kYn,k ,

which satisfies

IAVCD(t, p) = IAVCDa
N,C′,C′′(t, p) + eN,C′,C′′(t, p) ,

with 0 ≤ eN,C′,C′′(t, p) ≤ ε.

Let X̂i denote a version of̂X with initial statei ∈ Ω, let Y i
n,k = P [#(X̂i

0:n ∈ U) > k] and

let Yn,k be the column vector(Y i
n,k)i∈Ω. Clearly,Yn,k = αααTYn,k, with T denoting the transpose

operator. Let0 and1 denote column vectors of appropriate dimensions with all elements equal to,

respectively, 0 and 1; letYU
n,k andYD

n,k denote the subvectors ofYn,k including the components

associated with, respectively, the up and down states; and let PB,C denote the submatrix ofP

collecting the components with index pairs inB × C. Then, the vectorsYn,k in the domain of

(n, k) pairs for whichYn,k have to be obtained to computeIAVCDa
N,C′,C′′(t, p) can be obtained for

increasingn and, for eachn, for increasingk using the recurrencesYU
n,k = PU,ΩYn−1,k−1, n > 0,
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0 < k ≤ n, YU
n,0 = 1, n > 0, YD

n,k = PD,ΩYn−1,k, n > 0, 0 ≤ k < n, YD
n,n = 0, n > 0, with

initial conditionsYU
0,0 = 1, YD

0,0 = 0.

AsΛ increases, the truncation pointsN , C ′ andC ′′ increase and the computational cost of the

method tends to increase, makingΛ = maxi∈Ω−ai,i a reasonable best selection forΛ. We will

assume that selection. Also,Pk(λ) will denote the probability that a Poisson random variable with

parameterλ has valuek. Of courseP0(0) = 1.

3 The New Method

To simplify, we will exclude the cases in whichU = ∅, D = ∅, maxi∈U −ai,i = 0, or

maxi∈D −ai,i = 0. These are not severe restrictions, since, forU = ∅, IAVCD(t, p) = 0,

for D = ∅, IAVCD(t, p) = 1, for U 6= ∅ andmaxi∈U −ai,i = 0, all up states are absorbing

and IAVCD(t, p) = P [X((1 − p)t) ∈ U ], which is simpler to compute, and, forD 6= ∅ and

maxi∈D −ai,i = 0, all down states are absorbing andIAVCD(t, p) = P [X(pt) ∈ U ], which is

simpler to compute.

We will start by obtaining a new closed-form formulation forIAVCD(t, p). After that, we will

deal with the issues necessary to derive the method from thatclosed-form formulation.

3.1 Formulation

To obtain the new closed-form formulation forIAVCD(t, p), we will consider a randomization

construct in which a DTMCX̂ is randomized with rateΛU = maxi∈U −ai,i in the states in

U and rateΛD = maxi∈D −ai,i in the states inD. The DTMC X̂ has same state space and

initial probability distribution asX and transition matrixP = I + ΛΛΛ−1
UDA, whereΛΛΛUD =

diag[1i∈UΛU + 1i∈DΛD]i∈Ω, diag[di]i∈Ω denoting a|Ω| × |Ω| diagonal matrix with diagonal

elementsdi, i ∈ Ω. Let Y = {Y (t); t ≥ 0} be the stochastic process resulting from the con-

struct. That construct was considered in Carrasco (2004a) and can be looked at as a particular case

of a more general construct in which arbitrarily different randomization ratesΛi ≥ −ai,i, Λi > 0,

i ∈ Ω are associated with the states of a DTMĈX. In that generalized construct,̂X has, of course,

same state space and initial probability distribution asX and transition matrixP = I + ΛΛΛ−1A,

ΛΛΛ = diag[Λi]i∈Ω. Let {Ei,n, i ∈ Ω, n ≥ 1} be a collection of exponentially distributed ran-

dom variables that are mutually independent and independent of X̂ , with Ei,n having parameter

Λi. Then, in that generalized construct,Y can be formally defined, respecting the fact that visits

durations ofX̂ to i are exponentially distributed with parameterΛi, asY = {X̂τ(t); t ≥ 0} with

τ(t) = min{n ≥ 0 :
∑n

k=0EX̂k,k+1
> t}. The following theorem asserts thatY is probabilistically

identical toX, allowing the use ofY instead ofX when computing anything depending solely on

the probabilistic path behavior ofX.

Theorem 1. LetX = {X(t); t ≥ 0} be either a finite CTMC with state spaceΩ or a uniformizable

CTMC with denumerable state spaceΩ, and letA = (ai,j)i,j∈Ω be the infinitesimal generator ofX.
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LetΛi, i ∈ Ω be such thatΛi ≥ −ai,i, Λi > 0 and theΛi, i ∈ Ω are uniformly bounded from above.

Let X̂ be the DTMC with same state space and initial probability distribution asX and transition

matrixP = I +ΛΛΛ−1A, ΛΛΛ = diag[Λi]i∈Ω. Then,Y = {X̂τ(t); t ≥ 0} with τ(t) = min{n ≥ 0 :∑n+1
k=1 EX̂k,k+1 > t} is probabilistically identical toX.

Proof. By the monotone convergence theorem,

E

[
lim
n→∞

n∑

k=0

E
X̂k,k+1

]
=

∞∑

k=0

1

Λ
X̂k

= ∞ ,

limn→∞
∑n

k=0EX̂k,k+1
will be ∞ with probability one (see, for instance, Kijima 1997, p. 187, for

the argument), for any arbitraryt ≥ 0, τ(t) will be defined and finite with probability one, implying

thatτ(s), 0 ≤ s ≤ t will be defined and finite with probability one, and, becauset s arbitrary, that

τ(t), t ≥ 0 will be defined and finite with probability one. This shows that Y = {X̂τ(t); t ≥ 0} is

defined with probability one. BecauseY is defined with probability one and the stochastic behavior

of either a finite CTMC with infinitesimal generator or a uniformizable CTMC with denumerable

state space is defined by its initial probability distribution together with its infinitesimal generator

(Kijima 1997), it is enough to prove that the initial probability distribution of Y coincides with

that ofX and thatY is a CTMC with infinitesimal generatorA. The first is rather obvious, since

τ(0) = 0 with probability one, and, then, the initial probability distribution ofY coincides with

that of X̂, andX. For the second, it suffices to show that, for arbitrariest ≥ 0 and i ∈ Ω with

P [X̂τ(t) = i] > 0,

lim
h→0+

P
[
X̂τ(t+h) = j | X̂τ(t) = i

]

h
= ai,j, j ∈ Ω, j 6= i ,

lim
h→0+

P
[
X̂τ(t+h) = i | X̂τ(t) = i

]
− 1

h
= ai,i .

Both follow if, for arbitrariest ≥ 0, i ∈ Ω andk ≥ 0 with P [X̂k = i ∧ τ(t) = k] > 0,

lim
h→0+

P
[
X̂τ(t+h) = j | X̂k = i ∧ τ(t) = k

]

h
= ai,j, j ∈ Ω, j 6= i ,

lim
h→0+

P
[
X̂τ(t+h) = i | X̂k = i ∧ τ(t) = k

]
− 1

h
= ai,i .

But, using the memoryless property of exponential random variables and the fact that̂X and the

collection of random variables{Ei,n, i ∈ Ω, n ≥ 1} are independent, we have

P
[
X̂τ(t+h) = j | X̂k = i ∧ τ(t) = k

]

= P
[
Ei,k+1 ≤ h

]
P
[
X̂k+1 = j | X̂k = i

]
+ o(h)

= Pi,jΛih+ o(h) = ai,jh+ o(h) , j ∈ Ω, j 6= i ,

P
[
X̂τ(t+h) = i | X̂k = i ∧ τ(t) = k

]
− 1

= −P
[
X̂τ(t+h) 6= i | X̂k = i ∧ τ(t) = k

]

= −P
[
Ei,k+1 ≤ h

]
P
[
X̂k+1 6= i | X̂k = i

]
+ o(h)

= −(1− Pi,i)Λih+ o(h) = ai,ih+ o(h) .
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With X andY being probabilistically identical, we can base the computation of IAVCD(t, p) on

the analysis ofY . Because the exponential visit durations in up and down states of the randomized

DTMC X̂ are, in general, different, the use of two randomization rates will force us to count the

number of visits ofX̂ to up states during a given number of steps ofX̂. This is also necessary in

Algorithm A, so essentially no computational burden is added by the consideration of two random-

ization rates in the new method. Informally, using two randomization rates can be advantageous

whenΛU andΛD are significantly different. This is because, in Algorithm A, a randomization rate

equal tomax{ΛU ,ΛD} is used, and the number of steps ofX̂ that have to be considered to capture

well enough the behavior ofX in the time interval[0, t] will tend to be significantly larger than in the

method with two randomization rates. This is the intuition that has motivated the new method. On

the other hand, the use of two randomization rates will necessarily complicate both the formulation

of the measure and its truncation.

We will obtain a closed-form expression forIAVCD(t, p) in terms of probabilities of sets of

realizations ofY = {X̂τ(t); t ≥ 0} with τ(t) = min{n ≥ 0 :
∑n

k=0(1X̂k∈U
EU

k+1+1
X̂k∈D

ED
k+1) >

t}, EU
k , k = 1, 2, 3, . . . denoting exponential random variables with parameterΛU andED

k , k =

1, 2, 3, . . . denoting exponential random variables with parameterΛD, with all random variables

independent among them and independent ofX̂. Then, conditioning on the number of steps given

by X̂ at time t, on the number of up states visited bŷX on those steps, and on whether the last

visited state was up or down, using the theorem of total probability and the fact that the random

variablesEU
k andED

k are independent of̂X, we have

IAVCD(t, p)

=

∞∑

n=0

n+1∑

k=1

P

[
#(X̂0:n ∈ U) = k ∧ X̂n ∈ U ∧

k−1∑

i=1

EU
i +

n+1−k∑

i=1

ED
i ≤ t

∧
k∑

i=1

EU
i +

n+1−k∑

i=1

ED
i > t

]

× P

[
t−

n+1−k∑

i=1

ED
i > pt

∣∣∣ #(X̂0:n ∈ U) = k ∧ X̂n ∈ U

∧
k−1∑

i=1

EU
i +

n+1−k∑

i=1

ED
i ≤ t ∧

k∑

i=1

EU
i +

n+1−k∑

i=1

ED
i > t

]

+

∞∑

n=0

n∑

k=0

P

[
#(X̂0:n ∈ U) = k ∧ X̂n ∈ D ∧

k∑

i=1

EU
i +

n−k∑

i=1

ED
i ≤ t

∧
k∑

i=1

EU
i +

n+1−k∑

i=1

ED
i > t

]

× P

[
k∑

i=1

EU
i > pt

∣∣∣ #(X̂0:n ∈ U) = k ∧ X̂n ∈ D

∧
k∑

i=1

EU
i +

n−k∑

i=1

ED
i ≤ t ∧

k∑

i=1

EU
i +

n+1−k∑

i=1

ED
i > t

]
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=
∞∑

n=0

n+1∑

k=1

P [#(X̂0:n ∈ U) = k ∧ X̂n ∈ U ]

× P

[
k−1∑

i=1

EU
i +

n+1−k∑

i=1

ED
i ≤ t ∧

k∑

i=1

EU
i +

n+1−k∑

i=1

ED
i > t

]

× P

[
t−

n+1−k∑

i=1

ED
i > pt

∣∣∣
k−1∑

i=1

EU
i +

n+1−k∑

i=1

ED
i ≤ t ∧

k∑

i=1

EU
i +

n+1−k∑

i=1

ED
i > t

]

+

∞∑

n=0

n∑

k=0

P [#(X̂0:n ∈ U) = k ∧ X̂n ∈ D]

× P

[
k∑

i=1

EU
i +

n−k∑

i=1

ED
i ≤ t ∧

k∑

i=1

EU
i +

n+1−k∑

i=1

ED
i > t

]

× P

[
k∑

i=1

EU
i > pt

∣∣∣
k∑

i=1

EU
i +

n−k∑

i=1

ED
i ≤ t ∧

k∑

i=1

EU
i +

n+1−k∑

i=1

ED
i > t

]

=
∞∑

n=0

n+1∑

k=1

ΩU
n,kF

U
n,k(t, p) +

∞∑

n=0

n∑

k=0

ΩD
n,kF

D
n,k(t, p) , (2)

with

ΩU
n,k = P [#(X̂0:n ∈ U) = k ∧ X̂n ∈ U ] , (3)

ΩD
n,k = P [#(X̂0:n ∈ U) = k ∧ X̂n ∈ D] , (4)

FU
n,k(t, p) = P

[
k−1∑

i=1

EU
i +

n+1−k∑

i=1

ED
i ≤ t ∧

k∑

i=1

EU
i +

n+1−k∑

i=1

ED
i > t ∧ t−

n+1−k∑

i=1

ED
i > pt

]
,

and

FD
n,k(t, p) = P

[
k∑

i=1

EU
i +

n−k∑

i=1

ED
i ≤ t ∧

k∑

i=1

EU
i +

n+1−k∑

i=1

ED
i > t ∧

k∑

i=1

EU
i > pt

]
.

The following theorem gives integral expressions forFU
n,k(t, p), n ≥ 0, 1 ≤ k ≤ n + 1 and

FD
n,k(t, p), n ≥ 0, 0 ≤ k ≤ n.

Theorem 2. For n ≥ 0,

FU
n,n+1(t, p) =

(ΛU t)
n

n!
e−ΛU t .

For n ≥ 0, FD
n,0(t, p) = 0. For n ≥ 1 and 1 ≤ k ≤ n, FU

n,k(t, p) = ΛDIn,k(t, p), FD
n,k(t, p) =

ΛUIn,k(t, p), where

In,k(t, p) =

∫ (1−p)t

0

(ΛU (t− x))k−1

(k − 1)!
e−ΛU (t−x) (ΛDx)

n−k

(n − k)!
e−ΛDx dx .

Proof. See the online supplement (available athttp://dx.doi.org/10.1287/ijoc.1120.0539).
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Three issues have to be solved to complete the method. The first one is the truncation of the

infinite summations in (2) with control of the truncation error. The second one is the computation

of the quantitiesΩU
n,k andΩD

n,k. The third one is the efficient evaluation with numerical stability of

the integralsIn,k(t, p). We will deal with those issues in that order. After that, a comparison of the

computational costs of the new method and Algorithm A will bemade.

3.2 Truncation of the infinite summations

Let ε be an arbitrarily small error control parameter. We will perform two truncations to the summa-

tions in (2). Each truncation will introduce a nonnegative error which will be bounded from above

by ε/4, yielding a formulation forIAVCD(t, p) with nonnegative truncation error≤ ε/2. The first

truncation deletes the terms in (2) corresponding to valuesof n > N ′, whereN ′ is a truncation

parameter≥ 0. This gives, taking into accountFD
n,0(t, p) = 0, n ≥ 0 (Theorem 2),

IAVCD(t, p) = IAVCD′
N ′(t, p) + e′N ′(t, p) ,

IAVCD′
N ′(t, p) =

N ′∑

n=0

n+1∑

k=1

ΩU
n,kF

U
n,k(t, p) +

N ′∑

n=1

n∑

k=1

ΩD
n,kF

D
n,k(t, p) , (5)

0 ≤ e′N ′(t, p) =

∞∑

n=N ′+1

n+1∑

k=1

ΩU
n,kF

U
n,k(t, p) +

∞∑

n=N ′+1

n∑

k=1

ΩD
n,kF

D
n,k(t, p) .

UsingΩU
n,k ≥ 0, n ≥ 1, 1 ≤ k ≤ n+1,ΩD

n,k ≥ 0, n ≥ 1, 1 ≤ k ≤ n,
∑n+1

k=1 Ω
U
n,k+

∑n
k=1Ω

D
n,k ≤ 1,

n ≥ 1, and Theorem 2, and lettingΛ = max{ΛU ,ΛD},

e′N ′(t, p) ≤
∞∑

n=N ′+1

max

{
max

1≤k≤n+1
FU
n,k(t, p), max

1≤k≤n
FD
n,k(t, p)

}

=

∞∑

n=N ′+1

max

{
(ΛU t)

n

n!
e−ΛU t, max

1≤k≤n
ΛIn,k(t, p)

}
.

Direct use of the previous upper bound fore′N ′(t, p) to determine the truncation pointN ′ is impracti-

cal due to the need to determinemax1≤k≤n ΛIn,k(t, p). The following theorem gives an inexpensive

upper bound for that maximum.

Theorem 3. Letn ≥ 1. Then,

max
1≤k≤n

ΛIn,k(t, p) ≤ Un(ΛU ,ΛD, t, p) ,

where, forn ≤ (ΛU + (1− p)ΛD)/ΛU ,

Un(ΛU ,ΛD, t, p) = (1− p)Λt
((1− p)ΛDt)

n−1

(n− 1)!
e−pΛU t

and, otherwise,

Un(ΛU ,ΛD, t, p) = (1− p)Λt
(ΛU t)

k∗−1

(k∗ − 1)!

((1 − p)ΛDt)
n−k∗

(n− k∗)!
e−pΛU t

with k∗ = ⌊(ΛU/(ΛU + (1− p)ΛD))n⌋+ 1.

10
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Figure 1: Truncation pointsN andN ′ as a function ofΛD/ΛU for ε = 10−8.

Proof. See the online supplement.

Using Theorem 3, the truncation pointN ′ can be chosen using

N ′ = min

{
n ≥ 0 :

∞∑

m=n+1

max

{
(ΛU t)

m

m!
e−ΛU t, Um(ΛU ,ΛD, t, p)

}
≤ ε

4

}
.

Direct computation ofUm(ΛU ,ΛD, t, p) might be problematic due to possible underflows and over-

flows. The problem can be solved by taking the logarithms of(1−p)Λt, ((1−p)ΛDt)
m−1, (m−1)!,

e−pΛU t, (ΛU t)
k∗−1, (k∗ − 1)!, ((1 − p)ΛDt)

m−k∗ , and(m − k∗)!, adding/subtracting those loga-

rithms to obtain the logarithm ofUm(ΛU ,ΛD, t, p), and applying the exponential function to the

result to obtainUm(ΛU ,ΛD, t, p), wherelog k! for largek can be computed using a suitable Stir-

ling approximation. We next analyze the quality of that truncation pointN ′ and how it compares

with the corresponding truncation pointN used by Algorithm A. The truncation pointN ′ is a func-

tion of ε, ΛU t, ΛD/ΛU , andp. Figure 1 plotsN andN ′ as a function ofΛD/ΛU for ε = 10−8,

ΛU t = 10, 10,000, andp = 0.99, 0.999. ForΛD > ΛU , N ′ < N . The truncation parameterN ′

increases smoothly withΛD/ΛU till the condition(1 − p)ΛD = ΛU is satisfied and increases ap-

proximately linearly withΛD/ΛU beyond that point. Figure 2 plotsN/N ′ as a function ofΛD/ΛU

for ε = 10−8, ΛU t = 10, 10,000, andp = 0.99, 0.999. We can note thatN/N ′ increases with

ΛD/ΛU up to a value which increases asp gets closer to 1.

The behavior of the truncation pointN ′ is not completely satisfactory. This is due to the

coarseness of the upper bound formax1≤k≤n ΛIn,k(t, p) given by Theorem 3. We will, therefore,

strive to obtain a tighter upper bound for that maximum. Consider again the integralsIn,k(t, p) given

by Theorem 2. Because, in the integration domain,pt ≤ t−x ≤ t, for n ≥ 1 and1 ≤ k ≤ n, where

for the expression for the definite integral see, for instance, Abramowitz and Stegun (1970, 4.2.55),

In,k(t, p) <
(ΛU t)

k−1

(k − 1)!
e−pΛU t

∫ (1−p)t

0

(ΛDx)
n−k

(n− k)!
e−ΛDx dx

=
1

ΛD

(ΛU t)
k−1

(k − 1)!
e−pΛU t

[
1−

n−k∑

m=0

((1− p)ΛDt)
m

m!
e−(1−p)ΛDt

]

11
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Figure 2:N/N ′ as a function ofΛD/ΛU for ε = 10−8.

=
1

ΛD

(ΛU t)
k−1

(k − 1)!
e−pΛU t

∞∑

m=n+1−k

((1 − p)ΛDt)
m

m!
e−(1−p)ΛDt . (6)

From the tightening process, it should be clear that the above upper bound forIn,k(t, p) is tight for

p close enough to 1.

Noting that(ΛU t)
k−1/(k − 1)! achieves its maximum atk = k0 = ⌊ΛU t⌋ + 1 and decreases

toward zero fork ≥ k0, let, fors = 1, 2, 3, . . .,

∆l(s) = min

{
k ≥ k0 :

Λ

ΛD

(ΛU t)
k−1

(k − 1)!
e−pΛU t ≤ 10−s

}
, (7)

∆r(s) = min {k ≥ ⌊(1 − p)ΛDt⌋

:
Λ

ΛD

(ΛU t)
k0−1

(k0 − 1)!
e−pΛU t

∞∑

m=k

((1 − p)ΛDt)
m

m!
e−(1−p)ΛDt ≤ 10−s

}
. (8)

Then, since, givens ≥ 1,

Λ

ΛD

(ΛU t)
k−1

(k − 1)!
e−pΛU t

∞∑

m=n+1−k

((1− p)ΛDt)
m

m!
e−(1−p)ΛDt

is smaller than or equal to10−s for ∆l(s) ≤ k ≤ n and for1 ≤ k ≤ n+ 1−∆r(s), the maximum

of the above for1 ≤ k ≤ n is smaller than or equal to10−s for n ≥ ∆(s) = ∆l(s) + ∆r(s) − 1.

Then, noting thate−pΛU t = e(1−p)ΛU te−ΛU t, we can bound from abovemax1≤k≤nΛIn,k(t, p) by

U ′
n(ΛU ,ΛD, t, p) =





Λ

ΛD

e(1−p)ΛU t if n < ∆(1) ,

10−max{m,m≥1 : n≥∆(m)} if n ≥ ∆(1) ,

and have the new truncation point

N ′ = min

{
n ≥ ⌊ΛU t+ (1− p)ΛDt⌋ :

∞∑

m=n+1

max

{
(ΛU t)

m

m!
e−ΛU t,

min
{
Um(ΛU ,ΛD, t, p), U

′
m(ΛU ,ΛD, t, p)

}}
≤ ε

4

}
. (9)
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Direct computation of the left-hand side of the inequality in (7) might be problematic due to possible

underflows and overflows. The problem can be solved by taking the logarithms ofΛ/ΛD, (ΛU t)
k−1,

(k − 1)!, ande−pΛU t, adding/subtracting those logarithms to obtain the logarithm of the left-hand

side, and applying the exponential function to the result toobtain the value of the left-hand side.

Direct computation of the left-hand side of the inequality in (8) might also be problematic. First, the

computation of the sum could lead to underflow. This makes it unfeasible to compute the sum in

terms ofPm((1 − p)ΛDt). There could also be underflows and overflows in what is left. To solve

those problems, we rewrite the left-hand side as

Λ

ΛD

(ΛU t)
k0−1

(k0 − 1)!
e−pΛU t 1

x

∞∑

m=k

x
((1− p)ΛDt)

m

m!
e−(1−p)ΛDt

andlog x is selected so that the first term of the scaled summation is equal to one. This yields

log x = (1− p)ΛDt+ log k!− k log((1− p)ΛDt) .

The scaled summation can then be computed iteratively up to enough accuracy without problems.

Then, the left-hand side can be computed without problems bytaking the logarithms ofΛ/ΛD,

(ΛU t)
k0−1, (k0−1)!, e−pΛU t, 1/x, and the scaled summation, and applying the exponential function

to the result.

The new truncation pointN ′ is also a function ofε, ΛU t, ΛD/ΛU , andp. Figure 3 plotsN

and the new truncation pointN ′ as a function ofΛD/ΛU for ε = 10−8, ΛU t = 10, 10,000, and

p = 0.99, 0.999. Figure 4 plotsN/N ′ for the new truncation pointN ′ as a function ofΛD/ΛU for

ε = 10−8, ΛU t = 10, 10,000, andp = 0.99, 0.999. By comparing Figures 1 and 3, we can note that

for ΛD(1− p) > ΛU the new truncation pointN ′ is significantly better than the previous truncation

pointN ′. As Figure 4 illustrates, for smallε, the reduction factorN/N ′ tends forΛD/ΛU → ∞ to

a value approximately equal to1/(1 − p). Informally, this is because, for large(1 − p)ΛDt, ∆r(s)

is only slightly larger than(1 − p)ΛDt and, forΛD/ΛU → ∞, ∆l(s) is much smaller than∆r(s),

making∆(s) and, for smallε, N ′ only slightly larger than(1 − p)ΛDt, whereas, for largeΛt and

smallε, N is only slightly larger thanΛt which, forΛD > ΛU , is equal toΛDt. The method will

use the new truncation pointN ′.

The second truncation will delete the terms in (5) corresponding to values ofk < n − C ′′′,

whereC ′′′ is a second truncation parameter≥ 0. This gives, using Theorem 2,

IAVCD(t, p) = IAVCD′
N ′,C′′′(t, p) + e′N ′(t, p) + e′N ′,C′′′(t, p) ,

IAVCD′
N ′,C′′′(t, p) =

N ′∑

n=0

n+1∑

k=max{1,n−C′′′}

ΩU
n,kF

U
n,k(t, p) +

N ′∑

n=1

n∑

k=max{1,n−C′′′}

ΩD
n,kF

D
n,k(t, p)

=
N ′∑

n=0

ΩU
n,n+1

(ΛU t)
n

n!
e−ΛU t +

N ′∑

n=1

n∑

k=max{1,n−C′′′}

ΩU
n,kΛDIn,k(t, p)

+

N ′∑

n=1

n∑

k=max{1,n−C′′′}

ΩD
n,kΛUIn,k(t, p) , (10)
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Figure 3: Truncation pointN and new truncation pointN ′ as a function ofΛD/ΛU for ε = 10−8.
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0 ≤ e′N ′,C′′′(t, p) =

N ′∑

n=C′′′+2

n−C′′′−1∑

k=1

ΩU
n,kF

U
n,k(t, p) +

N ′∑

n=C′′′+2

n−C′′′−1∑

k=1

ΩD
n,kF

D
n,k(t, p) .

Using ΩU
n,k,Ω

D
n,k ≥ 0, C ′′′ + 2 ≤ n ≤ N ′, 1 ≤ k ≤ n − C ′′′ − 1,

∑n−C′′′−1
k=1 ΩU

n,k +∑n−C′′′−1
k=1 ΩD

n,k ≤ 1, C ′′′ + 2 ≤ n ≤ N ′, Theorem 2 and (6), we get

e′N ′,C′′′(t, p) ≤
N ′∑

n=C′′′+2

max

{
max

1≤k≤n−C′′′−1
FU
n,k(t, p), max

1≤k≤n−C′′′−1
FD
n,k(t, p)

}

=

N ′∑

n=C′′′+2

max
1≤k≤n−C′′′−1

ΛIn,k(t, p)

<
N ′∑

n=C′′′+2

max
1≤k≤n−C′′′−1

Λ

ΛD

(ΛU t)
k−1

(k − 1)!
e−pΛU t

∞∑

m=n+1−k

((1 − p)ΛDt)
m

m!
e−(1−p)ΛDt .

The factor(ΛU t)
k−1/(k − 1)! achieves its maximum atk = k0 = ⌊ΛU t⌋+ 1. Then, we have

e′N ′,C′′′(t, p) <

N ′∑

n=C′′′+2

Λ

ΛD

(ΛU t)
k0−1

(k0 − 1)!
e−pΛU t max

1≤k≤n−C′′′−1

∞∑

m=n+1−k

((1− p)ΛDt)
m

m!
e−(1−p)ΛDt

=
N ′∑

n=C′′′+2

Λ

ΛD

(ΛU t)
k0−1

(k0 − 1)!
e−pΛU t

∞∑

m=C′′′+2

((1 − p)ΛDt)
m

m!
e−(1−p)ΛDt

= 1C′′′≤N ′−1(N
′ − C ′′′ − 1)

Λ

ΛD

(ΛU t)
k0−1

(k0 − 1)!
e−pΛU t

∞∑

m=C′′′+2

((1− p)ΛDt)
m

m!
e−(1−p)ΛDt ,

andC ′′′ can be chosen as

C ′′′ = min

{
c ≥ max{⌊(1− p)ΛDt⌋ − 2, 0} : 1c≤N ′−1(N

′ − c− 1)
Λ

ΛD

(ΛU t)
k0−1

(k0 − 1)!
e−pΛU t

∞∑

m=c+2

((1− p)ΛDt)
m

m!
e−(1−p)ΛDt ≤ ε

4

}
. (11)

A comment similar to the one addressing the computation of the left-hand side of the inequal-

ity in (8) can be made concerning the computation of the left-hand side of the inequality in the

expression forC ′′′.

The truncation pointC ′′′ is a function ofε, ΛDt, ΛU/ΛD, andp. It can be compared with the

truncation pointC ′ used in Algorithm A. Figure 5 plotsC ′ andC ′′′ as a function ofΛU/ΛD for

ε = 10−8, ΛDt = 10, 10,000, andp = 0.99, 0.999. Figure 6 plotsC ′/C ′′′ as a function ofΛU/ΛD

for ε = 10−8, ΛDt = 10, 10,000, andp = 0.99, 0.999. For largeΛDt butΛU/ΛD around 1,C ′′′ is

slightly larger thanC ′. ForΛU significantly larger thanΛD, C ′′′ is moderately smaller thanC ′.

The new method uses the formulation forIAVCD(t, p) given by (10), withN ′ andC ′′′ selected

using, respectively, (9) and (11), guaranteeing a nonnegative truncation error≤ ε/2.
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3.3 Computation ofΩU
n,k andΩD

n,k

We discuss next how theΩU
n,k andΩD

n,k involved in (10) can be computed. LetΩi
n,k = P [#(X̂0:n ∈

U) = k ∧ X̂n = i] and letΩΩΩn,k be the column vector(Ωi
n,k)i∈Ω. Then, it is clear (3), (4) that

ΩU
n,k =

∑
i∈U Ωi

n,k andΩD
n,k =

∑
i∈D Ωi

n,k. This translates the problem of computing theΩU
n,k and

ΩD
n,k involved in IAVCD′

N ′,C′′′(t, p) to the problem of computing the vectorsΩΩΩn,k for the required

(n, k) pairs: 0 ≤ n ≤ N ′, max{1, n − C ′′′} ≤ k ≤ n + 1. LetαααU andαααD denote the column

subvectors ofααα including the components with indices in, respectively,U andD, and letΩΩΩU
n,k and

ΩΩΩD
n,k denote the column subvectors ofΩΩΩn,k including the components with indices in, respectively,

U andD. Then, the vectorsΩΩΩn,k for the required(n, k) pairs can be computed using for increasing

n, 0 ≤ n ≤ N ′, and, for eachn, for increasingk, max{0, n − C ′′′} ≤ k ≤ n+ 1, the recurrences

(ΩΩΩU
n,k)

T = ΩΩΩT
n−1,k−1PΩ,U , n ≥ 1, 1 ≤ k ≤ n+ 1 , (12)

(ΩΩΩD
n,k)

T = ΩΩΩT
n−1,kPΩ,D , n ≥ 1, 0 ≤ k ≤ n , (13)

ΩΩΩU
n,0 = 0 , n ≥ 0 , (14)

ΩΩΩD
n,n+1 = 0 , n ≥ 0 (15)

with initial conditions

ΩΩΩU
0,1 = αααU , (16)

ΩΩΩD
0,0 = αααD . (17)

3.4 Computation ofIn,k(t, p)

It remains to discuss the computation of the integralsIn,k(t, p) appearing in (10):In,k(t, p), 1 ≤
n ≤ N ′, max{1, n − C ′′′} ≤ k ≤ n. Computation of these integrals can be tricky. It will turn out

convenient to calculate instead

Jn,k(t, p) = ΛIn,k(t, p) =

∫ (1−p)t

0
Λ

(ΛU (t− x))k−1

(k − 1)!
e−ΛU (t−x) (ΛDx)

n−k

(n− k)!
e−ΛDx dx ,

whereΛ = max{ΛU ,ΛD}, and obtainIn,k(t, p) from Jn,k(t, p) usingIn,k(t, p) = Jn,k(t, p)/Λ.

The following theorem identifies recurrences that can be used to compute most of theJn,k(t, p).

Theorem 4. For ΛU > ΛD, assume thatJn,n(t, p), 1 ≤ n ≤ N ′ and JN ′,k(t, p), max{1, N ′ −
C ′′′} ≤ k ≤ N ′ − 1 are known with absolute errors≤ δ. Then, in exact arithmetic,Jn,k(t, p),

2 ≤ n ≤ N ′ − 1, max{1, n − C ′′′} ≤ k ≤ n − 1 can be computed with absolute errors≤ δ from

Jn,n(t, p), 1 ≤ n ≤ N ′ andJN ′,k(t, p), max{1, N ′ −C ′′′} ≤ k ≤ N ′− 1 for decreasingn and, for

eachn, for decreasingk using the recurrence

Jn,k(t, p) =
ΛU − ΛD

ΛU
Jn+1,k+1(t, p) +

ΛD

ΛU
Jn,k+1(t, p)

− (pΛU t)
k

k!
e−pΛU t ((1− p)ΛDt)

n−k

(n− k)!
e−(1−p)ΛDt .
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For ΛU ≤ ΛD, assume thatJn,max{1,n−C′′′}(t, p), 1 ≤ n ≤ N ′ and JN ′,k(t, p), max{1, N ′ −
C ′′′} + 1 ≤ k ≤ N ′ are known with absolute errors≤ δ. Then, in exact arithmetic,Jn,k(t, p),

2 ≤ n ≤ N ′ − 1, max{1, n − C ′′′} + 1 ≤ k ≤ n can be computed with absolute errors≤ δ from

Jn,max{1,n−C′′′}(t, p), 1 ≤ n ≤ N ′ andJN ′,k(t, p), max{1, N ′−C ′′′}+1 ≤ k ≤ N ′ for decreasing

n and, for eachn, for increasingk using the recurrence

Jn,k(t, p) =
ΛD − ΛU

ΛD

Jn+1,k(t, p) +
ΛU

ΛD

Jn,k−1(t, p)

+
(pΛU t)

k−1

(k − 1)!
e−pΛU t ((1− p)ΛDt)

n+1−k

(n+ 1− k)!
e−(1−p)ΛDt .

Proof. See the online supplement.

Note that having absolute errors≤ δ in Jn,k(t, p) implies having absolute errors≤ δ in

ΛDIn,k(t, p) = (ΛD/Λ)Jn,k(t, p) andΛU In,k(t, p) = (ΛU/Λ)Jn,k(t, p), and, sinceΩU
n,k,Ω

D
n,k ≥ 0,

1 ≤ n ≤ N ′, max{1, n−C ′′′} ≤ k ≤ n and
∑n

k=max{1,n−C′′′} Ω
U
n,k+

∑n
k=max{1,n−C′′′} Ω

D
n,k ≤ 1,

1 ≤ n ≤ N ′, it implies having an absolute error≤ N ′δ in IAVCD′
N ′,C′′′(t, p). If we pick

δ = ε/(2N ′), we can allow an absolute truncation error≤ δ in a numerical evaluation of the integrals

Jn,k(t, p) on which the recurrences are based with the result of introducing in IAVCD′
N ′,C′′′(t, p)

an absolute truncation error≤ ε/2, that added to the truncation error with whichIAVCD′
N ′,C′′′(t, p)

givesIAVCD(t, p) results in the computation ofIAVCD(t, p) with absolute truncation error≤ ε.

Allowing an absolute error≤ δ in the numerical evaluation of the integralsJn,k(t, p) assumed

in the recurrences given by Theorem 4 makes it in many cases possible to restrict the integration

domain to a much narrower interval than[0, (1− p)t], reducing substantially the computational cost

of the numerical evaluation. As numerical integration method we chose Romberg’s method (see,

for instance, Dahlquist and Björch 1974), which is efficient for smooth integrands. To truncate

the integration interval we identify a reasonably tight interval forλ ≥ 0 out of which the Poisson

probability Pk(λ) = (λk/k!) e−λ, k ≥ 0 is smaller than a given smallη > 0. To identify that

integration interval, the basic idea is to consider thatPk(λ), as a function ofλ, is the probability

density function of ak + 1–Erlang random variable with parameter 1, which has meank + 1 and

standard deviation
√
k + 1. Furthermore,Pk(λ) is increasing for0 ≤ λ ≤ k and decreasing for

λ ≥ k. Then, for largek, Pk(λ) should get tiny for values ofλ several
√
k + 1 apart fromk+1. Let

TR(k, η) = k+1+mR(k, η)
√
k + 1 with mR(k, η) = min{m ≥ 0 : Pk(k+1+m

√
k + 1) ≤ η}.

Also, fork = 0 ork > 0 andPk(k+1−⌊
√
k + 1⌋

√
k + 1) > η, defineTL(k, η) = 0 and, otherwise,

defineTL(k, η) = k+1−mL(k, η)
√
k + 1with mL(k, η) = min{m ≥ 1 : Pk(k+1−m

√
k + 1) ≤

η}. We havePk(λ) ≤ η for λ outside the interval[TL(k, η), TR(k, η)]. The following theorem

defines the truncation of the integration interval[0, (1 − p)t] in terms of these truncation points for

Poisson probabilities.

Theorem 5. Let δ > 0, t > 0, 0 < p < 1, k ≥ 1, n ≥ k. Letgn,k(x) be the integrand inJn,k(t, p)

and letr1 = min{n− k,ΛD(1− p)t}, r2 = max {pΛU t,min {k − 1,ΛU t}},

T 1
L = TL

(
k − 1,

δ

2(1− p)ΛtPn−k(r1)

)
,
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T 1
R = TR

(
k − 1,

δ

2(1 − p)ΛtPn−k(r1)

)
,

T 2
L = TL

(
n− k,

δ

2(1− p)ΛtPk−1(r2)

)
,

T 2
R = TR

(
n− k,

δ

2(1− p)ΛtPk−1(r2)

)
,

L1 = max{0, t− T 1
R/ΛU}, R1 = min{(1− p)t, t− T 1

L/ΛU}, L2 = T 2
L/ΛD, andR2 = min{(1−

p)t, T 2
R/ΛD}. Then; forL1 ≥ R1 or L2 ≥ R2 or L1 < R1, L2 < R2, L1 ≤ L2, andR1 ≤ L2,

or L1 < R1, L2 < R2, L1 > L2, andR2 ≤ L1, Jn,k(t, p) = 0 with nonnegative truncation error

≤ δ; for L1 < R1, L2 < R2, L1 > L2, R2 > L1, andR1 ≤ R2, Jn,k(t, p) =
∫ R1

L1
gn,k(x) dx with

nonnegative truncation error≤ δ; for L1 < R1, L2 < R2, L1 > L2, R2 > L1, andR1 > R2,

Jn,k(t, p) =
∫ R2

L1
gn,k(x) dx with nonnegative truncation error≤ δ; for L1 < R1, L2 < R2,

L1 ≤ L2, R1 > L2, andR2 > R1, Jn,k(t, p) =
∫ R1

L2
gn,k(x) dx with nonnegative truncation error

≤ δ; and, forL1 < R1, L2 < R2, L1 ≤ L2, R1 > L2, andR2 ≤ R1, Jn,k(t, p) =
∫ R2

L2
gn,k(x) dx

with nonnegative truncation error≤ δ.

Proof. See the online supplement.

By extensive experimentation, we recognized that Romberg’s method used with 1,024 integra-

tion subintervals was enough to perform the numerical integration with negligible relative error, and

we use Romberg’s method with that setting. The integration domain truncation procedure seems to

be very efficient. When the number of(n, k) pairs for whichJn,k(t, p) have to be computed directly

is large, often, most of the integrals which have to be evaluated numerically are detected to be 0 with

absolute error≤ δ, and the number of integrals that are actually evaluated numerically is relatively

small, reducing considerably the average computational cost of the evaluation of the integrals.

3.5 Description and computational cost

To clarify, we provide next a short description of the new method. After that, the numerical stability

and the computational cost of the method will be discussed. We assume thatIAVCD(t, p) has to

be computed at a single(t, p) pair. First, we determine the truncation pointN ′ using (9) and the

truncation pointC ′′′ using (11). Next, we obtain the transition matrixP = I + ΛΛΛ−1
UDA of the

randomized DTMCX̂ considered in the method. After that, we obtain the vectorsΩΩΩn,k, 0 ≤ n ≤
N ′, max{0, n − C ′′′} ≤ k ≤ n + 1 for increasingn and, for eachn, for increasingk using the

recurrences (12)–(17). As those vectors are obtained, we compute and storeΩU
n,k =

∑
i∈U Ωi

n,k,

0 ≤ n ≤ N ′, max{1, n − C ′′′} ≤ k ≤ n + 1 andΩD
n,k =

∑
i∈D Ωi

n,k, 1 ≤ n ≤ N ′, max{1, n −
C ′′′} ≤ k ≤ n. Next, ifΛU > ΛD, we compute, as described by Theorem 4, the integralsJn,k(t, p),

1 ≤ n ≤ N ′, max{1, n − C ′′′} ≤ k ≤ n, with the integralsJn,n(t, p), 1 ≤ n ≤ N ′ andJN ′,k(t, p),

max{1, N ′ − C ′′′} ≤ k ≤ N ′ − 1 evaluated numerically with nonnegative truncation error≤
ε/(2N ′) using Theorem 5. IfΛU ≤ ΛD, we compute, as described by Theorem 4, the integrals

Jn,k(t, p), 1 ≤ n ≤ N ′, max{1, n − C ′′′} ≤ k ≤ n, with the integralsJn,max{1,n−C′′′}(t, p),

1 ≤ n ≤ N ′ and JN ′,k(t, p), max{1, N ′ − C ′′′} + 1 ≤ k ≤ N ′ evaluated numerically with
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nonnegative truncation error≤ ε/(2N ′) using Theorem 5. AsJn,k(t, p), 1 ≤ n ≤ N ′, max{1, n −
C ′′′} ≤ k ≤ n are obtained, we computeIn,k(t, p), 1 ≤ n ≤ N ′, max{1, n − C ′′′} ≤ k ≤ n

usingIn,k(t, p) = Jn,k(t, p)/Λ and accumulate terms in the approximate value forIAVCD(t, p),

IAVCDN ′,C′′′(t, p), given by (10).

The numerical stability of the method comes from the fact that, once the truncation parameters

N ′ andC ′′′ are known, no subtractions are involved in the computationsleading to the approximate

value for IAVCD(t, p) except in the computation of the diagonal elements of matrixP, in the

method we use for computing Poisson probabilities, in the application of Romberg’s method to the

numerical evaluation of someJn,k(t, p), and in the recurrences of Theorem 4. The diagonal elements

of P either are very small or are computed with numerical stability. The method we use (Knüsel

1986, pp. 1028–1029) for computing Poisson probabilities is numerically stable. Romberg’s method

applied to nonnegative smooth integrands is also numerically stable, and the recurrence forJn,k(t, p)

will not introduce significant relative round-off errors for the caseΛU ≤ ΛD and is very unlikely

to do so for the caseΛU > ΛD, because, in that case, significant cancellations can only happen

when theJn,k(t, p) computed in the recurrence is very small compared to eitherJn+1,k+1(t, p) or

Jn,k+1(t, p), and the integralsJn,k(t, p) can be expected to be smooth functions of bothn andk for

largen andk. In summary, the new method will be numerically stable. Thiswill be confirmed in

§4.1 through thorough experimentation.

We next compare the computational costs of the new method andAlgorithm A, and start

by discussing the CPU time. The average cost of computing theintegrals Jn,k(t, p) in the

new method does not seem to be much larger than the average cost of computing the factors

((Λt)n/n!)) e−Λt
(
n
k

)
pk(1 − p)n−k in Algorithm A and the cost of computing the truncation pa-

rameters in both methods will often be similar. Then, the numbers of points in the domain of(n, k)

pairs for which, in the new method,ΩΩΩn,k has to be obtained and, in Algorithm A,Yn,k has to

be obtained, are reasonable relative estimates of the costsin terms of CPU times of both meth-

ods for large models. Rough estimates for those numbers of points areP ′ = (N ′ + 1)(C ′′ + 2)

for the new method andP = (N + 1)(C ′ + 1) for Algorithm A. Then, a reasonable, approx-

imate measure of the speedup of the new method with respect toAlgorithm A for large models

is S = P/P ′. Figure 7 plotsS as a function ofΛD/ΛU for ε = 10−8, Λt = 100, 100,000,

andp = 0,2, 0.5, 0.9, 0.95, 0.99, 0.999, 0.9999. Forp close to 1, there are small regions around

ΛD/ΛU = 1 in which S < 1; further apart fromΛD/ΛU = 1, S becomes> 1. The speedup

measureS is significantly larger than 1 forΛD > ΛU and moderately forΛD < ΛU and in-

creases withΛt. This suggests that the new method can be much faster than Algorithm A for

ΛD > ΛU and moderately faster forΛD < ΛU , and that the speedup will increase withΛt. In

§4.2 we will numerically corroborate this approximate analysis and will illustrate thatS is a rea-

sonable approximate measure of the speedup for large models. The truncation pointsN , C ′, N ′

andC ′′′ can be computed a priori. From them, we can computeS and decide to use the new

method ifS > 1 and to use Algorithm A otherwise. Because, for large models,the computational

cost associated with the determination ofN , C ′, N ′, andC ′′′ will be relatively small, the switch

between the new method and Algorithm A will be relatively inexpensive in that case. Regarding

memory cost, assuming matrixP rewrites matrixA, Algorithm A has a costO((C ′ + 3)|Ω|) be-
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Figure 7:S as a function ofΛD/ΛU for ε = 10−8.

cause of theC ′ + 3 vectors of size|Ω| needed to holdYn,k, taking into account the ordering in

which theYn,k are obtained. Assuming matrixP rewrites matrixA, the new method has memory

costO((C ′′′ + 3)|Ω| + 2P ′ + C ′′′ + 3) = O((C ′′′ + 3)|Ω| + 2N ′C ′′′), because of theC ′′′ + 3

vectors of size|Ω| needed to holdΩΩΩn,k, taking into account the ordering in which theΩΩΩn,k are ob-

tained, the storage required to holdΩU
n,k, 0 ≤ n ≤ N ′, max{1, n − C ′′′} ≤ k ≤ n + 1 andΩD

n,k,

1 ≤ n ≤ N ′, max{1, n − C ′′′} ≤ k ≤ n, and the storage required to holdJn,k(t, p), 1 ≤ n ≤ N ′,

max{1, n−C ′′′} ≤ k ≤ n, taking into account the ordering in which those integrals are computed.

To end, ifIAVCD(t, p) had to be computed at several(t, p) pairs, a plausible, simple approach

would be to compute the requiredN ′ andC ′′′ for each(t, p) pair, obtain the vectorsΩΩΩn,k andΩU
n,k,

ΩD
n,k for the (n, k) domains obtained by taking the maximumN ′ and the maximumC ′′′, but when

using (10) for each(t, p) pair, take theN ′ andC ′′′ corresponding to that pair.

4 Numerical Analysis

This section analyzes the new method for the computation of the interval availability distribution

developed in§3. The section includes two subsections. In§4.1, we analyze the numerical stability

of the method using a CTMC example with closed-form solution. Section 4.2 illustrates, using two
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large CTMC models, that the new method can be significantly less costly in terms of CPU time than

Algorithm A, corroborating numerically the approximate analysis regarding the relative costs of both

methods performed at the end of§3. Another goal of§4.2 is to validate the switch between the new

method and Algorithm A described in§3, which is based on the approximate speedup measureS.

All floating-point computations were performed in an environment conforming to the standard IEEE

754 for floating-point arithmetic (IEEE 1985), using the double format and the default rounding

mode Round to Nearest. In that environment,EPS = 2.2204 × 10−16, whereEPS is the machine

epsilon of the computer (difference between the smallest exactly representable number greater than

1 and 1 (Higham 2002)), and the absolute relative round-off error introduced when performing a

basic arithmetic operation resulting in a normalized number (this can be expected to always be the

case) is bounded from above byEPS/2.

4.1 Test of numerical stability using an example

We will use the CTMC model with the state diagram of Figure 8 (left-hand side), subset of up states

{11, . . . , 150, 21, . . . , 250} and initial state11. In that CTMC model, there is a transition rate with

valueρ/50 from every state1i to every state2j ; a transition rate with valueρ/50 from every state2i
to every state1j ; a transition rate with valueλ from every state1i and every state2i to state 3; and

a transition rate with valueµ/100 from state 3 to every state1i and every state2i. That CTMC is

ordinarily lumpable with respect to the partition of the state space{{11, . . . , 150, 21, . . . , 250}, {3}}
(see, for instance, Buchholz 1994) and the lumped CTMC has the state diagram of Figure 8 (right-

hand side) and initial state 1. That lumped two-state CTMC has with subset of up states{1} the same

interval availability distribution as the CTMC model. We takeλ = 5 × 10−4, µ = 1, and values of

ρ varying between5× 10−4 and103 − 5× 10−4, so thatΛD/ΛU = µ/(λ+ ρ) varies between10−3

and 1,000. For the CTMC model,Λ = max{λ + ρ, µ} and, for each value ofρ, we consider two

values oft: the first one chosen so thatΛt = 10 and the second one chosen so thatΛt = 100,000.

We consider three values forp: 0.99, 0.999 and0.9999. We ran the method with a tiny truncation

error targetε = 10−26 to isolate the impact of round-off errors, and, using a knownclosed-form

solution (see Takács (1957)) for the interval availability distribution of the lumped two-state CTMC

model, computed the absolute relative error in the numerical solution given by the method. That

closed-form solution is

IAVCD(t, p) = e−λp t

[
1 +

√
λµp t

∫ (1−p)t

0

e−µy

√
y
I1(2

√
λµp ty) dy

]
,

whereI1(x) is the modified Bessel function of first kind and order 1. ForΛt = 10, the exact value of

IAVCD(t, p) ranged from 0.995017948786 to 0.999995050507. ForΛt = 100,000, the exact value

of IAVCD(t, p) ranged from 0.000000024579 to 1,000000000000. Figure 9 gives the absolute

relative errors forΛt = 10 (left) andΛt = 100,000 (right) againstN ′. The reason is that we can

expect round-off errors inΩU
n,k andΩD

n,k to increase withN ′ because the longest dependency chain

in the recurrences (12)–(15) has lengthN ′. We note that the absolute relative errors are very small

in all cases and depend onN ′ approximately linearly. For the CTMC model considered and the

quite representative cases considered, we get in the worst case approximately 10 digits of accuracy.
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Figure 9: Absolute relative errors in the new method againstN ′.

In the CTMC model considered, the number of non-zero elements in every column ofPΩ,U is 51

and the number of non-zero elements in the single column ofPΩ,D is 100. Certainly, the errors

should get larger as the numbers of non-zero elements in the columns ofPΩ,U and the numbers of

non-zero elements in the columns ofPΩ,D increase, but the CTMC model considered looks like a

hard enough test to support the numerical stability of the method.

4.2 Analysis of computational cost using two examples

The first large CTMC model corresponds to a software system with progressive software upgrades.

The system includes three software subsystems. Each software subsystem is subject to ten up-

grades. The mean time between consecutive upgrades is exponentially distributed with parameter

ρ = 1/720h−1, yielding an average time between successive upgrades of about one month. Software

upgrades reduce the failure rate of the software subsystem.The failure rate of the first software sub-
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Figure 10: Measured speedup of the new method over AlgorithmA andS for the CTMC model of

the software system.

system after theith upgrade isλ1,i = 10−4 +(10− i)(4× 10−5) h−1. The failure rate of the second

software subsystem after theith upgrade isλ2,i = 5×10−5+(10−i)(2×10−5)h−1. The failure rate

of the third software subsystem after theith upgrade isλ3,i = 2×10−5+(10−i)(8×10−6)h−1. The

three software subsystems have to be operational for the system to be up. Software subsystems can

fail in two modes. The first mode occurs with probability0.8 and is recovered by a restart operation

whose duration has an exponential distribution with parameterµ = 6 h−1. The second mode occurs

with probability0.2 and is recovered by a manual repair operation whose durationis exponentially

distributed with parameterξ = 0.5 h−1. When the system is down, software subsystems do not fail

and software upgrades are suspended. The initial state of the CTMC model is the state in which

the three software subsystems are operational and without upgrades. The CTMC model has 9,317

states, 19,602 transitions,ΛU = 5.0167 × 10−3 h−1, andΛD = 6 h−1, yieldingΛD/ΛU = 1,196.

Thus, according to the analysis performed in§3.5, we can expect the new method to be significantly

faster than Algorithm A forp close to 1. Table 1 givesIAVCD(t, p) for p = 0.999, 0.9999 and

several values oft varying from 100 to 20,000h. The table also gives the CPU times in seconds

of the new method and Algorithm A for each(t, p) pair. The methods were run with a truncation

error targetε = 10−8 and CPU times were measured on a multiprocessor with 16 Xeon X7350

2.93 GHz cores, with the method running on a single core and without any other significant process

running. Figure 10 compares measured speedups of the new method over Algorithm A with the

speedup measureS. We can note that, as expected, the new method is much faster than Algorithm

A. Measured speedups differ somehow fromS in some cases. Those differences must be attributed

to the different costs of the computation of the truncation parameters in both methods and to the

difference between the average cost of the computation of the integralsJn,k(t, p) in the new method

and the average cost of the computation of the factors((Λt)n/n!)e−Λt
(
n
k

)
pk(1−p)n−k in Algorithm

A. For larger CTMC models,S will be a more accurate speedup measure.

The second large CTMC model corresponds to a fault-tolerantcontrol system including six

control sites. Each site includes two hardware modules working in dual configuration. The failure

rates of the hardware modules areλ1 = 5 × 10−4 h−1 for modules in site 1,λ2 = 4.5 × 10−4 h−1

for modules in site 2,λ3 = 4× 10−4 h−1 for modules in site 3,λ4 = 3.5× 10−4 h−1 for modules in
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Table 1: IAVCD(t, p) and CPU times in seconds of the new method (N) and Algorithm A (A) for

the CTMC model of the software system.

t (h) p IAVCD(t, p) CPU time (N) CPU time (A)

100 0.999 0.94806210 0.09201 2.092

100 0.9999 0.92265401 0.04400 1.268

200 0.999 0.93025187 0.1240 4.988

200 0.9999 0.85846616 0.06400 2.288

500 0.999 0.91603409 0.2720 16.06

500 0.9999 0.72102120 0.1120 7.004

1,000 0.999 0.89734409 0.4720 45.57

1,000 0.9999 0.59391149 0.1920 17.05

2,000 0.999 0.87869758 0.9921 131.9

2,000 0.9999 0.48085218 0.2360 43.83

5,000 0.999 0.91580678 3.308 585.5

5,000 0.9999 0.39794869 0.6840 150.1

10,000 0.999 0.97648531 8.705 1,924

10,000 0.9999 0.43142930 1.408 433.9

20,000 0.999 0.99860736 26.42 6,486

20,000 0.9999 0.47579569 3.452 1,274
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Figure 11: Measured speedup of the new method over AlgorithmA andS for the CTMC model of

the fault-tolerant control system.

site 4,λ5 = 3×10−4 h−1 for modules in site 5, andλ6 = 2.5×10−4 h−1 for modules in site 6. The

system is up if all sites are operational. A site is operational if it has no failed module or one module

in covered fault. The coverage to faults of hardware modulesisC = 0.98. Modules in covered fault

are repaired at rateµC = 6 h−1. Modules in uncovered fault or failed modules in sites with both

modules failed are repaired at rateµU = 0.2 h−1. When both modules of a site are failed and one

is repaired, the other one is considered to become in coveredfault. The much higher repair rate of

modules in covered fault is explained by the fact that the repair of those modules only involves the

replacement of the module, while, otherwise, the repair of the module, in addition to its replacement,

requires a lengthy diagnosis process. Hardware modules continue to fail when the system is down.

There is a single repairman who gives preemptive priority tomodules in uncovered fault and who is

shared by all failed modules with same repair priority. The initial state of the CTMC model is the

state in which all sites are operational with no failed module. The CTMC model has 4,096 states,

37,056 transitions,ΛU = 6.00425h−1, andΛD = 0.20425h−1, yieldingΛD/ΛU = 0.03402. Then,

according to the analysis performed in§3.5, we can expect the new method to be moderately faster

than Algorithm A forp close to 1. Table 2 givesIAVCD(t, p) for p = 0.999, 0.9999 and several

values oft varying from 100 to 20,000h. The table also gives the CPU times in seconds of the new

method and Algorithm A for each(t, p) pair. The methods were run with a truncation error target

ε = 10−8 and CPU times were measured as for the first large CTMC model. Figure 11 compares

measured speedups of the new method over Algorithm A with thespeedup measureS. We can note

that the new method is, in most cases, moderately faster thanAlgorithm A. The differences between

measured speedups andS can be attributed to the same causes as for the first large CTMCmodel.

Again, for larger CTMC models,S will be a more accurate speedup measure.

5 Conclusions

We have developed a new randomization-based general-purpose method for the computation of the

interval availability distribution of systems modeled by CTMCs. The basic idea of the new method

26



Table 2: IAVCD(t, p) and CPU times in seconds of the new method (N) and Algorithm A (A) for

the CTMC model of the fault-tolerant control system.

t (h) p IAVCD(t, p) CPU time (N) CPU time (A)

100 0.999 0.99119876 2.260 2.944

100 0.9999 0.99103160 1.432 1.664

200 0.999 0.98281885 4.932 7.152

200 0.9999 0.98217893 3.396 3.104

500 0.999 0.96001411 13.26 24.05

500 0.9999 0.95629808 7.772 9.857

1,000 0.999 0.92876245 35.99 68.06

1,000 0.9999 0.91531894 18.34 24.81

2,000 0.999 0.88544726 97.85 197.2

2,000 0.9999 0.84074059 42.47 63.94

5,000 0.999 0.83650699 408.6 880.4

5,000 0.9999 0.66442446 137.0 222.5

10,000 0.999 0.83797806 1,389 2,914

10,000 0.9999 0.47477429 336.9 646.3

20,000 0.999 0.87505490 5,125 9,849

20,000 0.9999 0.28008887 929.2 1,905
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is the use of a randomization construct with different randomization rates for the up and down states.

The new method is numerically stable and computes the interval availability distribution with well-

controlled truncation error. In addition, for large CTMC models, when the maximum output rates

from up and down states are significantly different, and whenthe interval availability has to be guar-

anteed to have a level close to one, the new method is significantly or moderately less costly in terms

of CPU time than a previous randomization-based state-of-the-art method, depending on whether the

maximum output rate from down states is larger than the maximum output rate from up states, or

vice versa. The new method can be more costly, but a relatively inexpensive switch for large models

of reasonably quality can be easily implemented to choose the fastest method. Along the way, we

have shown the correctness of a generalized randomization construct, in which arbitrarily different

randomization rates can be associated with different states, for both finite CTMCs with infinitesimal

generator and uniformizable CTMCs with denumerable state space. A direction in which this work

could be continued is the development of another randomization-based general-purpose method for

the computation of the interval availability distributionof systems models by CTMCs that for large

CTMC models id less costly interms of CPU time than the previous randomization-based state-of-

the-art method.

6 Electronic companion

An electronic companion to this paper is available as part ofthe online version at

http://dx.doi.org/10.1287/ijoc.1120.0539.
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