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Abstract. Minimum distance controlled tabular adjustment (CTA) is a recent perturba-

tive approach for statistical disclosure control in tabular data. CTA looks for the closest

safe table, using some particular distance. In this talk we provide empirical results to

assess the disclosure risk of the method. A set of 33 instances from the literature and

four different attacker scenarios are considered. The results show that, unless the attacker

has good information about the original table, CTA has low disclosure risk. This talk

summarizes results reported in the paper “Castro, J. (2013). On assessing the disclosure

risk of controlled adjustment methods for statistical tabular data, International Journal

of Uncertainty, Fuzziness and Knowledge-Based Systems, 20, 921–941.”

1 Introduction

Any tabular data protection method can be seen as a map F such that F (T ) = T ′,
i.e., table T is transformed to another table T ′ which is safe and, ideally, with
minimum information loss. The inverse map T = F−1(T ′) should not be available
or difficult to compute by any attacker, otherwise the disclosure risk would be high.

CTA (Dandekar and Cox, 2002; Castro, 2006, 2011) is a post-tabular approach
which looks for the closest safe table to the original unsafe one. CTA relies on
optimization methods, mainly mixed integer linear programming (MILP), and linear
programming (LP). This offers a great flexibility when some table properties want
to be preserved in the released table, expressed as linear constraints. CTA is one of
the methods discussed in the recent monograph Hundepool et al. (2012).

CTA-like methods will have low disclosure risk if no attacker can obtain a good
estimate T̂ = F̂−1(T ′), F̂−1 being an estimate of F−1. The goodness of F̂−1 depends
on the amount of information by the attacker. In this talk we will consider four
different attacker scenarios —each one associated to a particular F̂−1—, providing
an exhaustive empirical evaluation of the disclosure risk of these approaches which

1This work has been supported by grants MTM2012-31440 of the Spanish research program
and SGR-2009-1122 of the Government of Catalonia.
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required the solution of more than 2500 optimization attacker problems. As it will
be shown, when the attacker has no good information about the original data, the
disclosure risk is low. As expected, the computational results also confirmed that
the more information by the attacker, the higher is the disclosure risk.

It is worth noting that some authors claimed that protection approaches based on
the minimization of information loss are not safe if a minimality attack is performed
(Chi-Wing et all., 2007). However, minimality attacks have been used for microdata,
not for tabular data (e.g., the term table was used for “table in a relational database”
not for “statistical table”) in Chi-Wing et all. (2007). One of the purposes of this
talk is to empirically show that the above assertion can not be generalized, and,
depending on the particular attacker problem F̂−1, CTA is safe.

This short document summarizes some of the results presented in Castro (2012).
Its structure is as follows. The CTA problem will be outlined in Section 2. The
different attacker scenarios considered are discussed in Section 3. Finally, computa-
tional results are provided in Section 4

2 Outline of minimum distance MILP-CTA

Any CTA instance, either with one table or a number of tables, can be represented
by the following parameters:

• A set of cells ai, i ∈ N = {1, . . . , n}, that satisfy m linear relations Aa = b
(a being the vector of ai’s), and a vector w ∈ R

n of positive weights for the
deviations of cell values.

• A lower and upper bound for each cell i ∈ N , respectively lai
and uai

, which are
considered to be known by any attacker. If no previous knowledge is assumed
for cell i lai

= 0 (lai
= −∞ if a ≥ 0 is not required) and uai

= +∞ can be
used.

• A set S = {i1, i2, . . . , is} ⊆ N of indices of s confidential cells.

• A lower and upper protection level for each confidential cell i ∈ S, respectively
lpli and upli, such that the released values must satisfy either xi ≥ ai + upli
or xi ≤ ai − lpli.

CTA attempts to find the closest values xi, i ∈ N , according to some distance
ℓ, that makes the released table safe. This involves the solution of the following
optimization problem:

min
x

||x − a||ℓ(w)

s. to Ax = b
lai

≤ xi ≤ uai
i ∈ N

(xi ≤ ai − lpli) or (xi ≥ ai + upli) i ∈ S.

(1)
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The CTA problem (1) is in general a difficult MILP.
An alternative would be to a priori fix the binary variables yi, i ∈ S, thus obtain-

ing a CTA formulation with only continuous variables; the resulting problem would
be a LP. Although the information loss of this LP-CTA variant is higher, it can
be solved much more efficiently. In the computational experiments performed we
considered this LP-CTA approach. It is worth noting that if this variant is shown
to be “safe”, the problem with binary variables would also be “safe” (even “safer”),
since in the former case the decision on the particular value of yi is governed by a
combinatorial optimization procedure. Formulating problem (1) in terms of cell de-
viations z = x− a, z ∈ R

n, and fixing the binary variables, the resulting continuous
CTA problem can be formulated as the general convex optimization problem

min
z

||z||ℓ(w)

s. to Az = 0
l(a) ≤ z ≤ u(a),

(2)

where bounds l(a) and u(a) depend on cell bounds la, ua and protection levels lpl,
upl.

Problem (2) can be specialized for several norms, ℓ1 and ℓ2 being the two most
relevant. For ℓ1, defining z = z+ − z−, we obtain the following LP:

min
z+,z−

n∑

i=1

wi(ai)(z
+
i + z−i )

s. to A(z+ − z−) = 0
l+(a) ≤ z+ ≤ u+(a)
l−(a) ≤ z− ≤ u−(a),

(3)

w(a) ∈ R
n being a vector of nonnegative cell weights, z+ ∈ R

n and z− ∈ R
n the vec-

tor of positive and negative deviations in absolute value, and l+(a), l−(a), u+(a), u−(a) ∈
R

n lower and upper bounds for the positive and negative deviations. For L2, prob-
lem (2) can be directly recast as the following quadratic optimization problem (QP)
without introducing additional variables:

min
z

n∑

i=1

wi(ai)z
2
i

s. to Az = 0
l(a) ≤ z ≤ u(a).

(4)

3 The attacker scenarios considered

The goal of the attacker is to obtain a good estimate ẑ of z from the released table
T ′. In this context, a good estimate may be either to obtain the original value zi

for some sensitive cell, or —the weaker condition— a value not too far from zi. In
practice, once the table is published, the attacker only knows
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• the released values x;

• the structure of the table, that is, the constraint matrix A.

For the rest of parameters the attacker may only have partial information:

• the particular distance used may be unknown, that is, which of the two prob-
lems were solved by the data protector, either (3) or (4); however, providing
information about the distance used may be seen as a good practice, so we
considered it is known by the attacker;

• cell weights w(a) are unknown, since they depend on the original data;

• the lower and upper bounds (l+(a), l−(a), u+(a), u−(a) in (3), u(a), l(a) in (4))
are unknown because: (i) they depend on a; (ii) the set of sensitive cells S
is unknown to the attacker; (iii) the a priori assignment of yi will also be
unknown to the attacker.

In general, the optimization problem to be solved by the attacker can be written as:

min
ẑ

||ẑ||ℓ(x)

s. to Aẑ = 0

l̂(x) ≤ ẑ ≤ û(x).

(5)

We will consider the following four different scenarios according to the knowledge of
the attacker for the solution of (5):

B. The attacker has incomplete information about both the bounds and objective
function, but he/she knows the subset S of sensitive cells, and the original cell
bounds lai

and uai
, i ∈ N (which are quite strong assumptions). We have

three subscenarios:

B1. The attacker neither knows the protection levels upli, lpli, i ∈ S, nor the
protection sense yi ∈ {0, 1}, i ∈ S.

B2. The attacker knows the protection sense yi ∈ {0, 1}, i ∈ S, but not the
protection levels upli, lpli, i ∈ S.

B3. The attacker knows both the protection sense yi ∈ {0, 1} and protection
levels upli, lpli, i ∈ S. The only unknown terms to reproduce the real
bounds are then ai − lai

and uai
− ai, i ∈ N .

C. The attacker has complete information about the bounds, i.e, he/she knows
all the parameters for the definition of (5), and the only uncertainty is in the
use of wi(xi) instead of wi(ai) in the objective function. This is a very strong
assumption, since it means the attacker knows or has accurate information
about the original cell values a.
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Table 1: Dimensions of the test instances.

instance n s m nz
australia ABS 24420 918 274 13224
bts4 36570 2260 36310 136912
cbs 11163 2467 244 22326
dale 16514 4923 405 33028
destatis 5940 621 1464 18180
hier13 2020 112 3313 11929
hier13x13x13a 2197 108 3549 11661
hier13x13x13b 2197 108 3549 11661
hier13x13x13c 2197 108 3549 11661
hier13x13x13d 2197 108 3549 11661
hier13x13x13e 2197 112 3549 11661
hier13x13x7d 1183 75 1443 5369
hier13x7x7d 637 50 525 2401
hier16 3564 224 5484 19996
hier16x16x16a 4096 224 5376 21504
hier16x16x16b 4096 224 5376 21504
hier16x16x16c 4096 224 5376 21504
hier16x16x16d 4096 224 5376 21504
hier16x16x16e 4096 224 5376 21504
nine12 10399 1178 11362 52624
nine5d 10733 1661 17295 58135
ninenew 6546 858 7340 32920
osorio 10201 7 202 20402
table1 1584 146 510 4752
table3 4992 517 2464 19968
table4 4992 517 2464 19968
table5 4992 517 2464 19968
table6 1584 146 510 4752
table7 624 17 230 1872
table8 1271 3 72 2542
targus 162 13 63 360
toy3dsarah 2890 376 1649 9690
two5in6 5681 720 9629 34310

4 Computational results

For the empirical evaluation we have considered a set of both real and synthetic
25 instances widely used in the literature about statistical data protection (Castro,
2006, 2012). Table 1 shows the main dimensions of these tables: number of cells
(n), number or sensitive cells (s), number of tabular constraints (m), and number
of nonzero coefficients in the matrix of tabular constraints (“nz”).

We first protected the tables using both ℓ1-CTA and ℓ2-CTA, to obtain the
released values x = a + z. Next, we solved the attacker problems for the four
different scenarios : B1, B2, B3 and C. For each of the 264 different combinations
(33 instances × 2 distances × 4 scenarios) we considered ten realizations of the
attacker problems for different x̃ values, randomly obtained in an interval around x.
This amounts to 2640 optimization attacker problems. From the solution of these
problems we computed for each sensitive cell the ten percentage differences between
a and â, the true cell values and the ten attacker estimations, i.e., |âi − ai|/ai · 100,
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Figure 1: Results for scenario B1 and norm ℓ1.
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Figure 2: Results for scenario B1 and norm ℓ2.

i ∈ S.
Figures 1–8 show the distribution of the percentage differences between â and a

for all the instances. The eight values of the x-axis are associated to the following
intervals for |âi −ai|/ai ·100: 0, (0, 5], (5, 10], (10, 20], (20, 30], (30, 50], (50, 100] and
(100,−). The y-axis is related to the percentage of sensitive cells. Detailed tables
with information for each instance can be found in Castro (2012). The following
conclusions can be derived from Figures 1–8:

• Scenarios B1 and B2 can be considered safe, in general. The estimate âi was
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Figure 3: Results for scenario B2 and norm ℓ1.
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Figure 4: Results for scenario B2 and norm ℓ2.
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Figure 5: Results for scenario B3 and norm ℓ1.
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Figure 6: Results for scenario B3 and norm ℓ2.
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Figure 7: Results for scenario C and norm ℓ1.
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Figure 8: Results for scenario C and norm ℓ2.
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never equal to the true cell value ai, and the distribution is not concentrated
on the left intervals.

• Comparing L1 and L2, the latter seems to reduce the disclosure risk: the
distribution is more left-skewed for L2 in scenarios B1 and B2.

• For scenarios B3 and C the attacker was able to re-compute in almost 100% of
the cases the original values a. If the attacker has good information about the
protection levels, protection senses, set of sensitive cells, and lower and upper
bounds, then CTA-like methods exhibit a high disclosure risk. However the
knowledge of such big amount of information by the attacker may be a strong
assumption.
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