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Abstract— 1

Since systems are prone to faults, fault detection and isolation
are essential activities to be considered in safety-critical appli-
cations. In this direction, the availability of a sound estimate
of the time instant the fault occurred is a precious information
that a diagnosis system can fruitfully exploit, e.g., to identify
information consistent with the faulty state. Unfortunately,
any fault-detection system introduces a structural delay that,
typically, increases in correspondence of subtle faults (e.g., those
characterized by a small magnitude) with a consequence that
the fault-occurrence time is overestimated.

In this paper we propose an ensemble approach to estimate
the time instant a fault occurred. We focus on systems that can
be described as ARMA models and faults inducing an abrupt
change in the model coefficients.

I. INTRODUCTION

COMPLEX embedded systems designed to work in real-
world, possibly harsh, environments e.g., networked

embedded systems or large-scale sensor-actuator networks,
are prone to faults or ageing effects that might affect embed-
ded electronics, actuators and sensors. Faults and ageing must
hence be detected as soon as possible to reduce the “cascade
effect” on the rest of the system and activate accommodation
actions (e.g., substitution of the faulty unit). A desirable
feature in real-world applications [1] is the automatic fault-
diagnosis, since it allows to isolate the unit (or the units)
affected by faults (fault isolation) and identify the kind
of fault occurred (fault identification). These mechanisms,
which are activated after each fault detection, generally
require an estimate of the time-instant the fault occurred.

The fault-time instant can be used to partition the data
before (healty condition) and after the change (faulty con-
dition), with the latter data particularly useful for fault
isolation and identification. Typically, the fault time-instant
can be computed offline, by processing a fixed-length buffer
containing the most recent observations. To this purpose
one may enforce Change-Point Methods (CPMs), namely,
statistical techniques to assess if the data can be split in two
consecutive parts that have been generated from two different
models, i.e., the data contains a change point [2], [3].

In this work we address the problem of estimating T ∗,
namely the time instant the fault occurred, once the fault has
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been detected. We focus on systems whose observations can
be modeled with autoregressive-moving-average (ARMA)
processes, since ARMA are effective system models for
autocorrelated processes. We consider a general class of
faults inducing an abrupt change in the parameter vector of
the ARMA model.

Very few CPMs have been developed for autocorrelated
processes. For example, [4] estimates the time instant when a
change in the parameters of an AR(1) process occurs, while
[5], [6] address changes affecting the mean of an ARMA
process. We tackle the problem of estimating the fault-time
instant by looking at residuals generated by a predictive mod-
els. In principle, a viable option consists in using a CPM on
the residuals computed by means of a suitable approximation
model, as far as these are expected to be, before the fault,
white noise. However, in the practice, residuals are not white
even during healthy conditions, since predictors are typically
affected by model bias that, often, introduces a temporal
dependency in the residual sequence. Unfortunately, these
temporal dependencies impair the performance of CPM.

Here we approach the problem of estimating the fault-time
instant from a residual sequence by means of an ensemble
of CPMs. Ensemble methods [7] improve the generalization
ability of a single model by combining a large number of
models meant to solve the same problem. These methods
have been successfully applied in regression and classifi-
cation [8], as well as in specific applications such as face
and object recognition, intrusion detection, optical character
recognition and medical diagnosis [9]. In the last years the
interest of the research community on ensemble methods
designed for time series prediction has exponentially grown
(e.g., [10], [11]) corroborating the use of this ensemble-of-
models approach in time-dependent scenarios.

To the best of our knowledge, ensemble methods have
never been proposed for estimating the fault-time instant,
and this paper illustrate a first attempt in this direction. A key
point of the proposed solution is that the ensemble relies on
random sampling of the residual sequence to reduce temporal
dependencies associated with the model bias. The proposed
solution is general, as it is possible to build ensembles by
using different CPMs.

The paper is organized as follows: Section II introduces
the problem, while the CPM and problems arising when these
are used on a residuals’ sequence are presented in Section
III. The proposed ensemble of CPMs is introduced in Section
IV and performance tested in Section V.

II. PROBLEM FORMULATION

We consider systems that can be successfully modeled by
an autoregressive moving-average (ARMA) process
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Fig. 1. The time-instants of fault detection: T ∗ is the time instant the fault
occurred, T̂ is the time instant the fault is detected by the FDS. During the
interval [0, T ∗), the system is in healthy conditions and observations are
from an ARMA process having parameter vector θ0. During the interval
[T ∗, T̂ ] the system is faulty and observations are from a different ARMA
process having parameter vector θ1.

y(t) =

i=p∑
i=1

φiy(t− i) +
i=q∑
i=1

ψiε(t− i) + ε(t), (1)

where θ = [φ1, . . . , φp, ψ1, . . . , ψq] is the parameter vector,
y(t) ∈ R and ε(t) ∼ N (0, σ2) denote the observation and the
innovation at time t, respectively. The parameters p > 0 and
q > 0 represent the orders of the autoregressive and moving-
average terms, respectively. Eq. (1) describes observations
when the monitored system is in healthy conditions. After
the fault-time instant T ∗, observations are no more described
by (1).

As a general class of faults, we consider abrupt changes
in the parameter vector of the ARMA model describing
the healthy conditions. In practice, the parameter vector
characterizing (1) shifts permanently, at an unknown time
instant T ∗, from θ0 to θ1 6= θ0. In what follows we refer to θ0
as the error-free parameters describing the healthy conditions,
and with θ1 as the fault-affected parameters.

Targeting real-world scenarios, we assume that the param-
eter vector of the faulty model θ1 is unknown and the that θ0
has to be estimated from a suitable training sequence [12].
Such an estimate is denoted by θ̂0.

From now on, we assume that a suitable fault-detection
system (FDS) is inspecting the system online, possibly
not solely relying on observations y(t) but also exploiting
additional information, including that coming from an expert.

We draw our attention on the post-detection operations
and we address the issue of computing F , an estimate of
the fault-time instant T ∗, every time the FDS detects a fault.
The time instant when the FDS detects the fault is instead
denoted by T̂ .

III. CHANGE POINT METHODS

We consider CPMs [2] consisting in hypothesis tests to
analyze, in an offline manner, a given data sequence, which
– under the null hypothesis – contains i.i.d. realizations
of a random variable. There, each point of the sequence
is considered as a potential change point to be inspected.
For each candidate point, the data sequence is split in two
parts (the samples before and after the potential change
point, respectively) and a specific test statistic is computed
to compare the probability distribution of the data in the two
parts. Then, when all the points have been tested, the CPM
draws the conclusion that there is enough statistical evidence
to reject the null hypothesis if, in at least one point, the test

statistic exceeds a specific threshold (which depends on the
test statistic as well as the sequence length and a confidence
level). In these cases, the sequence is considered to contain
a change point, and the point yielding the maximum of the
statistic is selected. On the contrary, when the test statistic
never exceeds the threshold, the CPM does not reveal a
change in the data distribution.

Examples of test statistics are the sample mean or sample
variance, which lead to the Student or Bartlett tests [13],
for Gaussian distributed data. Sometimes it is advisable not
to assume any specific distribution of the data, and rely
on nonparametric test statistics, e.g, the Mann-Whitney, the
Mood [14] or the Lepage [15], which assess changes in
the sample mean, sample variance, or both simultaneously,
respectively. Also the Kolmogorov-Smirnov statistic can be
used to detect more general changes in the data distribution.

One of the most critical issues in CPM consists in com-
puting the thresholds for rejecting the null hypothesis, since
often they do not admit an analytical formulation and one
has to resort to Montecarlo simulations [2], [3].

We recall that the CPM framework, which has been
designed to estimate the change point within a fixed length
sequence [2] has been also extended to address the online
(sequential) detection of changes to data streams [16], [3].

A. CPM for Abrupt Changes in the Residuals

The CPMs cannot be applied straightforward to the obser-
vation sequence {y(t), t = 1, . . . , T̂}, as these are not i.i.d.
realizations of a random variable. Instead, CMPs can be run
on the residual sequence

R = {r(t), t = 1, . . . , T̂} (2)

that are computed w.r.t. the estimated model θ̂0, i.e.,

r(t) = y(t)− fθ̂0(t), (3)

where fθ̂0 is the predictor associated to the ARMA model of
parameter vector θ̂0. In fact, provided that the initial estimate
θ̂0 is accurate, residuals are white, thus (2) contains i.i.d.
realizations of a Gaussian random variable, when t < T ∗.
Therefore, CPMs can be applied in principle to the residuals
to estimate the fault-time instant.

Without loss of generality and for the sake of notation, in
what follows we assume that R stores all the residuals (2),
even though it is possible to store and process only the most
recent ones in a FIFO buffer.

The CPM on the residual sequence R can be formulated
as follows: each time instant S ∈ {1, . . . , T̂} is considered
to be a possible change-point, and induces a partitioning of
R into two parts

AS = {r(t), t = 1, . . . , S}, (4)

BS = {r(t), t = S + 1, . . . , T̂}.

Then, the value of the test statistic T is computed at time
instant S as

TS = T (AS ,BS), (5)



to assess the difference between AS and BS .
The estimate of the fault-time instant FR, obtained from

the whole sequence R, is the point yielding the partition that
maximizes the test statistic:

FR = argmax
S=1,...,T̂

(TS) , (6)

provided that the value of the test statistic at FR, i.e.,
TFR = T (AFR ,BFR), exceeds the corresponding threshold
hl,α. This threshold depends on the statistic T , on the length
of the sequence l = #R, and on a defined confidence level α,
which sets the percentage of type I errors (i.e., false positives)
of the hypothesis test. Therefore, the CPM outcome is{

The fault-time instant is FR if TFR ≥ hl,α
No fault-time instant identified, if TFR < hl,α

. (7)

Any occurrence of the latter case corresponds to situations
where the CPM is not able to estimate the fault-time instant.
Therefore, the CPM outcomes can be interpreted as a vali-
dation of the FDS detections, as in [17].

B. Issues Related to the Use of CPM on Residuals

Unfortunately, in real applications the residuals R are
typically far from being i.i.d. and Gaussians even before
T ∗, because of model bias (3). Moreover, the residuals
computed after the unknown fault-time instant i.e., {r(t), t =
T ∗, . . . , T̂} are definitively not i.i.d. and Gaussian distributed
and we expect a large degree of temporal dependence among
these residuals. These circumstances violate the hypothesis
required by the CPM and explain why, more often than in the
i.i.d. case, the statistic TFR does not reach the corresponding
threshold and the CPM is not able to estimate of the fault-
time instant in R.

In light of on the above considerations, it is convenient:
1) to exploit a nonparametric CPM rather than a paramet-

ric one assuming a Gaussian distribution in R,
2) to introduce some sort of pre-processing to remove the

time-dependency from data to improve the effective-
ness of CPMs.

While there are several nonparametric CPMs available in the
literature [18], [3], the latter issue has been less investigated
and we address this problem by means of an ensemble of
CPMs that is described in the sequel.

IV. THE ENSEMBLE OF CPMS

We pursue an ensemble approach for estimating the fault-
time instant by aggregating d estimates {Fi, i = 1, . . . , d} of
T ∗ provided by CPMs executed on different subsequences
of residuals. Peculiarity of the proposed solution is that each
of such subsequence is obtained by randomly sampling R.

A. Computing the Individual Estimates

Let us introduce Dn(·), the operator performing random
sampling:

In = Dn({1, . . . ,m}) where #In = n < m, (8)

Algorithm 1: Ensemble of CPMs Ed(R)
Input: R = {r(t), t = 0, . . . , T̂} (the residuals), α (the
confidence level of the CPM), d (the number of
estimates from random sampling R), n (the random
sampling parameter).
Output: F (the estimate of the fault-time instant).

1- i = 0, l = #R,
2- while (i ≤ d) do
3- I(i)n = Dn({1, . . . , l})
4- foreach S ∈ I(i)n do
5- AS = {r(t), t ∈ I(i)n , t ≤ S},
6- BS = {r(t), t ∈ I(i)n , t > S},
7- TS = T (AS ,BS)

end
8- Fi = argmax

S∈In
(TS), TFi

= max
S∈In

(TS),

9- if (TFi ≥ hn,α) then
10- ωi = 1,

else
11- ωi = 0,

end
end

12- Compute FR as in (11) and the corresponding value of
the statistic TFR

13- if (TFR ≥ hl,α) then
14- ωd+1 = 1,

else
15- ωd+1 = 0,

end
16- F =

∑d
i=1 ωiFi+ωd+1FR∑d+1

i=1 ωi

which generates a subsequence In containing n time instant
randomly chosen – without repetition – from the first m
integers. It is important to remark that the elements in In
are sorted, thus preserving the temporal order. We denote
the set of the residuals at time instants in In as

RIn = {r(t), t ∈ In} (9)

Let us denote by CPMT the operator associated to a CPM
using test statistic T which, given a sequence X , provides

FX = CPMT (X ), (10)

the index maximizing T when determining a change point
in X , as described in Section III-A.

Thereby, the estimate FR provided by (4) - (6) becomes:

FR = CPMT (R). (11)

Following the notation in (10), we denote by Fi the estimate
obtained from the i-th random sampling of R, namely

I(i)n = Dn({1, . . . , l}) (12)
j = CPM(RI(i)n

) (13)

Fi = I(i)n [j], (14)



where l = #R, and I(i)n [j] denotes the j-th element of
the sequence I(i)n . Note that I(i)n [j] maps the estimate of
the change-point from the subsequence in RI(i)n

back on R
indexes, thus in the temporal domain.

B. Aggregation

The ensemble Ed(R) provides an estimate F of T ∗ by
aggregating d individual estimates {Fi, i = 1, . . . , d} from
(12) together with FR = CPMT (R). Aggregation of these
estimates is performed by averaging:

F =

∑d
i=1 ωiFi + ωd+1FR∑d+1

i=1 ωi
(15)

where weights ωi, i = 1, . . . , d+ 1 are binary and given by

ωi =


0, if TFi

< hn,α i = 1, . . . , d

1, if TFi
≥ hn,α i = 1, . . . , d

0, if TFR < hl,α i = d+ 1

1, if TFR ≥ hl,α i = d+ 1

. (16)

where hn,α and hl,α are the test-statistic thresholds. Equa-
tions (15) and (16) ensure that we aggregate only estimates
provided by CPMs that are able to assess the change in the
residual distribution.

C. The Algorithm

Algorithm 1 details the proposed ensemble of CPMs.
In particular, the loop at lines 2 - 11 perform d-times
the random sampling of R, computes the corresponding
estimates {Fi, i = 1, . . . , d} and also the values of the
corresponding statistic TFi . The values of the test statistic
define the aggregation weights {ωi, i = 1, . . . , d}, as in
(16). Then, the estimate and the aggregation weight from
the whole residual sequence R is computed at lines 12 -
15. Finally, the d+ 1 estimates are aggregated at line 16 to
provide the ensemble output F .

As a guideline for building the CPM ensemble, we remark
that, in particular when l is small, it is not worth considering
large values of d, to reduce the probability of having individ-
ual estimates from the same subsequences: the upper bound
for d is

(
l
l/2

)
, which, however, is often large.

V. EXPERIMENTS

The experiments have been performed using the Lepage
[15] test statistic, following the implementation presented
in [3]. The Lepage CPM is a nonparametric test able to
assess changes in the mean or in the variance between two
populations. Unfortunately, it is not available any analytical
formula to compute thresholds hn,α, and these are computed
by means of Montecarlo simulations. The CPM package
[19] implemented in R statistical software provides such
thresholds.

Beside CPMT (R), i.e., the CPM executed on the whole
residual sequence R, we consider E10, E25, E50, E100, i.e.,
four ensembles of CPM aggregating different number of
estimates from random sampling (d ∈ {10, 25, 50, 100}),
and as a further comparison, we consider the CPMT (R)

with threshold set to 0, thus estimating the fault-time instant
irrespective of the maximum value of the test statistic (which
is not negative). Obviously, when the threshold is 0, the
CPMT (R) always provides an estimate of the fault-time
instant without requiring any statistical confidence; other-
wise, we set α to 0.05. Next, we describe how the residual
sequences are generated and then we report the figures of
merit used to assess the performance of the CPMs.

A. DataSet Generation

In our experiments, each sequence is composed of 700
samples, which are generated by an ARMA reference model
which undergoes an abrupt change affecting the parameter
vector at time instant T ∗ = 500. The parameter vectors
determining the healthy (θ0) and faulty (θ1) conditions have
been randomly generated (and only the stable ones kept).
The orders (p, q) of the ARMA have also been randomly
selected as p ∈ {1, . . . , 4} and q ∈ {0, 1, 2}. The standard
deviation of the innovation σ is set to 0.1. Results have been
computed on a dataset containing 2000 of such sequences.

In addition, we considered three scenarios characterizing
FDSs having different average detection delays. Specifically,
we set T̂ = {530, 540, 550}.

The first 400 observations of each sequence are provided
as a training sequence and used to identify the parameter vec-
tor of the healthy process, θ̂0. We assume that the maximum
orders of the process are known, and process identification
is performed by estimating the best model for each order
pair (p, q), considering p ∈ {1, . . . , 4} and q ∈ {0, 1, 2},
and then selecting θ̂0 among these by using the Akaike
information criterion [20]. It is important to remark that
the initial training sequences (400 observations) are never
considered for estimating the fault-time instant, and that
all the CPMs (E10, E25, E50, E100, CPMR, CPMR with
threshold set to 0) are executed on sequences containing
130, 140, 150 residuals.

B. Figures of Merit

For each value of T̂ we test E10, E25, E50, E100, CPMR,
and CPMR with threshold set to 0 on the whole residual
dataset, and for each of them we compute the false negative
rate (FNR) i.e., the percentage of sequences in the datasets
where the CPMs are not able to estimate the fault-time instant
(since in these cases the values of the statistic do not allow to
reject the null hypothesis). FNR values are shown in the plots
of Fig. 2. The false negative rate of CPMR with threshold
set to 0 is not reported being is trivially 0.

To provide a compact overview of the distribution of the
fault-time instant estimates, we report them using boxplots,
in Fig. 3.

C. Discussion

Three main comments arise about the advantages of the
use of the ensemble of CPMs from experimental results
depicted in Fig. 2 and 3. First, enforcing an ensemble of
CPMs allows us to significantly reduce the false negatives.
Second, the ensemble of CPMs guarantees a lower statistical



Fig. 2. The values of FNR for the three considered scenarios T̂ = {530, 540, 550}.
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Fig. 3. The boxplot provides a compact representation of the empirical distribution of the fault-time instant estimates. The central line in each box
represents the sample median, the bottom and top of each box represents the 25% and 75% quantile, respectively. The circular marker corresponds to the
sample mean, while the whiskers are used to identify outliers.

dispersion than the CPMT (R) with threshold set to 0.
Third, the ensemble estimates are comparable with those
of CPMT (R) when this is successful. These comments are
detailed and justified in the rest of the section.

Specifically, Fig. 2 shows that the ensembles Ed sub-
stantially reduce the FNR, in particular when d is large.
Such FNR reduction can be motivated by the fact that the
random sampling reduces the temporal dependency in R
and, in practice, the CPMs on the subsequence may identify
the fault-time instant when CPMT (R) does not. In all the

considered solutions the FNR decreases with T̂ , since the
number of residuals with the fault increases.

The boxplots in Fig. 3 provide a compact overview of the
empirical distributions of the fault-time instant estimated by
the considered CPMs. In particular, the analysis of the sample
mean and statistical dispersion of the estimates allows us to
highlight the advantages of using the ensemble of CPMs.

Interestingly, all the considered CPMs suffers from a bias
that increases with T̂ , as the values of the sample mean
(represented by circular markers) show in each boxplot. In



the i.i.d. case, increasing the number of faulty residuals
typically ease the detection, as this consolidates the statistical
evidence for rejecting the null hypothesis. In contrast, when
the faulty data are not i.i.d. and are characterized by some
sort of structure, the partitioning maximizing the test statistic
may contain faulty residuals in both parts, and the estimated
fault time instant may be significantly after T ∗. This situation
arises, for instance, when the faulty residuals follow trends.
Therefore, increasing values of T̂ delay the fault-time instant
estimates and, as a consequence, the sample means and the
boxes are shifted upwards, see Fig. 3. Also the number of
outliers (displayed with small gray dots out of the boxplot
whiskers) in the right tails increase with T̂ , and is particularly
evident when T̂ = 150.

More interesting considerations emerge from the statistical
dispersions of the estimates of the fault-time instant. Fig.
3 shows that, in all the considered scenarios, CPMT (R)
with threshold set to 0 (light gray boxes) present the largest
interquantile range (that determines the height of each box,
as it collects 50% of the population about the sample
median) and a substantial number of outliers. Because of
these outliers, the sample mean falls below the 25% quantile
when T̂ = 530.

The dispersion of the ensemble estimates Ed (orange
boxes) increases with d, and a similar consideration holds for
the number of outliers. However, this effect mostly affects
the first boxplot of Fig. 3, where only 30 faulty residuals
are provided: here, the randomly sampled subsequences may
not contain enough faulty residuals. Indeed, the distribution
of the ensemble estimates becomes more compact and almost
symmetric when T̂ increases, as shown in the other boxplots
of Fig. 3.

The boxplots of Fig. 3 also report the distribution of the
estimates provided by Ed, on sequences where CPMT (R)
is successful (represented by the yellow boxplots). The
dispersion and the location of these boxplots are very close
to that of CPMT (R), indicating that the aggregation phase
successfully compensates possible inaccuracy in the individ-
ual estimates Fi. In fact, each of these estimates itself could
be less accurate than the estimate from the whole dataset:
just consider that the true fault-time instant T ∗ is not always
included in the subsequences.

We also comment that the empirical distributions of all
the CPMs estimates are characterized by outliers in the left
tail. Such behavior is, in our opinion, due to model bias in
the estimate of θ0, yielding residuals that, during the healthy
conditions, are not white.

VI. CONCLUSIONS

We introduce an ensemble method to estimate the fault-
time instant in systems whose observations can be modeled
by ARMA processes and that are subject to fault inducing
an abrupt change in the parameter vector. We describe an
ensemble of CPMs that relies on random sampling to reduce
the temporal dependency in the analyzed residual sequence,
since it may impair the performance of CPMs. The ensemble

of CPMs provides reduced FNR values w.r.t. to a single CPM
executed on the whole residual sequence.

Though we are aware that such ensemble of CPMs is
not tuned to operate with a predefined probability of type-
I errors, we believe that the ensemble approach deserves
further investigation, as it ease the estimation of the fault-
time instant when residuals are not white.

The ensemble of CPMs can be straightforwardly adopted
to estimate the fault-time instant when observations follow
more general models, not only ARMA processes or dynami-
cal systems. Ongoing works investigate different aggregation
strategies to form the ensemble, techniques other than ran-
dom sampling to compute the individual estimates, as well
as integrating in the ensemble, CPMs relying on different
test statistics.
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