
PHYSICAL REVIEW A 84, 033812 (2011)

Formation of collimated beams behind the woodpile photonic crystal
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We experimentally observe formation of narrow laser beams behind the woodpile photonic crystal, when the
beam remains well collimated in free propagation behind the crystal. We show that the collimation depends on
the input laser beam’s focusing conditions, and we interpret theoretically the observed effect by calculating the
spatial dispersion of propagation eigenmodes and by numerical simulation of paraxial propagation model.
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I. INTRODUCTION

Photonic crystals (PhCs) are materials with periodic mod-
ulation of the refractive index on a wavelength scale. The
periodicity leads to important modifications of propagation
properties of electromagnetic waves in the PhC. The modifi-
cation of temporal dispersion, which leads to the formation of
photonic band gaps in the frequency domain (see, e.g., [1,2] for
the photonic band gaps), is well known and widely exploited.
Temporal dispersion is the dependence of the frequency of
propagation eigenmodes (Bloch modes) on the modulus of
propagation wave number ω = ω(|�k|). More recently it has
been discovered that spatial dispersion can be also modified in
the PhCs, allowing the control and management of the spatial
beam propagation. The latter phenomenon can be interpreted
in terms of spatial dispersion diagrams, given by the curves
of constant frequency of the Bloch modes in the �k space [i.e.,
ω(|�k|) = const] or, equivalently, by k||(k⊥). The peculiarities
of spatial dispersion offer new possibilities of controlling
the propagation of the optical beams. Especially attractive
is a suppression of diffractive broadening of the beam (or
self-collimation [3–8]), which is related to the formation of flat
segments in the spatial dispersion curves. One can also obtain
negative refraction or super-refraction of light [9–12] when
strongly tilted segments of the dispersion curves come into
play. Most experimental studies of beam propagation effects in
PhCs (e.g., self-collimation) are performed in two-dimensional
(2D) PhCs, which are easier to fabricate experimentally. The
full control over the beam propagation can be achieved in three-
dimensional (3D) PhCs only. Investigations of self-collimation
in 3D PhCs have been reported [13,14], but technological
difficulties of fabricating finely patterned 3D materials slow
down the studies. An alternative to explore the self-collimation
and other beam propagation effects in 3D modulated structures
is to work at microwave frequencies [15] and also in the field
of acoustics (with sonic crystals) [16], where high resolution
of fabrication is not required and 3D structures can be prepared
by mechanical machining.

The spatial propagation effects listed above refer to
the propagation of the beams inside the PhCs. Less is
understood about how the beams behave behind the crystal

with nontrivial dispersion properties. It is evident that a
narrow, self-collimated beam in a PhC can broaden rapidly
in propagation behind the crystal. The character of the beam
propagation behind the PhC depends on the wave front of
the self-collimated beam. In particular, if the wave front of
the beam acquires positive curvature (due to propagation in
a material with negative or anomalous diffraction), then the
beams can be focalized behind the modulated media [17].
The effect is related to superlensing (see [18] for theory
and [19] for experiments in 2D PhCs, resulting in imaging
of point sources by a PhC slice). In this way, the issues of the
light propagation effects behind the PhCs deserve careful and
consistent study, both to understand the physics of the waves
and beam propagation in and behind the modulated materials
as well as for the applications where the shaping of the beams is
required. In this paper, we report an experimental observation
of a well-collimated beam formation behind a 3D PhC of the
woodpile type. We also theoretically interpret the results by
expansions in plane wave components and by numerical study
based on the paraxial wave propagation model in modulated
media.

The article is organized as follows. First, we describe
the PhC samples and report the experimental observation
of beam formation by these samples. Then, we develop
interpretation of the experimental observations of formation of
well-collimated beams by positively curved spatial dispersion
curves and surfaces of the Bloch modes in the PhC. Finally,
we qualitatively reproduce the experimental observations by
paraxial calculations of light propagation inside and behind
the PhC structure.

II. EXPERIMENT

We used the photopolymer PhC of the woodpile type, as
shown in Fig. 1. The woodpile PhC was first fabricated in
Ref. [20], and this fabrication was subsequently performed by
the femtosecond laser direct writing technique [21–24]. The
photopolymer, in our case, was a hybrid organic-inorganic
Zr containing SZ2080, ensuring high resolution and low
geometrical distortions [25]. We used two types of samples:
(i) moderate-contrast refractive index sample, where the
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FIG. 1. (Color online) The woodpile PhC sample. Every sec-
ond layer of piles of the same orientation is half-period shifted:
(a) illustration and (b)–(d) micrographs by an electronic microscope
showing the top (c) and side (d) views.

index varies from 1.5 in polymer to 1 in air voids, and
(ii) low-contrast sample, where the voids were filled by another
polymer (polyethylene glycol) diacrylate (average Mn ∼ 258)
with the refractive index of 1.45. The transverse period was
1 μm in all samples; the longitudinal periods were 9 and
8 μm for the low- and moderate-contrast samples respectively,
resulting in approximately the same optical length for both
kinds of samples. The PhCs contain 12 longitudinal periods
(i.e., consist of 48 woodpile layers on a glass substrate) and
have transverse dimensions of 80 μm [26]. The longitudinal
modulation period is around one decade larger than the half-
wavelength; therefore the corresponding propagation band is
of a very high order (103 in this 3D case). We work, in this
way, around a corner of a high-order Brillouin zone.

The experimental scheme and the reported experimental
observation are illustrated in Fig. 2: a Continuous wave laser
beam at 532 nm is focused by a ×10 objective lens to a beam
waist wo of 2 μm, and the woodpile PhC is positioned at some
distance (on the order of millimeters) behind the focal plane.
The PhC scatters the light, and therefore a shadow of the PhC
contours is visible. At the middle of the shadow, a relatively
round spot was observed, which is the key result reported
in the present paper. The shape and the intensity of the spot
depend on the distance between the focal plane and the crystal
but do not depend on the distance to the observation plane.
The remote screen, or camera located at approximately 5 cm
behind the PhC, record the far-field distributions. When the
spot (i.e., the well-collimated beam) is obtained, the four first-
order diffraction maxima appear too, as shown in Fig. 1(b).
The diffraction angles (34 and 31 deg between the central
and the first maxima for moderate- and low-contrast samples,
respectively) fit well with those calculated from the transverse
period of the PhC (considering that the diffracted radiation
leaves the crystal through the lateral facets).

The quantitative results of observation for both types of
samples are summarized in Fig. 3, which evidences the
existence of the optimum distance between the focal plane
and the PhC sample (1 mm and 4 mm for the moderate- and

FIG. 2. (Color online) (a) The experiment to observe formation
of well-collimated beam. The laser beam (532 nm) is focused (with a
×10 microscope objective), and the woodpile-like PhC is positioned
at some distance (on order of millimeters) behind the focal plane.
Behind the crystal, in the far-field area, the “shadow” of the PhC
sample occurs, at the middle of which a narrow spot is observed,
indicating formation of a well-collimated beam. (b), (c) The snapshots
of typical observed transmitted field distribution on large (c) and
small (d) spatial scales. The shown domain in (d) corresponds to the
“shadow” of the PhC.

low-contrast samples, respectively) for the optimum beam
collimation. The top intensities of the spot significantly
exceeded the irradiation intensity (by approximately 4 and 14
times for the moderate- and low-contrast samples). The width
of the beam was 0,12 and 0.2 relative to the width of the shadow
of the sample for the moderate- and low-contrast samples,
respectively, and did not depend on the distance between
the PhC and the screen. This means that approximately 2%
and 22% of the shadowed radiation are transferred to the
well-collimated beam in moderate- and low-contrast samples,
respectively.

An important observation was that the bright spot remains
at the middle of the shadow by slightly tilting the PhC sample
(within approximately 2 deg). This excludes all possible
interpretations of the effect by the reflections from the surfaces
of the sample or by a light guiding along the lateral facets or
possible defect lines along the PhC.

033812-2



FORMATION OF COLLIMATED BEAMS BEHIND THE . . . PHYSICAL REVIEW A 84, 033812 (2011)

FIG. 3. (Color online) Top intensity of the
collimated beam depending on the distance be-
tween the focal plane and the PhC for moderate-
contrast (a) and low-contrast (b) sample. Insets
show typical shapes of the beam for different
positions of the PhC. Thin horizontal lines mark
the intensity of the light without the crystal. The
shown domains in the inset corresponds to the
“shadow” of the PhC.

III. INTERPRETATION

Although the observed picture seems to be reminiscent of
geometrical lensing, the observations cannot be interpreted by
the ray optics: Optical thickness of the used PhC samples is
constant over their transverse size; therefore the geometrical
lensing due to the spherically varying thickness of the sample
is excluded. Moreover, the width of the collimated beam is
almost independent of the distance between PhC and the focal
plane, which would not be the case for geometrical lensing.
The character of collimation does not depend on the lateral
dimensions of the PhC sample [26]. Also, the beam propagates
in a well collimated fashion over long distances behind the PhC
samples and does not exhibit a sharp focus along its path.

We interpret the beam focalization by a negative diffraction
(anomalous spatial dispersion) of the Bloch modes in the bulk
of the PhC. The beam front acquires a positive curvature of the
wave front (due to normal spatial dispersion) in the propagation
before the PhC, and the anomalous spatial dispersion inside the
PhC compensates for it. The wave front of the beam therefore
becomes flat or nearly flat at the back face of the PhC, which
results in a well-collimated propagation behind the PhC. In
order to support this interpretation, we calculate the spatial
dispersion curves and surfaces evidencing the anomalous
spatial dispersion and also calculate straightforwardly the light
propagation in the experimental configuration.

A. Model

We use the paraxial propagation model:[
2ik0∂/∂z + ∇2

⊥ + 2�n(x,y,z)k2
0

]
A(x,y,z) = 0. (1)

Here A(x,y,z) is the complex envelope of the electromag-
netic field E(x,y,z,t) = A(x,y,z)eik0z−iω0t + c.c. propagating
along the z direction with the wave number k0 = nω0c and
∇⊥ = ∂2/∂x2+∂2/∂y2 is the Laplace operator in the transverse
to propagation space. Relatively large spatial periods of the
index variation (compared with the wavelength) justifies (1)
as an acceptable approximation.

We note that the woodpile architecture allows reduction of
the 3D paraxial wave equations into two separate 2D paraxial
wave equations (which is impossible for the full Maxwell
equations). The profile of refraction index for the woodpile
PCs can be expressed as �n(x,y,z) = �nx(x,z) + �ny(y,z),
as the woodpile structure consists of the bars directed along

the x and y directions in alternating order. The reduced 2D
index profiles are of rhombic symmetry, and light propagation
is parallel to the long diagonals of the rhombs, as is evident
from the side view profile of the woodpile structure [Fig. 1(d)].
Then the 3D field can be factorized in this paraxial treatment:
A(x,y,z) = Ax(x,z)Ay(y,z), which when inserted into (1)
allows us to separate the factorized components:(

2ik0
∂

∂z
+ ∂2

∂x2
i

+ 2�nxi
(xi,z) k2

0

)
Axi

(xi,z) = 0. (2)

Here xi = x,y. Equation (2) is used for harmonic expansion
of the fields and for numerical simulation of the wave
propagation inside and behind the PhC.

B. Harmonic expansion

In order to calculate the spatial dispersion curves in 2D
(and eventually the dispersion surfaces in 3D), the harmonic
expansion can be applied to each (xi = x,y) of factorized
components:

Ax(x,z)=eikzzeikxx

(
A0(kx)+

∑
mx,mz

Amx,mz
(kx)eimxqxx−imzqzz

)
.

(3)

We consider only two most relevant harmonic components
Amx,mz

(kx): (mx,mz) = (−1,+1),(+1,+1), in addition to the
zero component A0(kx): (mx,mz) = (0,0). This truncation
is justified by experimental observations, where only four
diffraction maxima (two in each, the x and y directions) are
visible. Speaking differently, the above truncation to three
harmonic components means that the spatial modulation of
the field in the Bloch mode is harmonic (i.e., the higher
modulation harmonics are irrelevant). Inserting Eq. (3) into
Eq. (2) results in three coupled equations for the above field
components:

KzAmx,mz
= (−(Kx + mxQx)2/2 + mzQz)Amx,mz

+�n0f
∑

lx ,lz �=mx,mz

Alx,lz . (4)

Here �n0 is the refraction index contrast and f is the
filing factor, that is, the area of the polymer bar with
respect to the area of the 2D cell (in experiment f ≈ 0.1).
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FIG. 4. (Color online) (a)–(c) Spatial dispersion curves as cal-
culated by diagonalization of expansion (4) in 2D. (d) Spatial
dispersion surface in 3D as obtained by factorization of the upper 2D
spatial dispersion curve from the case (a). Parameters are Qx = 0.5
and �n0f = 0.025. The difference between the calculated cases
is detuning from three-wave resonance (equivalently the distance
from the corner of a Brillouin zone): �Qz = (Qz − Q2

x/2) = 0 for
(a) and (d), �Qz = 0.03 for (b), and �Qz = −0.03 for (c). The
site of square domain in plot (d) corresponds to coordinate range
in (a).

Kx,z = kx,z/k0 and Qx,z = qx,z/k0are normalized wave vector
components.

The coupling between all three harmonic components is
most efficient at the resonance Q2

x − 2Qz = 0, as follows
from Eq. (4), which means that all three dispersion lines
cross at Kx = 0 point (the dashed lines in Fig. 4). The
resonance point in the paraxial model corresponds to the
corner of a particular Brillouin zone in the full model. At
the cross point, the lines deform due to the mode coupling
and the positively curved segments appear, evidencing the
negative diffraction of corresponding Bloch modes. The above
resonance condition was kept in mind while fabricating the
samples.

The eigenvalues of (4) have their simple analytic form
expanded around the resonance point (the corner of the
Brillouin zone):

Kz =
[
−K2

x

2
,
√

2(�n0f )2 + (KxQx)2 − K2
x

2
,

−
√

2(�n0f )2 + (KxQx)2 − K2
x

2

]
. (5)

For the formation of collimated beam, the upper branch
[second eigenvalue of (5)] is important. This branch cor-
responds to the Bloch mode with the positive curvature
(anomalous spatial dispersion). The series expansion of the
corresponding branch for small kx reads

Kz =
√

2(�n0f ) + K2
x

2

(√
2

2

Q2
x

�n0f
− 1

)
+ · · · . (6)

This means that the PhC imposes an anomalous spatial dis-
persion (positive curvature) which can compensate the normal
spatial dispersion (negative curvature) of the homogeneous
space for Q2

x � �n0f . Equation (6) is only the estimate of
the effect, however, as it is calculated exactly at the resonance
point. In reality, the curvatures of the dispersion curves of
the Bloch mode depend on the detuning (i.e., on the distance
from the corner of Brillouin zone), as shown in Figs. 4(a) and
4(c), and can be strongly varied by a small variation of the
parameters of the PhC.

The shapes of the 3D dispersion surfaces follow straight-
forwardly (due to factorization) from the 2D dispersion curves
calculated above and are shown in Fig. 4(d). The profile
of the dispersion surface at its bottom (Kx,Ky → 0) is of
high rotational symmetry, due to the parabolic character
of the 2D dispersion curves in that limit. This explains a
counterintuitive experimental observation that the woodpile
samples, the structures of quadratic symmetry and samples
of quadratic shape, form beams of a relatively high rotational
symmetry.

The anomalous spatial dispersion inside the PhC plays a
key role in the formation of the collimated beams: Diffractive

FIG. 5. (Color online) Beam propagation in-
side and behind the PhC as obtained by numerical
integration of the paraxial model (2) in 2D. The
one-dimensional (1D) profile of beam in the
far-field domain and the 2D profile in the far-field
domain (as obtained by factorization) are shown
on the right. The site of square 2D domain
corresponds to the coordinate range in 1D plots.
The parameters for (a)–(c) cases correspond to
these in Fig. 4.
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broadening of the beam accumulated in a propagation from
the focal plane to the PhC is compensated by the anomalous
diffraction in propagation through the PhC. Therefore, the
optimum distance between the PhC and the focal plane is
determined basically by the crystal bulk parameters, that is,
eventually by the curvature of the spatial dispersion curves.
The curvatures of the dispersion curves of the Bloch modes
depend strongly on the detuning from the corner of the
Brillouin zone, as shown in Figs. 4(a)–4(c), and can be varied
by fine-tuning the geometry parameters of the PhC �Qz =
(Qz − Q2

x/2). The upper branch always remains positively
curved. The position of the resonance (of the corner of the
Brillouin zone) depends on many parameters, including the
average index of refraction. The latter depends on the thickness
of the polymer bars in the samples (the filling factor), which
was not precisely controllable in the fabrication of samples.
Therefore, the differences among the cases in Figs. 4(a)–4(c)
are beyond the fabrication precision, and we cannot definitely
determine which of the these cases correspond to (both)
experimentally investigated samples.

C. Numerical integration

Finally, a series of numerical simulation of the paraxial
model (2) were performed in order to justify the above
interpretation of the beam collimation by the dispersion curves
and surfaces. Well-collimated beams in the 2D case as well as
beams of relatively good rotational symmetry in 3D have been
found (Fig. 5). The parameters in calculations (the size of PC
sample, modulation periods) correspond to both experimental
samples used, and the modulation depth (�n0f = 0.025)
is close to that of the estimated value of the high-contrast
sample.

IV. CONCLUSIONS

We have reported experimental evidence of the formation
of well-collimated optical beams from initially diverging

beams by a 3D PhC at visible wavelengths. The collimation
was achieved using a low-refractive-index modulation PhC
structure facilitated by direct femtosecond laser writing tech-
nique. We have presented theoretical analysis which indicates
that origin of the observed collimation is anomalous spatial
dispersion (positively curved spatial dispersion curves in
2D and spatial dispersion surfaces in 3D). The theoretical
model was validated by good qualitative agreement between
the results of numerical simulations based on integration of
paraxial model and the experimental data.

The collimation depends strongly on the geometric param-
eter �Qz = (Qz − Q2

x/2), the normalized amplitude of index
modulation �n0f , and the length of the PhC structure along
the beam propagation axis. It is important to achieve near-
resonance condition (close to the Brillouin zone boundary)
|�Qz| 
 1, where collimation can occur for both negative
(�Qz < 0) and positive (�Qz > 0) detuning. However, even
small variations of these parameters lead to complicated and
not fully understandable variation of the collimated beam
quality. Better theoretical understanding and experimental op-
timization of the beam collimation require careful theoretical
and numerical studies in the future.

Finally, it should be noted that physical mechanisms of
beam formation outlined in this study are quite general and
thus are applicable to a broader class of waves in periodic
structures, such as acoustic waves in sonic crystals, exciton
and surface polariton wave beams, and others. These principles
may contribute to the development of new types of compact,
misalignment-tolerant beam collimators and shapers.
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