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Abstract

This work aims at investigating the mechanisms of separation and the transition to turbulence

in the separated shear-layer of aerodynamic profiles, while at the same time to gain insight

into coherent structures formed in the separated zone at low-to-moderate Reynolds numbers.

To do this, direct numerical simulations of the flow past a NACA0012 airfoil at Reynolds

numbers Re = 50000 (based on the free-stream velocity and the airfoil chord) and angles of

attack AOA = 9.25◦ and AOA = 12◦ have been carried out. At low-to-moderate Reynolds

numbers, NACA0012 exhibits a combination of leading-edge/trailing-edge stall which causes

the massive separation of the flow on the suction side of the airfoil. The initially laminar shear

layer undergoes transition to turbulence and vortices formed are shed forming a von Kármán

like vortex street in the airfoil wake. The main characteristics of this flow together with its main

features, including power spectra of a set of selected monitoring probes at different positions

on the suction side and in the wake of the airfoil are provided and discussed in detail.
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1. Introduction

Stall on airfoils is caused by the massive separation of the flow, which deteriorates their

performance leading to a sharp drop in the lift and an increase in the drag over the airfoil

surface. According to Gregory and O’Reilly (1973), the NACA0012 airfoil exhibits two types of

stall: i) a trailing-edge stall at all Reynolds numbers and, ii) a combined leading-edge/trailing-

edge stall at intermediate Reynolds number. The latter is characterised by the presence of a

turbulent boundary layer separation moving forward from the trailing-edge as the angle of attack

(AOA) increases and, a small laminar bubble in the leading-edge region failing to reattach. The

combination of these two mechanisms complete the flow breakdown. An oscillating situation is
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often noticed near stall angles (see for instance Broeren and Bragg (1999); Rinoie and Takemura

(2004); Almutairi et al. (2010)).

The flow around airfoils in full stall is a problem of great interest in aerodynamics and specif-

ically for the design of turbo-machines (turbines, propellers, wind turbines, etc.). Indeed, it is a

complex flow phenomena which involves separation of the flow from the leading edge, transition

to turbulence in the separated shear layer and the shedding of vortices. This vortex shedding

is also the cause of strong fluctuations in the lift and drag. It was shown by Broeren and Bragg

(1998) that depending on the stall type, these unsteady effects might be of different amplitude,

the most severe ones are those encountered in the thin-airfoil/trailing-edge stall type. However,

mechanisms of quasi-periodic oscillation observed near stall and stall behaviour, which affect

airfoil efficiency, remain still not fully understood. Thus, the study of the separation mechanism

and boundary layer transition are both key aspects for improving engineering designs.

The development of coherent structures in the wake of airfoils and transition to turbulence

in the separated shear-layer have been object of different studies. For instance, Huang and Lin

(1995) and Lee and Huang (1998) studied the flow patterns and characteristics of the vortex

shedding of a NACA0012 airfoil. They identified four different modes of vortex shedding: lam-

inar, subcritical, transitional and supercritical. According to these studies, in the transitional

mode the flow is less coherent, the wake structure is disorganised and no vortex shedding fre-

quency can be identified. In addition, Huang and Lin (1995) measured the vortex shedding

frequency in the range of Reynolds numbers of 2.5 × 104 - 1.2 × 105, and observed that for

angles of attack larger than 15◦ this frequency gradually converges to a value of 0.12 as the

AOA approaches to 90◦. More recently, Yarusevych et al. (2009) studied experimentally the

development of the coherent structures in the separated shear layer of a NACA0025 at low-to-

moderate Reynolds numbers in the range 5.5×104 - 2.1×105. They provided some insight into

the structures formed and, also measured both the shear-layer instability and vortex shedding

frequencies for low AOA. Later, Yarusevych et al. (2011) investigated the vortex shedding char-

acteristics of a NACA0018 at low Reynolds numbers. They found that vortex shedding occurs

at both flow regimes, i.e. when there is laminar separation with and without flow reattachment.

However, although some similarities in the flow can be observed with a NACA0012, there are

also important differences as the type of stall these airfoils experience, which is different than

that observed in NACA0012.

In addition to experimental studies, the advances in computational fluid dynamics together

with the increasing capacity of parallel computers have made possible to tackle complex tur-



bulent problems by using high-performance numerical techniques such as direct numerical sim-

ulation (DNS) (Lehmkuhl et al., 2011; Rodŕıguez et al., 2011a, 2012). DNS has a key role for

improving the understanding of the turbulence phenomena and for the simulation of transi-

tional flows in complex geometries. In the present work DNS of the flow past a NACA0012

airfoil at low-to-moderate Reynolds number of Re = 5 × 104 and angles of attack of 9.25◦ and

12◦ (the last one correspond to a full-stall situation) have been carried out. This work aims

at investigating the mechanisms of separation and transition to turbulence in the separated

shear-layer, while at the same time to gain insight into the coherent structures formed in the

separated zone at low-to-moderate Reynolds numbers. The main features of the flow, including

power spectra of a set of selected monitoring probes at different positions in the suction side

and in the near-wake of the airfoil, are discussed in detail.

2. Mathematical and numerical method

The incompressible Navier-Stokes equations can be written as

Mu = 0 (1)

∂u

∂t
+ C (u)u+ νDu + ρ−1Gp = 0 (2)

where u and p are the velocity vector and pressure, respectively; ν is the kinematic viscosity

and ρ the density. Convective and diffusive terms in the momentum equation for the velocity

field are given by C (u) = (u · ∇) and D = −∇2 respectively. Gradient and divergence (of a

vector) operators are given by G = ∇ and M = ∇·, respectively.

The governing equations have been discretised on a collocated unstructured grid arrange-

ment by means of second-order conservative schemes (Verstappen and Veldman, 2003). Such

schemes preserve not only mass and momentum, but also the kinetic energy balance. To con-

serve these balances, discrete operators should have the same properties of the continuous ones,

i.e. the convective operator should be skew-symmetric (C (u) = −C∗ (u)); the negative con-

jugate transpose of the discrete gradient operator should exactly be equal to the divergence

operator (− (ΩG)∗ = M) and, the diffusive operator (D) should be symmetric and positive-

definite. Furthermore, if these properties are preserved, stability at high Reynolds numbers

even with coarse grids is ensured.

In the context of the direct numerical simulation of turbulent flows, the time advancement



algorithm should be capable of solving all temporal scales while, at the same time, it should

be kept within the stability domain. Different temporal schemes have been proposed in the

literature to deal with time marching algorithm for turbulent flows (see for instance Le and

Moin (1991); Kim and Choi (2000); Fishpool and Leschziner (2009)). In this work, a two-step

linear explicit scheme on a fractional-step method proposed by Trias and Lehmkuhl (2011)

has been used. Its main advantage relies on its capacity of dynamically adapt the time step

to the maximum possible value, while at the same time it is kept within the stability limits.

This strategy reduces the computational time required without lost of accuracy. The method

has been successfully tested in different flows in Trias et al. (2010); Rodŕıguez et al. (2012);

Jaramillo et al. (2012).

As aforementioned, the classical fractional step projection method has been used for solving

the velocity-pressure coupling,

u
p = u

n+1 + Gp̃ (3)

where p̃ = p
n+1Δtn/ρ is the pseudo-pressure, up the predicted velocity, n+1 is the instant

where the temporal variables are calculated, and Δtn is the current time step (Δtn = tn+1− tn).

Taking the divergence of (3) and applying the incompressibility condition, yields a discrete Pois-

son equation for p̃: L p̃ = Mu
p. The discrete laplacian operator L ∈ R

m×m is, by construction,

a symmetric positive definite matrix (L ≡ MΩ−1M∗). Once the solution of pn+1 is obtained, p̃

results from equation 3.

Finally the mass-conserving velocity at the faces (Mfu
n+1
f = 0) is obtained from the cor-

rection, un+1
f = u

p
f − Gf p̃, where Gf represents the discrete gradient operator at the CV faces

(here the subscript f applies for the faces of the CVs). This approximation allows to conserve

mass at the faces but it has several implications. If the conservative term is computed using

u
n+1
f , in practice an additional term proportional to the third-order derivative of pn+1 is intro-

duced. Thus, in many aspects, this approach is similar to the popular Rhie and Chow (1983)

interpolation method and eliminates checkerboard modes.

When the fractional step method on a collocated arrange is used, the kinetic energy balance

is not strictly ensured. This issue was shown for finite-difference schemes by Morinishi et al.

(1998) and for finite-volume schemes by Felten and Lund (2006). The sources of these inac-

curacies are two: i) due to interpolation schemes and, ii) due to inconsistency in the pressure

field in order to ensure mass conservation. While the first one can be eliminated through the

use of conservative schemes such as those used in the present work, the total contribution of



the pressure gradient term to the evolution of the kinetic energy yields,

εke = (p̃)∗M(G− Gf )p̃ (4)

This contribution of the pressure gradient term to the evolution of the kinetic energy can not

be eliminated. Felten and Lund (2006) conducted an analytical study to determine the scaling

order of these errors. They shown that the spatial term of the pressure error scales as O(Δx2)

and the temporal term scales as O(Δt2), i.e. pressure errors are of the order of O(Δx2 Δt2).

As was suggested in their work, these errors are not of importance with the grid sizes (h) and

time-steps (Δt) used in DNS and well-solved large-eddy simulations. In those cases, the own

requirements of solving well all spatial and temporal scales of the flow are restrictive enough

and thus, the impact of pressure errors should be minimal. The methodology used in this work

have been proven to yield accurate results and have been previously used for solving the flow

over bluff bodies with massive separation in Rodŕıguez et al. (2011a,b, 2012).

2.1. Definition of the case. Geometry and boundary conditions.

Direct numerical simulations of the flow past a NACA0012 at Reynolds number of Re =

Uref C/ν = 5×104 and AOA = 9.25◦ and 12◦ are considered. Here Reynolds number is defined

in terms of the free-stream velocity Uref and the airfoil chord C. All computed flows are around

a NACA0012 airfoil extended to include sharp trailing edge. All coordinates are referred to body

axes unless remarked. The x axis is chord-wise, y is in the plane of the airfoil and z is spanwise

direction. Solutions are obtained in a computational domain of dimensions 40C × 40C × 0.2C

with the leading edge of the airfoil placed at (0, 0, 0) (see figure 1). Distances from the profile

to the domain boundaries have been chosen according to previous experiences and potential

vortices notions (Baez et al., 2011; Lehmkuhl et al., 2011). The boundary conditions at the

inflow consist of a uniform velocity profile (u,v,w)=(Uref cosAOA, Uref sinAOA, 0). As for

the outflow boundary, a pressure-based condition is imposed. No-slip conditions on the airfoil

surface are prescribed. Periodic boundary conditions are used in the spanwise direction.

2.2. Computational details

The resolution of the Poisson equation derived from the incompressibility constrain is the

main bottleneck from the computational point of view. This can be circumvented by using

a Fast Fourier Transform (FFT) based algorithm (Swarztrauber, 1977; Soria et al., 2002).

The present method takes the advantage of the mesh discretization, which is obtained from



Figure 1: Computational domain (not-to-scale). Grey dashed line represents inflow conditions, with
specified velocity and pressure. Grey solid line represents outflow condition.

the constant step extrusion of a two-dimensional (2D) unstructured grid. By doing this, the

spanwise coupling of the discrete Poisson equation results into circulant sub-matrices that are

diagonalizable in a Fourier space (Davis, 1979; Gray, 2006), allowing the use of FFT method.

This diagonalization decouples the initial three-dimensional (3D) system into a set of mutually

uncoupled 2D subsystems which can be solved by means of a Direct Schur-complement based

Decomposition method (DSD). The main drawbacks of such algorithm are the requirement of

a computationally demanding pre-processing stage and large memory resources. However, this

additional pre-processing cost becomes almost negligible compared to the total time-integration

cost. For more details the reader is referred to Borrell et al. (2011).

For the meshes reported in the present work, parallelisation strategies have considered parti-

tions of 320 CPUs. The computations have been carried out on a 76 nodes in-house cluster, each

node has 2 AMD Opteron 2350 Quad Core processors linked with an infiniband DDR4 network,

and on MareNostrum supercomputer at the Barcelona Supercomputing Center (BSC). When

these computations have been performed, MareNostrum supercomputer was an IBM Blade-

Center JS21 Cluster with 10 240 PowerPC 970MP processors at 2.3 GHz with 1 MB cache per

processor. Quad-core nodes with 8 GB RAM were coupled by means of a high-performance

Myrinet network.



Figure 2: Detail of the 2D grid in the suction side and in the region near the airfoil surface



2.3. Numerical domain. Mesh resolution studies.

For carrying out the computations at both AOA (AOA = 9.25◦ and AOA = 12◦) two

different grids have been used. The grids used are unstructured, which allow to have a good

resolution in the zones where the flow is turbulent, while at the same time a coarser mesh

is used in the zone where the flow is less complex (i.e. laminar zones). In the construction

of these computational meshes, they have been adapted to the different AOAs. Furthermore,

it has been considered that the flow around the airfoil is mostly laminar with the exception

of a zone close to its surface (suction side) and in the wake of it. In these zones, where

the flow is turbulent, the grid size should be enough for solving well the smallest flow scales.

Moreover, within laminar zones, boundary layer must also be well-solved. Taking into account

that the accuracy of the results is highly grid dependent, specially in the region of the separated

shear-layer where transition to turbulence occurs, care must be taken when the computational

grid is constructed. Another critical region is the near wake of the airfoil, where a poor grid

resolution may cause notable upstream flow distortions. With these criteria, control volumes

have been clustered in these zones. Even though the grids used are unstructured, in order to

avoid spurious solutions they have been constructed as uniform as possible in the regions of

interest. The results presented in the paper have been performed on grids of about 46.6 million

CVs (340526 × 128 planes) and 49 MCVs (381762 × 128 planes) for AOA = 9.25 and 12◦,

respectively. An example of one of the 2D grid used and its refinement around the suction side

of the airfoil is depicted in figure 2.

The quality of the grid resolution used in the present computations has been assessed by

means of a-posteriori analysis of the zones off the wall. To do this, the grid size h (h ≡ (ΩCV )
1/3)

has been compared to the Kolmogorov length scale η. The Kolmogorov length scale has been

obtained from the dissipation rate ε as,

η = (ν3/ε)1/4 (5)

where the turbulent kinetic energy dissipation rate can be evaluated as ε = 2νS ′ij S
′

ij , being S
′
ij

the mean rate-of-strain fluctuations.

Figure 3 shows the ratio h/η for different locations in the suction side for both AOA. As

can be seen from the figure, this ratio has been kept lower than the unity for most of the region

compressed in the turbulent detached zone and the near wake. Indeed, the average value of

this ratio for AOA = 9.25◦ in the suction side up to y/C ∼ 0.5 and in the near wake up to



x/C ∼ 3 has been about h/η ≈ 0.389. For AOA = 12◦, this ratio has been slightly larger, being

of h/η ≈ 0.498. With these considerations, the grid densities obtained should be fine enough

to solve the smallest flow scales in the zones of interest at this Reynolds number.

The resolution of the grid in the near-wall region has also been assessed by evaluating the

grid size in the cells adjacent to the airfoil surface in wall-units. Being the friction velocity

uτ =
√
(τw/ρ), the distance from the wall measured in viscous length can be evaluated as

y+ = uτy/ν. In a similar manner the streamwise Δx+ and spanwise Δz+ cell sizes can be

obtained. The near-wall grid resolution obtained with for AOA = 12◦ is plotted in figure 4.

As can be seen from the figure, wall resolution seems to be sufficiently fine for carrying out the

present computations.

Regarding the spanwise size of the domain, it has been fixed to 20% of the chord, similar to

the values adopted by other investigations at comparable Reynolds numbers (You et al., 2008;

Zhou and Wang, 2011). However, in order to verify if this size is adequate, spanwise two-point

correlations have been computed. These correlations give an indication of the size of the flow

structures in this direction. Thus, the domain should be considered wide enough if their values

tend to zero as they approach to the half-size of the domain. Two-point correlations are defined

as,

�ii(x, δz) =
< u′i(x, t) u

′

i(x+ δz, t) >

< u′2i >
(6)

where x ≡ (x, y, z) and < · > denotes averaging over time and space. In order to calculate

two-point correlations at different locations, the time signals of different stations on the suction

side have been recorded. The location of these probes are given in figure 5. The computed

values for the stream-wise velocity fluctuations (Ruu) for AOA = 12◦, are given in figure 6. As

can be observed, Ruu at the different stations vanishes at the half-width of the domain. In the

figure can also be seen the average size of stream-wise structures at the different locations, as

the position of the minimum denotes the mean distance between a high and a low-speed flow

structure. Thus, the size of these structures is twice this distance. Considering these results,

the value of 20% of the chord is good enough for capturing the largest scales of the flow.

3. Results

For obtaining the numerical results presented, the simulations have been started from an

initially homogeneous flow field which introduces some numerical disturbances as it is not the

solution of the governing equations. These disturbances eventually cause the flow became three-
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Figure 3: Ratio of the grid size to the Kolmogorov length scale at different locations. a) AOA = 9.25◦;
b)AOA = 12◦
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dimensional and trigger the transition to turbulence. Then, simulations have been advanced in

time until statistical stationary flow conditions have been achieved and the initial transient has

been completely washed out.

3.1. Instantaneous flow structures

In order to gain insight into the coherent structures developed in the separated zone, the

Q-criterion proposed by Hunt et al. (1988) has been used. This method, which is based on

the second invariant of the velocity gradient tensor, defines an eddy-structure as a region with

positive second invariant Q. Being the rate-of-strain (S) and the rate-of-rotation (Ω) the

symmetric and skew-symmetric components of the velocity gradient tensor ∇u, its second

invariant is,

Q =
1

2
(‖ Ω ‖2 − ‖ S ‖2) (7)

where ‖ · ‖ denotes the trace of the tensor. Thus, according with the Q-criterion, a region

with positive Q is a region where rotation overcomes the strain. Q iso-surface plots are depicted

in figure 7. A first inspection to the figure reveal the large quantity of small scales in the

separated zone. In fact as the AOA increases one can note how this region is broadened due to

the increase of the adverse pressure gradient.

At both AOAs, the flow separates laminarly from the airfoil surface near the leading edge,

as can be inferred from the two-dimensional shear-layer. Vortex breakdown occurs at the end

of the laminar shear-layer as a consequence of the instabilities developed by the action of a

Kelvin-Helmholtz mechanism (see figure 8). These instabilities are high frequency fluctuations

in the velocity field which grow in magnitude as the distance from the leading edge increases

and eventually causes shear layer to roll-up and undergo transition to turbulent flow. For

instance, if the flow at AOA = 12◦ is inspected (see figure 7(b)), these instabilities can clearly

be seen at the end of the laminar shear-layer. Indeed, the increase in their amplitude until

finally transition to turbulence occurs is also well captured in the figure. This mechanism of

transition is similar to that observed in shear-layers developed in other bluff bodies such as the

flow past a circular cylinder (see for instance Prasad and Williamson (1997)) or the flow past

a sphere (Rodŕıguez et al., 2011a).

At the end of the two-dimensional shear layer, corrugated structures along the homogeneous

direction, can also be observed. Although at both AOA these structures are formed, in the plots

are more evident at AOA = 12◦. These corrugated structures are related with the formation of



(a)

(b)

Figure 7: Visualisation of instantaneous vortical structures on the suction side of the airfoil by means of Q-iso-
surfaces; Q = 30 coloured by velocity magnitude. a) AOA = 9.25◦; b)AOA = 12◦.



(a) (b)

(c) (d)

Figure 8: Instantaneous flow. (a,c) Pressure and vorticity contours for AOA = 9.25◦. (b,d) Pressure
and vorticity contours for AOA = 12◦

stream-wise vortices (ribs) in the separated zone. After vortex breakdown, small-scale vortices

are formed and accumulate into larger structures forming packets. The frequency at which these

instabilities develop is much higher than that of the vortex shedding mechanism (see section 3.2).

These turbulent vortical packets, eventually grow up as the flow moves downstream. A close-up

to the developing flow structures in the separated shear-layer is shown in figure 8 by means

of pressure and vorticity isocontours projected into a two-dimensional plane. For both AOA

this phenomena can be seen in the figure. The extension of the separated zone increases with

the AOA and, at AOA = 12◦ the wake starts within the suction side region. Kelvin-Helmholtz

instabilities appear as small vortices in the pressure field at both AOAs. After transition, by

means of the pairing of vortices large scale structures are formed. Vortices originated at the

trailing edge of the airfoil are also shown. In fact, at AOA = 12◦, these vortices irrupt into

the suction side, interacting with those from the suction side, to form a pattern similar to a

von Kármán like vortex street (not shown here), which resembles that formed behind a circular

cylinder.

According to Huang and Lin (1995) observations of the flow past a NACA0012 airfoil at

low-to-moderate Reynolds numbers, the way vortices are shed into the wake present four char-

acteristics modes: laminar, subcritical, transitional and supercritical. In this characterisation,

in the transitional mode vortices shed are irregular and without coherence, forming a disor-

ganised wake. They did not detect any vortex shedding in this regime. On the other hand,



(a) (b)

Figure 9: Streamwise velocity time series at P5 station. a) AOA = 9.25◦; b)AOA = 12◦

in the supercritical mode, the flow is coherent and turbulent vortex shedding is re-established.

Following Huang and Lin (1995) classification, at AOA = 9.25◦ wake mode should correspond

with the transitional one, whereas at AOA = 12◦ supercritical mode should be detected. In

fact, from the inspection of time series at P5 station (placed in the near wake at x/C = 1.2;

y/X = 0.04), stream-wise velocity exhibits a transitional behaviour characterised by the lost

of coherence in the signal, although coherence is recovered after some time (see figure 9(a)).

At AOA = 12◦, the stream-wise signal is highly coherent (the vortex shedding frequency can

almost be calculated directly from the signal) which agrees well with Huang and Lin (1995)

supercritical mode (see figure 9(b)). The signal of the stream-wise velocity fluctuates due to the

passing of large-scale vortices, but also the footprint of the small-scale shear layer fluctuations

is superimposed. It should be pointed out, that contrary to Huang and Lin (1995) observations,

in the present simulations vortex shedding has been detected at AOA = 9.25◦ as is discussed

in the next section, being in agreement with the measurements of Yarusevych et al. (2009) for

a NACA0025 at low-to-moderate Reynolds numbers.

3.2. Energy spectra

As has been commented before, time series of velocity components and pressure have been

recorded on different locations (see figure 5). The data have been collected over 120 time

units (tU/C) for both AOAs. The energy spectra have been calculated by using the Lomb

periodogram technique and the resulting spectra have also been averaged in the homogeneous

direction. Figures 10 and 11 show the energy spectra for both stream-wise and cross-stream

velocity fluctuations at the two AOAs. In the figures, the main frequencies of the flow are well

captured. For clearness, each spectrum has been shifted and is represented for increasing x/C

from bottom to top. The energy spectra exhibit different ranges and fundamental frequencies:



 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0.001  0.01  0.1  1  10

E
u
u

f

-5/3

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 1e+08

 0.001  0.01  0.1  1  10  100

E
v
v

f

-5/3

Figure 10: Energy spectra of the stream-wise and cross-stream velocity fluctuations for AOA = 9.25◦. From
top to bottom, spectra correspond with stations P6, P5, P4,P3, P2, P1, P0 (see figure 5 for details)

from transition to turbulent flow observed in the bottom curve of all figures (corresponding

with probe P0), to the regular decay of slope close to −5/3, as the flow approaches the airfoil

aft and flows into the wake (e.g. probe P6). The latter is indicative of the presence of an

inertial subrange for more than a decade of frequencies.

As for the significant frequencies, the spectrum for P0 shows a broadband peak at fSL = 6.9

(St = f sin(AOA)C/U = 1.109, here Strouhal is based on the airfoil projection on a cross-

stream plane) and at fSL = 9.74 (St = 2.025) for AOA = 9.25◦ and AOA = 12◦, respectively.

This peak corresponds with the frequency of the shear-layer instabilities and disappears as the

flow moves downstream and the separated shear layer becomes turbulent. Note that it has only

been well captured by the probe P0 located at (x/C = 0.2; y/C = 0.125) which is close to the

separated shear layer at both AOAs.

In addition, the energy spectra also show a peak corresponding with the wake vortex shed-

ding at both AOAs. In the case of AOA = 9.25◦, this peak is better detected at probes P5

and P6, which are located in the wake behind the airfoil (see Fig. 5). It should be pointed

out that Huang and Lin (1995) did not detected the presence of vortex shedding in the tran-

sitional mode. Although energy spectra of the stream-wise velocity fluctuations Euu show a
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Figure 11: Energy spectra of the stream-wise and cross-stream velocity fluctuations for AOA = 12◦. From top
to bottom, spectra correspond with stations P6, P5, P4,P3, P2, P1, P0 (see figure 5 for details)

wide range of frequencies at which the energy fluctuates indicating the lost of coherence of the

signal, vortex shedding is still detected. Indeed, the energy spectrum of the cross-flow velocity

fluctuations Evv better captures this fundamental frequency at fvs = 1.138 (St = 0.183), as this

component is more sensitive to the two-dimensional von Kármán-like structures formed in the

wake.

Another interesting feature is a period-doubling scenario (see energy spectra of stream-wise

and cross-stream fluctuations at P5, figure 10). This process is similar to that observed by

Hoarau et al. (2006), but at a much lower Reynolds number. The probe at this station detects

both the vortex shedding frequency and its sub-harmonic at 0.5fsl. This double-peak mechanism

is produced when vortices shed at the trailing edge interact with those shed at separated shear

layer every 2 vortex shedding periods. The asymmetry in the vortex shedding causes the

interaction between vortices formed at the leading-edge and the trailing-edge. This might be

the reason of the lost of coherence in the signal observed both experimentally and numerically.

This, together with the fact that in the experiments only the signal of the streamwise velocity

in the near wake was measured, points out the cause of the absence of vortex shedding in the

transitional mode in Huang and Lin (1995) work.
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Figure 12: Energy spectrum of the lift coefficient for AOA = 9.25◦

Another striking fact is the broadband of low frequencies with a large energy content at this

AOA at every station. If the spectrum of the lift coefficient is inspected (see figure 12), one can

notice that among all these frequencies, there is a pronounced peak at f = 0.13 (St = 0.021).

This extremum is related with the low frequency oscillation mechanism reported at near stall

angles (Zaman et al., 1989; Bragg et al., 1996; Rinoie and Takemura, 2004). This low frequency

mechanism was reported to occur on thin airfoil and trailing-edge stall types as part of the

stall mechanism and was associated with the highly unsteady and oscillating flow near stall.

The value of the frequency oscillation measured in the present work is close to that reported

in the literature which seems to be about St = 0.02. In this case, this low frequency measured

just after stall can be interpreted as a flapping of the shear-layer in the direction normal to

the airfoil surface, but even though this flapping movement reduces the height of the separated

zone at this AOA, it is not sufficient for causing the reattachment of the flow and the closure

of this zone.

Contrary to the behaviour observed at AOA = 9.25◦, at AOA = 12◦ the energy spectra of

all probes show a distinguishable peak at fvs = 0.613 (St = 0.127), which corresponds with the

vortex-shedding process and its energy content increases as the flow approaches the airfoil aft

and flows into the wake. Indeed, the signals of the stream-wise and cross-stream velocities gain

coherence as the flow moves downstream.

On the basis of the present analysis, wake vortex shedding is detected at both transitional

and supercritical regimes, although at the transitional one it is weaker and not so coherent

than in the supercritical regime, mainly due to the fluctuation of the separated zone and the



interaction between leading-edge and trailing-edge vortices. Furthermore, these results show

that as the AOA increases the wake vortex shedding frequency decreases, whereas the shear-

layer instabilities frequency increases. These trends are in agreement with the observations of

Huang and Lin (1995) for a NACA0012 and with those reported by Yarusevych et al. (2009)

for a NACA0025.

3.3. Mean aerodynamic coefficients

The pressure distribution on the airfoil surface obtained at both AOA is plotted in figure

13(a). In order to have a more complete picture of the pressure changes taking place at stall

angles, the pressure distribution before stall at AOA = 8◦ (Baez et al., 2011) is also plotted.

In addition the mean skin friction distribution is given in figure 13(b). Near the leading edge,

the pressure gradient causes separation of the boundary layer. This separation point moves

towards the leading edge with the increase in the AOA (see also figure 13(b)). Boundary layer

separation occurs at x/C = 0.0316 for AOA = 9.25◦ and a little forward at x/C = 0.0164

for AOA = 12◦. When comparing the pressure distribution at AOAs under study with that

obtained at pre-stall angle of AOA = 8◦, a strong decrease in the suction pressure peak near

the leading edge, which is typical of stalled airfoils, can be observed. The pressure profile at

AOA = 9.25◦ exhibits a plateau after the suction peak and a further gradual pressure recovery

until reaching the trailing edge. This behaviour is quite different of pre-stall angles in which

there is a sudden recovery of the suction pressure. Indeed, at AOA = 9.25◦ pressure behaviour

is halfway from the profile obtained in flows with laminar separation bubble and flows with

fully separation (e.g. AOA = 12◦). A similar pressure distribution was obtained for Rinoie and

Takemura (2004) at Re = 1.3 × 105 and AOA = 11.5 − 12◦, just after stall. At AOA = 12◦,

a much flatter profile is observed, which is typical of fully stalled airfoils. Near the trailing

edge a slight depression is also observed. This is due to the vortex entrainment produced by

the formation of a much wider wake in the detached zone and the shedding of vortices at the

trailing edge (see section 3.1).

As for the mean skin distribution on the suction side of the airfoil (figure 13(b)), it is in

correspondence with the pressure profile measured. For both airfoils, a large reversed flow

forming a long bubble in the upper surface is observed. For AOA = 12◦, there is a small

recirculation near the leading edge and underneath the large recirculation zone. It is between

x/C = 0.127 and x/C = 0.245. The broad recirculation region at this AOA closes near the

trailing edge at x/C = 0.954.
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Figure 13: (a) Mean pressure coefficient distribution. (b) Mean skin friction. (squares) AOA = 12◦; (solid
squares) AOA = 9.25◦; (solid circles) AOA = 8 from Baez et al. (2011).

4. Concluding remarks

In the current work the mechanisms of transition at the separated shear-layer of a NACA0012

airfoil at AOA = 9.25◦ and AOA = 12◦ have been addressed. The study has been performed by

means of the direct numerical simulation of the flow at a low-to-moderate Reynolds number of

Re = 50000. To do this, a second-order spectro-consistent scheme on a collocated unstructured

grid arrangement has been used for the discretization of the governing equations. All compu-

tations have been carried out unstructured meshed generated by the constant step extrusion in

the homogeneous direction of a two-dimensional grid.

The main frequencies of the flow at both AOAs have been detected by means of power

spectra of several probes located on the suction side and in the near wake. In fact, the probe

located near the shear-layer well captured the small-scale shear-layer instabilities frequency.

These instabilities can be identified in the spectra as a broad-band peak centred at a frequency

of fSL = 6.9 (St = 1.109) and fSL = 9.74 (St = 2.025) at AOA = 9.25◦ and AOA = 12◦,

respectively. As a consequence of the growth of these instabilities the shear-layer roll-up and

transition to turbulence occurs. The small vortices formed after transition are packet into

large-scale structures due to vortex pairing. The transition to turbulence and vortex shedding

mechanisms reported are quite similar to those observed in other bluff bodies. Furthermore,

in agreement with previous experimental studies in similar aerodynamic bodies, wake vortex

shedding decreases with the AOA, while shear-layer instabilities frequency increases.

It has been observed that the separated flow at both AOA is slightly different. Indeed,

coherent structures identified have shown that in agreement with the experimental observations

of Huang and Lin (1995), the flow at AOA = 12◦ is in the supercritical mode, characterised by

the presence of a coherent vortex shedding at fvs = 0.613 (St = 0.127). On the other hand, the



flow at AOA = 9.25◦ has been identified with the transitional mode with a more incoherent

shedding of vortices. However, contrary to previous experimental observations, in the present

work wake vortex shedding has been captured at fvs = 1.13 (St = 0.183). We suggest that the

asymmetric vortex shedding and the interaction between leading-edge and trailing-edge vortices

might be the cause of the low level of coherence observed in the vortex shedding at this AOA.

In addition, the analysis of the lift coefficient spectrum has shown a pronounced peak at a much

lower frequency f = 0.13 (St = 0.021), which has been identified with a flapping movement

of the shear layer. This low frequency mechanism is in agreement with previous experimental

studies which reported oscillations near stall at St = 0.02.
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