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Universitat Politècnica de Catalunya BarcelonaTech

montserrat.alsina@upc.edu

Abstract

Orders in indefinite quaternion algebras provide Fuchsian groups acting on the Poincare
half-plane, used to construct the associated Shimura curves.

We explain how, by using embedding theory, the elements of those Fuchsian groups depend
on representations of integers by suitable ternary quadratic forms. Thus the explicit computa-
tion of those representations leads to explicit presentations and fundamental domains of those
Fuchsian groups, the computation of CM points, and a rich interpretation of the points in the
complex upper half-plane.
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1 Introduction

Let D,N be natural numbers such that gcd(D,N) = 1 and D is the product of an even number
of different primes. Then there exists an indefinite quaternion algebra H over Q, unique up to
isomorphism, with discriminant D, given by a Q-basis {1, i, j, ij} satisfying the relations i2 = a,
j2 = b and ij = −ji (plus the associative property) for some a, b ∈ Q∗, a > 0. As usual, we write

H =
(

a,b
Q

)
. Since H is indefinite, we can fix an embedding Φ : H ↪→ M(2,R).

Let us consider an Eichler order of level N , O(D,N), that is, a Z-module of rank 4, subring of
H, intersection of two maximal orders, unique up to conjugation. Basics on quaternion algebras
and orders can be found at [7], [9].

Consider Γ(D,N) := Φ({α ∈ O(D,N) : n(α) = 1}), the image of the group of units of positive
norm. Then Γ(D,N) ⊆ SL(2,R) is a Fuchsian group of the first kind acting on the Poincare
half-plane H = {x + ιy | y > 0}, and the quotient Γ(D,N) \ H yields a Riemann surface. If
D = 1, then H = M(2,Q), Γ(D,N) = Γ0(N) and this construction leads to the modular curves
usually denoted by X0(N). Otherwise, if D > 1, these Riemann surfaces are already compact and
Shimura’s work (cf. [8]) provides a canonical model for Γ(D,N) \ H with nice properties, that
will be denoted by X(D,N), and a modular interpretation. X(D,N) are called Shimura curves
associated to the subgroups Γ(D,N), and they are involved in some spectacular results as the
proof of Taniyama-Shimura-Weil modularity conjecture (cf. [5], [10]).

By construction, it is not so easy to make explicit these groups Γ(D,N) and to compute, for
example, the hyperbolic uniformization of the associated Shimura curves. In particular the lack
of cusps in these groups makes a big difference with the well-known modular case. Anyway, the
fundamental domains of theses curves allows a rich interpretation of the points in the complex
upper half-plane, which can be elliptic, CM-points, etc. and even binary quadratic forms show up
(cf. [3]).

The goal of this paper is to make explicit the relationship between the Fuchsian group Γ(D,N)
and representations of integers by suitable ternary quadratic forms, in such a way that computa-
tional results on quadratic forms can be applied to this arithmetic and geometric setting.
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2 The group of quaternion transformations via embeddings

We deal with embeddings of quadratic fields into quaternion algebras, taking into account the
arithmetic of orders in both algebraic structures.

From now on consider a quadratic field F = Q(
√
d), and Λ = Λ(d,m) ⊂ F the quadratic order

of conductor m. It is well-known that Λ(d,m) = Z[1,mw], where w =
√
d if d ≡ 2, 3 mod 4, and

w = 1+
√
d

2 if d ≡ 1 mod 4. For m = 1, Λ is the integer ring of F .
We denote by E(H,F ) the set of embeddings of the quadratic field F in the quaternion algebra

H. If it is non empty, we consider the restriction to the orders

E(O,Λ) := {ϕ : ϕ ∈ E(H,F ), ϕ(Λ) ⊂ O}.

An embedding is called optimal if ϕ(F ) ∩ O = ϕ(Λ), and E∗(O,Λ) will denote the set of optimal
embeddings.

The group NorO acts on E∗(O,Λ), and we can consider the quotient E∗(O,Λ)/NorO. In the
case O = O(D,N), its class number can be computed following results by Eichler (cf. [1], [6]).

In our setting, those embeddings will be very interesting because, by using fundamental units
in quadratic orders, they allow to compute elements in the Fuchsian group Γ(D,N). They are also
relevant to compute the fundamental domain of the Shimura curvesX(D,N) and the corresponding
tessellation of H, and interesting points as elliptic and complex multiplication ones. Note that,
because of the lack of cusps, a lot of information is concentrated on those points.

Remark 2.1 Let ε be a fundamental unit in the quadratic order Λ(d,m). Put ξ := ε if n(ε) = 1
and ξ := ε2 if n(ε) = −1. Then:

ϕ ∈ E(O(D,N),Λ(d,m)) =⇒ Φ(ϕ(ξn)) ∈ Γ(D,N), ∀n ∈ Z.

Conversely, every quaternion transformation can be obtained from embeddings of quadratic
orders in the quaternion order as above, as it is shown in the following theorem, proved at [1].

Theorem 2.2 Let γ ∈ Γ(D,N), D > 1.
Then there exists a quadratic order Λ(d,m), a number n ∈ Z − {0} and an optimal embedding
ϕ ∈ E∗(O(D,N),Λ(d,m)) such that Φ(ϕ(εn)) = γ, where ε is the fundamental unit of Λ(d,m).
Moreover, elliptic transformations come from imaginary quadratic fields, and hyperbolic transfor-
mations come from real quadratic fields.

In the proof of that theorem the involved quadratic field Q(
√
d) is explicit: given γ ∈ Γ(D,N),

then d = tr(γ)2 − 4.
As a consequence of the theorem, all elements in Γ(D,N) can be computed from the explicit

computation of embeddings by using the fundamental units in quadratic fields, which can be
computed algorithmically (cf. [4]). Actually it can be done by using computer algebra systems as
Magma.

3 Computations via quadratic forms

Next, we shall use quadratic forms to construct those embeddings. Mainly we will use the ternary
quadratic form nO,3, induced by the reduced norm in a quaternion order O, when we restrict to
pure quaternions. To get an expression of the quadratic form, up to Z equivalence, a basis of the
order need to be fixed. We will use normalized basis {1, v2, v3, v4} satisfying tr(v2) = tr(v3) = 0,
tr(v4) ∈ {0, 1} (cf. [1]).

Remark 3.1 Consider the family of quaternion algebras of discriminant D = 2p, p ≡ 3 mod 4,

HA(p) =
(

p,−1
Q

)
, called small ramified algebras of type A. Then a family of Eichler orders is given

by OA(2p,N) := Z
[
1, i, Nj, 1+i+j+ij

2

]
, N |p−1

2 square-free. The corresponding ternary normic
forms are: nH,3(Y,Z, T ) = −pY 2+Z2−pT 2 and nO,3 = (1−2p)X2−pY 2+N2Z2+2pXY −2NXZ.

Given a quadratic form f in n variables and A(f) the associated matrix, consider the set of
integer representations of a number δ:

R (f, δ;Z) := {α ∈ Zn : f(α) = δ} = {α ∈ Zn : αtA(f)α = δ}.
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We denote by R∗ (f, δ;Z) those satisfying the condition gcd(α1, . . . , αn) = 1, called primitive
representations.

The following result is proved in [1] (cf. Theorem 4.26, Corollary 4.27). Note that nZ+2O,3

needs to be used instead of nO,3.

Theorem 3.2 Let O ⊆ H an Eichler order given by a normalized basis B = {1, v2, v3, v4}.
Let Λ = Λ(d,m) ⊆ Q(

√
d) a quadratic order of conductor m and denote DΛ its discriminant.

Then there is a bijective mapping

σ : R (nZ+2O,3,−DΛ;Z) −→ E(O,Λ)
(x, y, z) 7→ ϕ ,

where ϕ is the embedding defined by ϕ(mw) =
(

rm−z tr(v4)
2 , x, y, z

)
B

, for r = 0 if d ≡ 2, 3 mod 4,

and r = 1 if d ≡ 1 mod 4. Namely,

ϕ(
√
d) =





(−z tr(v4)

2m
,
x

m
,
y

m
,
z

m

)

B
if d ≡ 2, 3 mod 4,

(−z tr(v4)

m
,

2x

m
,

2y

m
,

2z

m

)

B
if d ≡ 1 mod 4.

Moreover, primitive representations are in bijection with optimal embeddings.

Example 3.3 Consider a maximal order in a small ramified quaternion algebra of type A,

OA(14, 1) = Z[1, i, j, 1+i+j+ij
2 ] ⊆ HA(7) =

(
7,−1
Q

)
.

Consider the quadratic orders Λ(−1, 1), Λ(−1, 3) and Λ(−1, 15), in Q(
√
−1).

Computing representations of 1, 9 and 225 by the ternary normic form

nZ+2OA(14,1),3(X,Y, Z) = −28X2 + 4Y 2 − 13Z2 − 28XZ + 4Y Z,

we obtain the embeddings ϕs ∈ E(HA(7), F ), given by ϕs(w) = ωs, 1 ≤ s ≤ 4,
where ω1 := j, ω2 := 3i+ 8j, ω3 := 1/3i+ 4/3j, and ω4 := 1/15i+ 22/15j + 2/5ij.

Bullets in next table shows which embeddings are on each set, optimal or not.

ϕ1 ϕ2 ϕ3 ϕ4

E(OA(7, 1),Λ(−1, 1)) • • − −
E∗(OA(7, 1),Λ(−1, 1)) • • − −
E(OA(7, 1),Λ(−1, 3)) • • • −
E∗(OA(7, 1),Λ(−1, 3)) − − • −
E(OA(7, 1),Λ(−1, 15)) • • • •
E∗(OA(7, 1),Λ(−1, 15)) − − − •

Considering the class groups of optimal embeddings and primitive representation, it is proved
that the map σ induce a bijection between the class groups. Thus, the class number of equivalent
representations can be computed too, using the classification of optimal embeddings quoted in
previous section. At the example above, the integer 1 has two inequivalent representations by the
ternary form nZ+2OA(14,1),3; however, the integer 9 has four inequivalent ones.

As a consequence of the Theorems 2.2 and 3.2, the elements in the group Γ(D,N) can be found
explicitly by computing representations by ternary quadratic forms.

Next, we show explicit expressions depending only on representations of integers by ternary
quadratic forms the small ramified parametric case presented in Remark 3.1. They are applied
to the computation of the elliptic elements in Γ(2p,N) and its corresponding points, and to the
computation of the complex multiplication (CM) points. Both are the interesting points in this
context of hyperbolic uniformization of Shimura curves in the Poincaré half-plane.

We use the explicit embedding Φ :
(

p,−1
Q

)
↪→ M(2,Q(

√
p)) ⊂ M(2,R) given by

Φ(x+ y
√
p+ z

√
−1 + t

√−p) =

(
x+ y

√
p z + t

√
p

−(z − t√p) x− y√p

)
.
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Proposition 3.4 Let p ≡ 3 mod 4 and N |p− 1

2
square-free. Fix the quaternion algebra HA(p),

the Eichler order OA(2p,N) = Z[1, i, Nj, 1+i+j+ij
2 ], and the group of quaternion transformations

Γ(2p,N) defining the Shimura curve X(2p,N). Then:

i) γ ∈ Γ(2p,N) is an elliptic linear fractional transformation on H of order 2 if, and only if,

γ =
1

2

(
(2x+ z)

√
p (2Ny + z) + z

√
p

−(2Ny + z) + z
√
p −(2x+ z)

√
p

)
, where (x, y, z) ∈ R∗(nZ+2O,3, 4;Z).

In this case, the corresponding elliptic point is τ =
(2x+ z)

√
p± 2ι

−(2Ny + z) + z
√
p
∈ H.

ii) The complex points of X(D,N) with complex multiplication by a quadratic order Λ are

{
(2x+ z)

√
p±√−DΛι

−(2Ny + z) + z
√
p
∈ H : (x, y, z) ∈ R∗(nZ+2O,3,−DΛ;Z)

}
.

We can conclude that from a fine study of the algorithms to compute representations of integers
by ternary quadratic forms, new results for the complexity of computations related to the Shimura
curves X(D,N) can be drawn. They would be of great interest not only in the area of Number
Theory but in applications to other areas as Coding Theory or Cryptography.
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