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Fold-pitchfork bifurcation for maps with Z2 symmetry in pipe flow
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This study aims to provide a better understanding of recently identified transition scenarios exhibited by
traveling wave solutions in pipe flow. This particular family of solutions are invariant under certain reflectional
symmetry transformations and they emerge from saddle-node bifurcations within a two-dimensional parameter
space characterized by the length of the pipe and the Reynolds number. The present work precisely provides
a detailed analysis of a codimension-two saddle-node bifurcation arising in discrete dynamical systems (maps)
with Z2 symmetry. Normal form standard techniques are applied in order to obtain the reduced map up to cubic
order. All possible bifurcation scenarios exhibited by this normal form are analyzed in detail. Finally, a qualitative
comparison of these scenarios with the ones observed in the aforementioned hydrodynamic problem is provided.
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I. INTRODUCTION

Equivariant normal form theory constitutes the backbone
of many instability phenomena analyses in fluid dynamics [1].
Identifying codimension and symmetries of the underlying
bifurcations helps simplify the study of the dynamics and
predict transition scenarios of the flow under study [2].
Whereas this formal approach has been extensively applied
to analyze instabilities of base flows that exhibit local
bifurcations, it has rarely been used to try and understand
subcritical transition to turbulence (i.e., in the absence of
linear instabilities of the basic solution) such as for the flow
in a pipe of circular cross section [3–5]. For this particular
problem, the Hagen-Poiseuille parabolic solution is believed
to be linearly stable [6] for all flow rates and to never undergo
local bifurcation. However, finite amplitude perturbations are
capable of triggering turbulence at moderate flow rates.

A broad variety of families of traveling wave solutions has
been numerically computed during the last decade [7–10].
These exact solutions are believed to play a relevant role both
during the transition process and for the intrinsic sustainment
of subcritical turbulence [8,11]. The aforementioned studies
have addressed qualitative analyses of these solutions within
the two-dimensional (Re,κ) parameter space, where Re =
UD/ν is the Reynolds number based on the pipe diameter
D, the average flow speed U , and the kinematic viscosity of
the fluid ν, and λ = 2π/κ is the axial wavelength in units
of D/2. Combined computational and experimental efforts
have recently identified traveling wave solutions in pipe flow
transitional relaminarizing dynamics [12], thus evidencing the
potential relevance of these families of secondary solutions for
turbulence.

Different attempts have been made in order to provide
an explanation for the eventual development of turbulent
dynamics at sufficiently high values of the Reynolds number
in this and other subcritical shear flows. Some of the traveling
wave solutions have been shown to exhibit bifurcations that
generate relative periodic orbits [13] or modulated traveling
waves, thus initiating a supercritical cascade towards higher
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complexity that would eventually lead to chaos and turbulence.
Recent computations [14] reported that at least one family
of twofold azimuthally periodic traveling waves undergoes
a supercritical bifurcation cascade that leads to time-chaotic
dynamics. When parametrized in terms of (Re,κ), the traveling
wave family at the origin of the bifurcation cascade appears in
a codimension-two Takens-Bogdanov bifurcation [15]. These
waves exhibit a shift-reflect symmetry (they are invariant when
shifted half a wavelength downstream and then reflected with
respect to a diametral plane) that is broken along the bifurcation
cascade producing an array of spiraling secondary flows that
only exist within a limited range of λ and Re. The sequence of
local bifurcations, with two competing modes, one related to a
Hopf and the other to the breach of the shift-reflect symmetry in
a pitchfork bifurcation, combined with the role the symmetry
seems to play in the final chaos-inducing global bifurcation. In
Ref. [14] it was suggested that the dynamics observed might be
explained through the study of a codimension-two bifurcation
of the Poincaré map associated with the periodic orbit
emerging from the Hopf bifurcation. In this study we confirm
that this is the case, combining extensive new numerical
simulations around the codimension-two point, and analyzing
the bifurcation using dynamical systems theory. The relevant
bifurcation is a fold-pitchfork bifurcation for maps with Z2

symmetry, corresponding to the shift-reflect aforementioned
symmetry. This bifurcation had not been studied in detail
previously, and in Sec. II we present a detailed analysis of
the different scenarios of this bifurcation, closely following
the recent analysis of the fold-flip bifurcation by Ref. [16],
which bears strong similarities with the present problem. In
Sec. III we conduct extensive numerical simulations in the pipe
flow problem that shows the relevance of the fold-pitchfork
bifurcation for maps in the understanding of the bifurcation
cascade that leads to chaos and turbulence.

II. NORMAL FORM FOR THE FOLD-PITCHFORK
BIFURCATION

Assume we have a map with a fixed point that has two +1
eigenvalues for given parameter values, that the system has a
symmetry group Z2, i.e., there exists a symmetry operation S

such that S2 = I is the identity, and that this symmetry acts
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differently on the two eigenvectors corresponding to the two
+1 critical eigenvalues. This means that the action of S leaves
invariant one of the eigenvalues, while the other eigenvalue
changes sign. The center manifold is two dimensional, and the
map is of the form

x → f (x,α) = Lx + P (x,α). (1)

where x = (x1,x2) ∈ R2, L is the linear part of the map, P is
the nonlinear part and α are parameters. The normal form of
the map can be chosen so that P satisfies [17]

P (L†x,α) = L†P (x,α), P (Sx,α) = SP (x,α), (2)

where L† is the adjoint of L. In the absence of symmetry the
double +1 eigenvalue corresponds to the 1:1 strong resonance
[18], with a linear part of the form

L1:1 =
(

1 1
0 1

)
. (3)

The presence of the symmetry strongly modifies the normal
form. The equivariance of the map under S implies that S

commutes with L. This fact and the assumed action of S on
the eigenvectors results in

S =
(

1 0
0 −1

)
, L =

(
1 0
0 1

)
, (4)

hence L is the identity and the first equation in (2) is trivially
satisfied. Let P = [P1(x,α),P2(x,α)]; due to the presence of
the symmetry, from (2) we obtain that P1 is an even function
of x2, and P2 is an odd function of x2. The normal form up to
order three in x is then

x1 → f1(x,α) = σ + λ1x1 + 1
2g20x

2
1 + 1

2g02x
2
2

+ 1
6g30x

3
1 + 1

2g12x1x
2
2 , (5a)

x2 → f2(x,α) = λ2x2 + h11x1x2 + 1
2h21x

2
1x2 + 1

6h03x
3
2 ,

(5b)

where all the coefficients are functions of the parameters α,
and σ (0) = 0, λ1(0) = λ2(0) = 1.

The normal form (5) resembles very much the normal form
of the fold-flip bifurcation, recently analyzed by Ref. [16]. The
only difference is that in the fold-flip bifurcation λ2(0) = −1.
The reason for this similitude is that the linear part in the
fold-flip case is identical to S in the present case, and therefore
the equation satisfied by the normal form function P is the
same. From another point of view, the dynamics generated
by the −1 eigenvalue in the fold-flip bifurcation is replaced
here by the action of the Z2 symmetry S. Nevertheless, this
change of sign results in significant differences between both
problems: the eigenvalues in our case are {+1,+1}, while in
the fold-flip case are {+1,−1}, so period doublings, allowed in
the fold-flip case, are absent in our problem, that in addition has
the extra symmetry S. The subsequent analysis presented here
closely follows the analysis in Ref. [16], with the appropriate
modifications due to the different sign of the eigenvalues and
the presence of the symmetry.

The normal form (5) has been obtained with the standard
normal form reduction: a small deformation of the identity of
order k in x is used to simplify the order-k terms. However, (5)
still has seven nonlinear terms. Further reduction is possible,

by assuming that some of the second-order coefficients are
not zero, and using a small deformation of the identity of
second order in x in order to simplify the third-order terms.
The simplified normal form obtained this way is called the
hypernormal form [19,20]. In the present problem, assuming
that h11(0) �= 0, it is possible to cancel out the cubic nonlinear
terms in the second equation, and simplify some additional
coefficients. The desired transformation is

y1 = �1(x) = ε + x1 + 1
2Ax2

1 + 1
2Bx2

2 , (6a)

y2 = �2(x) = x2. (6b)

The transformation � has the same parity properties as f , �1

even and �2 odd with respect to x2. Therefore, the transformed
map y → f̃ (y) = �(f (x)), where y = �(x), will also have
the same parity properties as the original map (5). After
some computations detailed in Appendix A, we arrive at the
hypernormal form for the fold-pitchfork bifurcation, truncated
up to and including terms of order three

x1 → F1(x,μ) = μ1 + (1 + μ2)x1 + 1
2ax2

1 + 1
2bx2

2

+ 1
6cx3

1 + 1
2dx1x

2
2 , (7a)

x2 → F2(x,μ) = x2 − x1x2. (7b)

This normal form depends on two small parameters μ1 and
μ2, i.e., is a codimension-two bifurcation, and contains four
constants a, b, c, and d, which in fact are functions of the
parameters μ. This normal form is Z2 equivariant by the
action of S, and is identical with the normal form of
the fold-flip bifurcation, except for the change of sign of the
second equation [see Ref. [16], Eq. (30)]. From the form of
F2 we observe that the x2 = 0 horizontal axis is an invariant
curve. For x1 < 1, i.e., in a neighborhood of the origin where
the normal form analysis is valid, the image of a point on
the upper plane x2 > 0 remains on the upper plane. The half
plane x2 > 0 is invariant, and the trajectories on the lower half
plane x2 < 0 are obtained by applying the symmetry S to the
ones in the upper half plane. Here horizontal, upper, and lower
refer to the (x1,x2) phase space coordinates, as plotted in all
phase portraits from Fig. 2 on.

A. Fixed points and their local bifurcations

The fixed points of the map are obtained by solving
F (x,μ) = x. There are two types of fixed points: those with
x1 = 0 and those with x2 = 0. The fixed points with x2 = 0 are
the roots of a cubic equation, with two roots close to the origin
(μ1 = μ2 = 0), and a third root that remains away from the
origin for μ small, that will not be considered in our normal
form analysis valid only for μ small. At lowest order, the two
roots are

Q± =
(

1

a

(−μ2 ±
√

μ2
2 − 2aμ1

) + hot,0

)
. (8)

where hot stands for higher-order terms in μ (the details of the
computations are in Appendix B). These two roots merge and
disappear along a curve of fold or saddle-node bifurcations

013006-2



FOLD-PITCHFORK BIFURCATION FOR MAPS WITH . . . PHYSICAL REVIEW E 88, 013006 (2013)

NS

F Pf

µ1

µ2

(P )

(P ) (Q)

(Q)

NS

FPf

µ1

µ2

(P,Q)

(P,Q)
(Q)

(Q) (P,Q)

(P,Q) F
Pf

µ1

µ2

(P )

(P )(Q)

(Q)

(P,Q)

(P,Q) F Pf

µ1

µ2

(Q)

(Q)
(P,Q)

(P,Q)

I : a > 0, b > 0 II : a < 0, b > 0 III : a > 0, b < 0 IV: a > 0, b < 0

FIG. 1. Regime diagrams of the four scenarios of the fold-pitchfork bifurcation. F, Pf, and NS are the fold, pitchfork and Neimark-Sacker
bifurcation curves. The fixed points that exist in the different parameter regions are indicated in brackets.

given by

F: 2aμ1 = μ2
2

(
1 + 1

3

cμ2

a2
+ hot

)
, (9)

where we have assumed the nondegeneracy condition a �= 0.
Q± exist to the left of the parabolic type curve 2aμ1 =μ2

2 + hot
if a > 0, and to the right if a < 0. The nature of the Q± points
depends on sign(aμ2). If aμ2 < 0, one of the Q points is a
saddle (one stable direction and the other unstable) and the
other point is stable; if aμ2 > 0, one point is a saddle and the
other point is a repeller (both directions unstable). There are
no additional bifurcations of Q± for small μ values.

There are two additional fixed points with x1 = 0,

P± = (0,±
√

−2μ1/b), (10)

that exist only if bμ1 < 0, i.e., at one side of the straight
line μ1 = 0: to the left if b > 0, and to the right if b < 0.
We will assume from now on the additional nondegeneracy
condition b �= 0. The two new fixed points are symmetrically
related: SP+ = P−. On the line μ1 = 0 both fixed points
P± merge with one of the Q± points and disappear, in a
pitchfork bifurcation. The symmetric fixed points P± undergo
a Neimark-Sacker bifurcation along the curve μ2 = (d/b +
2)μ1, μ1 � 0; in this bifurcation an invariant circle is born
around each of the fixed points P±; the Neimark-Sacker
bifurcation only takes place if b > 0.

In summary, we have found four different scenarios with
two or three different bifurcation curves: a fold or saddle-node
F, a pitchfork Pf, and a Neimark-Sacker NS. The corresponding
regime diagrams in parameter space are shown in Fig. 1.

B. ODE approximating the map

The invariant circle born at the NS curve must disappear
when we move around the origin in parameter space. This may
happens via the formation of a heteroclinic structure involving
Q±, or via a blowup of the invariant cycle, that leaves the
local neighborhood of the origin in phase space. In order to
study these global bifurcation phenomena, we derive an ODE
system such that the unit shift along the orbits approximates
the map (7).

Given a map

x → F (x,μ) = Lx + N (x,μ), (11)

we want to obtain an ODE

ẋ = G(x,μ) = �x + Y (x,μ), (12)

such that its flow φt (x,μ) at t = 1 coincides with F up to a
given order in (x,μ): φ1(x,μ) = F (x,μ) + O(k). In order to
compute φt (x,μ) as a power series in (x,μ), a method based on
Picard iterations, described in detail in Appendix C has been
used, and the sought ODE, up to terms of O(x4), O(x2μ), and
O(μ2) is given by

ẋ1 = μ1 + (
μ2 − 1

2aμ1
)
x1 + 1

2ax2
1 + 1

2bx2
2 + (

1
6c − 1

4a2
)
x3

1

+ (
1
2d + 1

4 (2 − a)b
)
x1x

2
2 , (13a)

ẋ2 = 1
2μ1x2 − x1x2 − 1

4 (2 − a)x2
1x2 + 1

4bx3
2 . (13b)

This ODE is identical to the ODE discussed in Ref. [16] in
the context of the fold-flip bifurcation for maps. Therefore the
analysis of the ODE is identical, and we briefly summarize the
main results.

C. Analysis of the ODE approximating the map

There are three curves on which equilibria of (13) undergo
local bifurcations

F: (x1,x2,μ1) = (−μ2/a + O
(
μ2

2

)
,0,μ2

2

/
(2a) + O

(
μ3

2

))
,

(14)

Pf: (x1,x2,μ1) = (0,0,0), (15)

NS: (x1,x2,μ2) = (0, ±
√

−2μ1/b,(b/b + 2)μ1), (16)

These are the same expansions as we computed for the
fold, pitchfork and Neimark-Sacker bifurcation curves for the
map (7). The invariant curves born at the Neimark-Sacker
bifurcation cannot exist everywhere. They should disappear
through some global bifurcations.

If a > 0, b > 0 and μ1 < 0 the vector field (13) has two
saddles Q±, which are always connected by a heteroclinic
orbit along the x1 axis. There exists another heteroclinic orbit
along the curve

Het: μ2 = μ1

3 + a

(
1

b
(a + 2)(d + 2b) + 1

a
(c − a − a2)

)
+ o(μ1), (17)

which together with the heteroclinic orbit along the x1 axis
form a heteroclinic cycle. The invariant cycle born at the
Neimark-Sacker bifurcation disappears when it simultane-
ously collides with the two saddles forming the heteroclinic
cycle.
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If a < 0, b > 0 and μ1 < 0 the saddles Q± do not exist.
In this case the invariant cycle born at the Neimark-Sacker
bifurcation grows, until it blows up and disappears from
any fixed phase space domain at some curve B. This global
bifurcation can not be analyzed in the local context of the
normal forms, because the limit cycle always grows up to the
boundary of the domain of validity of the normal form analysis
(that is only valid in a neighborhood of the fixed point whose
stability is analyzed). It is even possible that the invariant
curve loses its smoothness and disappears before touching the
boundary of the domain of validity of the normal form.

From the S symmetry (x2 → −x2) that the ODE (13)
inherits from the map, we see that the x2 = 0 horizontal axis is
an invariant curve, and the trajectories do not cross it. Therefore
the half plane x2 > 0 is invariant, and once the trajectories and
phase portrait on the upper half plane x2 > 0 have been found,
the action of S gives the dynamics on the lower half plane x2 <

0. The phase portraits of the ODE (13) restricted to the upper
half plane are almost identical to the phase portraits of the fold-
Hopf bifurcation [16,18]. A brief summary of the four different
scenarios, depending on the signs of a and b follows. Scenario
I is analyzed in more detail because it is the most complex of
the four scenarios, and it is the one that takes place in the pipe
flow problem that motivated this normal form analysis.

Figure 2 shows the bifurcation diagram of the ODE (13)
corresponding to the scenario I, a > 0 and b > 0. There
are four bifurcation curves. Two of them are common to all
scenarios, the fold curve F where the fixed points Q± are
born, and the pitchfork curve Pf where P± are born. There
are also the Neimark-Sacker curve NS where an invariant
cycle is born from P±, and the Het curve where this invariant
cycle collides simultaneously with Q± forming a heteroclinic
cycle and disappears. The shaded areas in the phase portraits
of Fig. 2 are invariant regions where all trajectories starting
within them remain close to the origin forever, whereas those
starting outside escape away from the domain of validity of
the normal form analysis.

The orbit structure of the map close to the heteroclinic
collision is generically different from the orbit structure of the

F
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FIG. 2. Bifurcation diagram of the ODE (13) corresponding to
scenario I: a > 0 and b > 0.
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4
5 6

FIG. 3. Regime diagram of the map (7), corresponding to the
scenario I of the approximating ODE (13) shown in Fig. 2; the horn
of complexity and chaotic dynamics is shown in gray.

approximating ODE. The coincidence of the stable manifold of
Q+ and the unstable manifold of Q− occurring for φ1(x,μ) is
generically replaced by their transversal intersection, giving
rise to a heteroclinic structure displaying chaotic dynam-
ics [18]. The transversal heteroclinic structure exists in an
exponentially narrow parameter region around the Het curve,
bounded by two smooth bifurcation curves corresponding to
homoclinic tangencies. This shadowed region (denoted by
Horn) is depicted in gray in Fig. 3, that shows the regime
diagram of the map (7), corresponding to the scenario I of the
approximating ODE (13) shown in Fig. 2. The only difference
is that the curve Het is replaced by the horn.

Figure 4 shows the formation of the heteroclinic cycle, and
instead of schematics it shows numerically computed phase
portraits of the map (7) for a = 1.05, b = 0.5, c = −0.53,

and d = −1.5. We move inside the horn along a vertical path
corresponding to μ1 = −0.1. In Fig. 5 we see the tangency
between the stable manifold of Q+ and the unstable manifold
of Q− when entering the horn in Fig. 5(a), the transversal
intersection between them inside the horn in Fig. 5(b), and the
tangency again on exiting the horn in Fig. 5(c). The dynamics
inside the horn is of Silnikov type, with an infinity of unstable
limit cycles and the presence of a chaotic attractor [18].

Figure 6 shows the bifurcation diagram corresponding to
the scenario II, a < 0 and b > 0. In this scenario the Neimark-
Sacker curve exists but the invariant circle does not coexist
with the Q± fixed points, so the heteroclinic collision can not
exist. In this scenario the invariant circle disappears because it
grows until it collides with the boundary of the domain along
a curve B. The real fate of the invariant circle depends on
properties of the dynamical system outside of the domain of
validity of the normal form analysis; it is even possible that
the invariant circle looses its smoothness and disappears before
touching the boundary of the domain [16].

In both scenarios I and II the relative position between the
Neimark-Sacker curve NS and the curve where the invariant
cycle is destroyed (Het in scenario I and B in scenario II)
depends on the specific values of the constants a, b, c, and
d. In particular it depends on the value of the first Liapunov
coefficient of the Neimark-Sacker bifurcation, given by [16]

�1 = 1
2 (−a2b − 3ab − ad + bc) + o(μ1). (18)

If �a < 0 the bifurcation is supercritical and the invariant
cycle is stable, and the complex dynamics inside the horn
is observable, which is the case depicted in Figs. 2 and 6, and
it is the case that happens in the pipe flow problem. If �a > 0
the bifurcation is subcritical and the invariant cycle and chaotic
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(a) (b) (c) (d)

P+

T+

P+

Q− Q+ Q− Q+ Q− Q+

FIG. 4. Formation of the heteroclinic cycle. (a) the invariant curve born at the NS bifurcation is stable, but approaching both Q± at
μ2 = 0.15. (b) The heteroclinic cycle has just appeared at μ2 = 0.15925. (c) and (d) are closeups near Q±, showing the tangency between the
stable manifold of Q− and the unstable manifold of Q+.

attractor are unstable. The additional nondegeneracy condition
�1 �= 0 has been assumed in the analysis.

The remaining scenarios III and IV are much simpler,
because the invariant circle does not exist, and we have only
fixed points and the fold and pitchfork local bifurcation curves.
Bifurcation diagrams for these two cases are depicted in Fig. 7.

The governing equations of the pipe flow are the Navier-
Stokes equations, a system of PDEs. In this problem the
map appears when studying the stability of periodic solutions
(traveling waves) via a Poincaré map. Therefore, the fixed
points of the map become limit cycles of the PDE, and the
invariant cycle becomes a two-torus (a modulated traveling
wave). The horn of complexity corresponds to the destruction
of the two-torus and the formation of a chaotic attractor.

III. EXAMPLE IN PIPE-POISEUILLE FLOW

The analysis of the fold-pitchfork bifurcation presented
here was initially motivated by the phenomena observed along

(a) (b) (c)

Q+ Q+ Q+

FIG. 5. Moving across the horn with the heteroclinic structure;
views of the stable manifold of Q− close to Q+. (a) entering the horn
at μ2 = 0.159 20; (b) inside the horn at μ2 = 0.159 35; (c) exiting
the horn at μ2 = 0.159 50.

a supercritical bifurcation cascade of nonlinear traveling waves
in pipe-Poiseuille flow [14]. There was evidence that the
eventual formation and later destruction of a chaotic set along
the cascade resulted from a global bifurcation conditioned by
the presence of symmetries.

Pipe flow is invariant under all azimuthal rotations about
the axis and reflections with respect to all diametral planes,
as well as under all axial translations [O(2)θ × SO(2)z]. The
traveling wave (tw) at the origin of the sequence of transitions
has broken all continuous symmetries, but preserves some
discrete remnants of the SO(2)θ × SO(2)z: it is periodic in
both the axial and azimuthal coordinates, with wave numbers
κ = 1.63 and n = 2, respectively. Thus, it is invariant under
discrete axial shifts of λ = 2π/κ � 3.85D/2, where D is the
pipe diameter, and under azimuthal rotations generated by the
cyclic group C2. The wave has an additional nontrivial discrete
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FIG. 6. Bifurcation diagram corresponding to scenario II: a < 0
and b > 0.
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FIG. 7. Bifurcation diagram corresponding to scenarios (a) III:
a > 0 and b < 0; and (b) IV: a < 0 and b < 0.

symmetry (shift-reflect)

Su(x) = S(u,v,w)(r,θi + θ,z; t)

= (u,−v,w)(r,θi − θ,z + π/κ; t), (19)

which leaves it unaltered when shifted half a wavelength
downstream and then reflected with respect to any of two
diametral planes tilted with θi = θ0 and θi = θ0 + π/2, where
θ0 parametrizes the azimuthal degeneracy of solutions. The S

symmetry is a remnant version of the reflection symmetry
with respect to all diametral planes that was part of the
O(2) = SO(2) � Z2 azimuthal symmetry group. S plays the
role of the symmetry that modifies the 1:1 strong resonance
scenario into the fold-pitchfork studied here. This symmetry
becomes apparent by plotting the traveling wave z-averaged
axial velocity contours of Fig. 8(a), which also show the
streaky structure of the wave, consisting of two high-speed
streaks, each sandwiched between a couple of low-speed
streaks. The streaks are in stationary equilibrium with two
pairs of counterrotating vortices as evidenced by the couple of
axial vorticity isosurfaces on the right.

FIG. 8. (Color online) Traveling waves at (Re,κ) = (2215,1.63),
from Ref. [14]. Left: z-averaged cross-sectional axial velocity con-
tours spaced at intervals of 
〈uz〉z = 0.1 U . In-plane velocity vectors
are also displayed. Right: axial vorticity isosurfaces at ωz = ±U/D.
Fluid flows rightwards. Blue (dark gray) for negative, Yellow (light)
for positive. (a) traveling wave (tw), (b) spiraling wave (sw+).
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FIG. 9. Bifurcation diagram in (Re,κ)-parameter space corre-
sponding to the pipe-Poiseuille problem. Black solid lines represent
numerically identified discrete-time bifurcation curves: fold (F),
pitchfork (Pf), and Neimark-Sacker (NS). They delimit the region of
existence of the different types of solutions (marked with symbols
as explained in the legend). The black dotted line illustrates the
inaccessible part of Pf. The shaded region is the horn where chaotic
dynamics occur. Bifurcation of relative equilibria are indicated by
dashed lines. The two diamond symbols correspond to the two
codimension-two points: gray filled diamond for the Hopf-pitchfork
of relative equilibria (HP), open diamond for the fold.-pitchfork of
maps (FP). The circled numbers identify regions of Fig. 2 (arabic,
corresponding to scenario I of Fig. 1) and Fig. 10(a) (roman).

The bifurcation cascade was unfolded in Ref. [14] by
varying a single parameter: the Reynolds number, defined as
Re = UD/ν, where U is the mean axial speed of the flow
and ν the kinematic viscosity of the fluid. Their main results
correspond to the straight path at κ = 1.63 in Fig. 9. For a
detailed description of the numerical methods employed to
compute the solutions and track the bifurcation curves see
Ref. [15]. As a result of increasing Re at fixed κ , tw undergoes
a supercritical pitchfork bifurcation (Pftw) that breaks the
shift-reflect symmetry and two symmetry-conjugate branches
of spiraling waves (sw±, simultaneously traveling and rotating)
are issued. The flow structure of the spiraling waves is ex-
tremely close to that of the traveling wave, but the shift-reflect
symmetry has been disrupted, as is evident from Fig. 8(b). All
these waves are relative equilibria, so that the dynamics along
the drift direction is trivial and decouples from the dynamics
orthogonal to the drift [21]. Monitoring drift-independent
quantities provides a straightforward method of analyzing
bifurcations of drifting solutions. At slightly higher Re, both
waves become unstable in supercritical Hopf bifurcations and
two branches of modulated waves, one traveling and the other
spiraling, emerge. These waves are relative periodic orbits
and become discrete-time equilibria when a Poincaré section
� based on some drift-independent quantity is defined and
the associated Poincaré map � is considered, as illustrated in
Fig. 10(b). The modulated traveling waves (gray plus signs,
Q−, appearing to the right of Htw), which are unstable at onset,
can be followed to higher Re by restricting the computations
to the symmetry space they inhabit. It is found that the branch
extends all the way up to a point where it bends back in
a fold of relative cycles (F) producing a branch of saddle
orbits (Q+) that can be computed but at a high computational
cost, which makes branch continuation unfeasible with bare
time evolution. Beyond the fold, no solution remains in this
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I
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III
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III

IV
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HtwHtw

tw

sw+

sw−

P−

P+

Q− Q− Q+

P+

P−

Π

T+

T−

FIG. 10. (a) Bifurcation diagram of the Hopf-Pitchfork bifurcation, for the scenario corresponding to the present pipe problem. Solid fixed
points are stable, hollow ones unstable; black/gray limit cycles are stable/unstable. The gray plane is the Z2-symmetric subspace. (b) Poincaré
section � of the limit cycle solutions (P± and Q−) in (a), including other solutions not associated with the Hopf-Pitchfork scenario: Q+, born
alongwith Q− in a remote fold (F curve in Fig. 9), and the two-tori T±, born in the Neimark-Sacker bifurcation curve NS. The phase portrait
shown in (b) corresponds to region 4© in Fig. 9.

region of phase space and the flow is left free to evolve
elsewhere (black circles). Meanwhile, the modulated spiraling
waves (crosses, P±, appearing to the right of Hsw) undergo a
supercritical Neimark-Sacker bifurcation (NS) and a branch of
doubly modulated spiraling waves, discrete-time cycles when
the purposely defined comoving Poincaré map is considered,
is created (open circles, T±). These waves can be seen as
relative tori, so that drift-independent quantities revolve on
an invariant two-torus. The doubly modulated spiraling waves
grow large in a short range of Re and suddenly incorporate mild
temporal chaos (triangles within the shaded horn). For higher
Re, the chaotic attractor thus formed opens up and no stable
structure capable of sustaining permanent dynamics remains
in this region of phase space.

To analyze the bifurcation scenario in detail, we have un-
dertaken a comprehensive exploration of the two-dimensional
parameter space (Re,κ), illustrated in Fig. 9 using the
numerical solvers in [14]. Continuation of the Pftw, Htw

and Hsw bifurcation curves shows that they intersect in a
codimension-2 Hopf-pitchfork point (HP). This bifurcation
has been extensively studied in Refs. [22] and [23], and the
various scenarios that arise closely resemble those of the
double Hopf bifurcation discussed in Ref. [18] (case IV, where
the amplitude dynamics induced by one of the two pairs of
imaginary eigenvalues must be interpreted here as the dy-
namics away from the Z2-symmetric subspace). Figure 10(a)
schematically depicts the bifurcation diagram corresponding
to the particular scenario of the problem at hand. The tw
of region I© generates sw in region II©, which in turn give
rise to modulated spiraling waves P± in region III©. Again tw
generates a modulated traveling wave Q− in region IV©, adding
the last ingredients that are needed for the Fold-Pitchfork
bifurcation to take place. It is precisely by defining a Poincaré
section � with some drift-independent quantity, intersecting
transversally all modulated waves, which the continuous-time
system reduces to a discrete-time dynamical system or map. In
this description, traveling and spiraling waves have no longer
a representation, modulated waves become fixed points, and

doubly modulated waves are nothing but discrete-time cycles.
The relation between the original continuous-time system and
the discrete-time system is illustrated in Fig. 10(b), taken
to the far right of region IV©, beyond the Neimark-Sacker
bifurcation. By applying the Poincaré section, the modulated
traveling wave is reduced to a fixed point of the map (Q−),
and also the modulated spiraling waves (P±), while the doubly
modulated spiraling waves, which are relative tori, result in
discrete-time cycles (T±). Moving to region V© sw± disappear
in Pftw. Finally, the modulated spiraling waves (P±) also
disappear in region VI© sw± after colliding with the modulated
traveling wave Q− (black plus signs), which regains stability in
a pitchfork of cycles Pf. This is the only bifurcation curve that
keeps a representation in the discrete-time system resulting
from the Poincaré section. In fact, it is the very same pitchfork
of equilibria Pf that is central to the fold-pitchfork bifurcation
of maps under study.

The κ = 1.63 path described above is reminiscent of case
I of Fig. 1 and would correspond to a one-dimensional path
crossing all regions but 6© in Fig. 2. Instead, the pitchfork
relating Q− and P±, due to the presence of HP, happens to
be mediated by intervening relative equilibria. As already
discussed, in this parameter region Q− and P± result from
Hopf bifurcations of relative equilibria that are in turn related
by a pitchfork. The occurrence of HP, from which Pf is
issued, is therefore crucial in the sense that it sets the stage
for the complete unfolding of the fold-pitchfork bifurcation
of the Poincaré map associated to comoving stroboscopic
freezing of the waves’ traveling and modulational character.
In fact, regions IV© and V© are indistinguishable in the discrete-
time setting and merge together into region 5© of the fold
pitchfork bifurcation for maps, while region VI© has direct
correspondence with region 6©.

A thorough exploration of parameter space helps identify
the codimension-two point (FP) where F, Pf, NS, and the
chaotic “horn” meet. All the curves depicted are accessible
through time-stepping, exception made of the dotted branch
of Pf. The fold-pitchfork bifurcation predicts that the branch
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|a(2)
100|

|a(2)
110|

|a(2)
010|= ct

Q− Q+

T+

FIG. 11. Poincaré section for κ = 1.63, Re = 2209.6725 (T+,
black circles) and Re = 2209.6726 (chaotic solution, gray plus signs).
The section is defined by |a(2)

010| = ct and shows |a(2)
100|, which vanishes

for shift-reflect solutions, against |a(2)
110|. Q± are represented with open

squares on the x axis.

of P±, which is pitchfork-related at one end with Q−, must
fuse with Q+ in another supercritical pitchfork at the other
end. Neither Q+ nor P± are accessible through time stepping
in this parameter region, so identification of Pf would require
more sophisticated numerical techniques [24,25].

Analysis of the normal form for the fold-pitchfork bifurca-
tion detected that manifold tangencies precluded the formation
of a neat heteroclinic cycle. Figure 11 tests this hypothesis by
approaching the horn of chaotic dynamics from region 4©. It
corresponds to increasing Re at κ = 1.63, and using the moduli
of three expansion coefficients to represent drift-independent
phase map trajectories. A streamwise-independent coefficient
(|a(2)

010|) is used to define the comoving Poincaré section, a
mixed coefficient (|a(2)

110|) is taken to represent x1, and an
appropriately chosen axisymmetric coefficient (|a(2)

100|) that
vanishes exactly for shift-reflect symmetric solutions, plays
the role of x2. At Re = 2209.6725 the cycle T+ (black dots)
has grown large around P+ (now unstable), while adopting
a triangle shape whose bottom side is aligned with the
shift-reflect symmetric subspace. The right lower vertex of
the cycle is approaching Q+, while the left vertex seems to
be conforming to the folds of the stable manifold of Q+ as
Q− is approached. At a slightly higher Re = 2209.6726, the
stable manifold of Q+ has gone beyond tangency with the
unstable manifold of Q−, and the attractor within the horn
incorporates time-chaotic dynamics, as is clear from the cloud
of gray plus signs in the vicinity of Q− in Fig. 11. The chaotic
dynamics persist within the horn and become transient, with
ulterior bursts and eventual decay to laminarity, when crossing
to region 3©. This crossing is relatively clear for κ � 1.64, but
not at κ = 1.63, where the transition seems to be complicated
by factors that are extrinsic to the fold-pitchfork bifurcation
framework.

IV. CONCLUSION

We have performed a combined analysis of the dynamics
of modulated traveling waves in pipe flow, using extensive

direct numerical simulations of the Navier-Stokes equations,
combined with dynamical systems theory and normal form
analysis. The main result is that the interplay of the modulated
traveling waves resulting in chaotic dynamics is governed by a
couple of codimension-two bifurcations that act as organizing
centers of the dynamics. One of them is a Hopf-pitchfork bi-
furcation HP, which could already be surmised from Ref. [14],
and whose detailed mathematical analysis is not novel. In
this bifurcation, from the original Z2-symmetric traveling
wave solution tw, several drifting (traveling and/or spiraling)
modulated wave (MW) solutions emerge. The interaction
among these MW and the corresponding heteroclinic dy-
namics and transition to chaos is governed by the second
codimension-two bifurcation, a fold-pitchfork bifurcation for
maps FP. The maps are obtained via a convenient Poincaré
section of the MW in the comoving frame, getting rid of the
two frequencies in the process, so that MW become fixed
points of the map. The codimension-two FP bifurcation had
not been studied previously. It is a specific Z2 version of
the 1:1 strong resonance bifurcation. The presence of the
flip-reflect symmetry greatly modifies the dynamics, that bears
strong similitude with the fold-flip bifurcation of maps recently
analyzed in Ref. [16]. We have presented a detailed analysis of
this bifurcation closely following the fold-flip study, presenting
bifurcation diagrams for the four different possible scenarios,
and analyzing in detail the most complex case, which includes
heteroclinic dynamics and a horn of chaotic dynamics. This
complex case is the scenario observed for the pipe flow waves
under consideration. The analysis of the waves involved and
their bifurcations leading to a chaotic set are a relevant step
to the understanding of subcritical transition and turbulence
sustainment in shear flows.

We present a discrete-time (using a Poincaré section)
codimension-two bifurcation within the framework of pipe
flow nonlinear stability analysis. Previous studies had mainly
addressed the computation and Reynolds number continuation
of Navier-Stokes relative equilibria and periodic orbits, but
the pipe length (or, equivalently, the fundamental streamwise
wave number κ) has rarely been considered as a bifurcation
parameter [15]. Streamwise length of shear parallel flows
has long been known to be a key element in turbulence
sustainment and decay [26]. In particular, the generic transition
scenario in pipe flow is characterized by the phenomenon of
intermittency or streamwise localization of turbulence, where
a competition between two antagonistic tendencies, one to
decay the other to spread, occurs [27]. Many unstable solutions
in the form of traveling and modulated traveling waves have
been found in recent years [7,13] that are believed to partake
in the chaotic set governing subcritical transition to turbulence
[28]. This transition exhibits slow dynamics, like the decay
and/or splitting of puffs, that are reminiscent of homoclinic
or heteroclinic dynamics. Our analysis unravels precisely a
source of such kind of slow dynamics. The bifurcation scenario
studied here takes place at Reynolds numbers for which the first
pipe flow localized instabilities typically occur. Although the
connection between the codimension-two bifurcation studied
in this work and turbulence sustainment requires further
analysis, we believe it will certainly rely on the detailed
knowledge of fundamental heteroclinic phase space dynamics
such as those analyzed here.
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APPENDIX A: HYPERNORMAL FORM

We want to transform the normal form (5) into

y1 → f̃1(y,α) = σ1 + σ2y1 + 1
2G20y

2
1 + 1

2G02y
2
2

+ 1
6G30y

3
1 + 1

2G12y1y
2
2 , (A1a)

y2 → f̃2(y,α) = y2 + H11y1y2, (A1b)

by means of the transformation (6). By using (5), (6), and (A1)
in the identity f̃ (�(x)) = �(f (x)), we obtain a system of ten
equations for the ten coefficients of � and f̃ , as functions of

the coefficients of f . In detail,

f̃1(�(x)) = σ1 + σ2�1 + 1
2G20�

2
1 + 1

2G02�
2
2

+ 1
6G30�

3
1 + 1

2G12�1�
2
2, (A2a)

f̃2(�(x)) = �2 + H11�1�2, (A2b)

�1(f (x)) = ε + f1 + 1
2Af 2

1 + 1
2Bf 2

2 (A2c)

�2(f (x)) = f2, (A2d)

and identifying equal powers of x1 and x2 up to third order
included, we arrive at

σ1 + εσ2 + ε2G20/2 + ε3G30/6 = ε + σ + Aσ 2/2 (A3a)

Bσ2 + εBG20 + G02 + ε2BG30/2 + εG12 = (1 + Aσ )g02 + λ2
2B (A3b)

σ2 + εG20 + ε2G30/2 = (1 + σA)λ1 (A3c)

BG20 + εBG30 + G12 = (1 + σA)g12 + λ1Ag02 + 2λ2Bh11 (A3d)

Aσ2 + (1 + εA)G20 + ε(1 + εA/2)G30 = λ2
1A + (1 + σA)g20 (A3e)

AG20 + (1 + 3εA)G30/3 = λ1Ag20 + (1 + σA)g30/3 (A3f)

1 + εH11 = λ2 (A3g)

BH11 = h03/3 (A3h)

H11 = h11 (A3i)

AH11 = h21 (A3j)

The last four equations give

ε = λ2 − 1

h11
, A = h21

h11
, B = h03

3h11
, H11 = h11, (A4)

where we have used the fact that h11(0) �= 0, and therefore h11(α) �= 0 for small enough α values. The remaining six equations
are linear in the coefficients of f̃1, and the determinant value is 1/3, so the solution exists and is unique. Explicit expressions are

σ1 = ε + σ − [1 + εA(1 + εA)/2](1 + σA)ελ1 + (1 + εA)ε2Aλ2
1 + σ 2A/2 + [(1 + σA)(1 + εA) − εAλ1]ε2g20/2

− (1 + σA)ε3g30/6,

σ2 = (1 + εA + 3ε2A2/2)(1 + σA)λ1 + [
3εAλ1/2 − (1 + 3εA/2)(1 + σA) − (1 + 3εA/2)εAλ2

1

]
εg20

+ (1 + σA)ε2g30/2,

G20 = (1 + 3εA)Aλ2
1 − (1 + 3εA)(1 + σA)Aλ1 + [(1 + 3εA)(1 + σA) − 3εAλ1]g20 − (1 + σA)εg30, (A5)

G02 = Bλ2
2 − (1 + εA)(1 + σA)Bλ1 + BεAλ2

1 + (1 + σA)εBg20 + (1 + σA − εAλ1)g02 − (1 + εA)εg12 − 2εBλ2h11,

G30 = 3(1 + σA)A2λ1 − 3A2λ2
1 + (1 + σA)g30 + 3(λ1 − 1 − σA)g20, (A6)

G12 = (1 + σA − λ1)ABλ1 + Aλ1g02 + 2Bλ2h11 + (1 + σA)(g12 − Bg20).

Some additional transformations can be made in the nor-
mal form (A1). First, by scaling y1, we can force H11 =
h11 = −1 (the option +1 is also possible, but with −1
the results are closer to the normal forms in Ref. [16]).
We can also introduce two new parameters, μ1 = σ1(α)
and μ2 = σ2(α) − 1, assuming the change of parameters
is invertible. With all these transformations we arrive
at (7).

APPENDIX B: FIXED POINTS AND THEIR
LOCAL BIFURCATIONS

The fixed points of the map are obtained by solving
F (x,μ) = x

μ1 + μ2x1 + 1
2ax2

1 + 1
2bx2

2 + 1
6cx3

1 + 1
2dx1x

2
2 = 0,

(B1)
x1x2 = 0.
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The second equation admits two solutions, x1 = 0 and x2 = 0.
Let us start with x2 = 0; we obtain the cubic equation

μ1 + μ2x1 + 1
2ax2

1 + 1
6cx3

1 = 0. (B2)

For μ = 0, the roots are a double zero and x1 = −3a/c. If a �=
0, the last root is away from the origin, and due to the continuity
of the roots with parameters, will remain away from the origin
for μ small. Therefore, in a local analysis, only the two roots
close to the origin must be considered, and we assume from
now on the nondegeneracy condition a �= 0. These two roots
coincide for μ = 0, and in fact coincide along a curve of fold
bifurcations. This curve can be computed as the loci of the
points in parameter space where the polynomial (B2) has a
double root

μ1 + μ2x1 + 1
2ax2

1 + 1
6cx3

1 = 0,
(B3)

μ2 + ax1 + 1
2cx2

1 = 0.

By eliminating x1 we obtain the fold curve

x1 = 3cμ1 − aμ2

a2 − 2cμ2
, (B4)

2aμ1 − μ2
2 = 3c

a2

(
2aμ1μ2 − cμ2

1 − 8

9
μ3

2

)
. (B5)

By expanding μ1 and x1 in powers of μ2 we obtain at the SN
curve

2aμ1,SN = μ2
2

(
1 + 1

3

cμ2

a2
+ 7

4

(cμ2

a2

)2
+ · · ·

)
, (B6)

x1,SN = −μ2

a

(
1 + 1

2

cμ2

a2
+ 1

2

(
cμ2

a2

)2

+ · · ·
)

. (B7)

We can now compute the two solutions emerging from the
fold, by introducing μ1 = μ1,SN − β and x1 = x1,SN + δ in
(B2). As μ1,SN and x1,SN satisfy (B3) we obtain

β = 1
2aδ2 + 1

2cx1,SNδ2 + 1
6cδ3. (B8)

In order to have solutions, sign(β) = sign(a), so the two SN
points exist to the left of the curve 2aμ1 = μ2

2 + O(μ3
2) if

a > 0, and to the right if a < 0. By introducing β = 1
2aε2,

where ε is a measure of the distance to the SN curve, we
obtain

Q± =
(

−μ2

a
± ε − cμ2

2

2a3
± cμ2ε

2a2
− cε2

6a
+ hot,0

)
, (B9)

ε = 1

a

√
2aμ1,SN − 2aμ1

= 1

a

√
μ2

2 − 2aμ1 + cμ3
2

3a2
+ O

(
μ4

2

)
, (B10)

where hot stands for higher-order terms in μ2 and ε. At lowest
order,

Q± =
(

1

a

(−μ2 ±
√

μ2
2 − 2aμ1

) + hot,0

)
. (B11)

The stability of these fixed points is determined by the
eigenvalues of the Jacobian of the map F at the fixed points,

DxF =
(

1 + μ2 + ax1 + 1
2cx2

1 + 1
2dx2

2 bx2 + dx1x2

−x2 1 − x1

)
.

At Q±,

DxF (Q±) =
(

1 + μ2 + ax1 + 1
2cx2

1 0
0 1 − x1

)
, (B12)

and the eigenvalues are

λ1(Q±) = 1 + μ2 + ax1 + 1
2cx2

1 = 1 ±
√

μ2
2 − 2aμ1 + hot

λ2(Q±) = 1 − x1, sign x1(Q±) = − sign(aμ2).

Both eigenvalues are real. Eigenvalues with modulus larger
(smaller) that one correspond to unstable (stable) directions.
Therefore, the nature of the Q± points depends on sign(aμ2)
(for ε small enough, i.e., close to the SN curve). If aμ2 < 0,
one of the Q points is a saddle (one stable direction and the
other unstable) and the other point is stable; if aμ2 > 0, one
point is a saddle and the other point is a repeller (both directions
unstable).

Let us now consider the fixed points with x1 = 0. In this
case we obtain two additional fixed points,

P± = (0,±
√

−2μ1/b), (B13)

that exist only if bμ1 < 0, i.e., at one side of the straight
line μ1 = 0: to the left if b > 0, and to the right if b < 0.
We will assume from now on the additional nondegeneracy
condition b �= 0. The two new fixed points are symmetrically
related: SP+ = P−. On the line μ1 = 0 both fixed points P±
merge and disappear, and moreover they coincide with one
of the Q±: P+ = P− = (0,0) = Q+ for μ2 > 0, and Q− for
μ2 < 0. Therefore, on the line μ1 = 0 a pitchfork bifurcation
of one of the symmetric states Q± takes place, and a couple
of symmetrically related fixed points are born. For this reason
we have named this bifurcation a fold-pitchfork bifurcation of
maps. At μ1 = μ2 = 0 the four points merge at the origin.

We can compute the eigenvalues at the fixed points P± as
before

DxF (P±) =
(

1 + μ2 + 1
2dx2

2 bx2

−x2 1

)

=
⎛
⎝1 + μ2 − dμ1/b ±b

√
− 2μ1

b

∓
√

− 2μ1

b
1

⎞
⎠. (B14)

The eigenvalues of P± are the same, both points have the same
stability properties. The eigenvalues are

λj (P±) = 1 + 1

2

(
μ2 − d

b
μ1

)

+ (−1)j

2

√(
μ2 − d

b
μ1

)2

+ 8μ1.

If μ1 > 0, P± is a saddle; if −(μ2 − dμ1/b)2/8 < μ1 < 0
the two eigenvalues are real and the two points P± are
stable (unstable) if μ2 − dμ1/b < 0 (> 0). The only change
of stability so far, at μ1 = 0, corresponds to the pitchfork
bifurcation.

For μ1 � −(μ2 − dμ1/b)2/8 � 0 the two eigenvalues
are complex, with modulus |λj |2 = 1 + μ2 − (d/b + 2)μ1.
Therefore a Neimark-Sacker bifurcation of both P± takes place
on the curve μ2 = (d/b + 2)μ1, μ1 � 0; in this bifurcation an
invariant curve is born around each of the fixed points P±.
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These points exist only if bμ1 < 0, therefore the Neimark-
Sacker bifurcation only takes place if b > 0.

APPENDIX C: ODE APPROXIMATING THE MAP

Given a map

x → F (x,μ) = Lx + N (x,μ), (C1)

where L is a constant matrix and N (x,μ) are nonlinear terms
(at least order two in x, but it can contain linear terms in the
parameters μ), we want to obtain an ODE

ẋ = G(x,μ) = �x + Y (x,μ), (C2)

such that the flow at t = 1 coincides with F up to a given
order in (x,μ): φ1(x,μ) = F (x,μ) + O(k). The flow φt (x,μ)
satisfies the equation (12) and the initial condition φ0(x,μ) =
x. In order to compute φt (x,μ) as a power series in (x,μ), a
method based on Picard iterations will be used.

Proposition 1. The flow of (12) φt (x,μ) satisfies the integral
equation

φt (x,μ) = et�x +
∫ t

0
e(t−τ )�Y (φτ (x,μ),μ)dτ (C3)

Proof. Let us write

φt (x,μ) = et�(x + ψt (x,μ)). (C4)

From φ0(x,μ) = x we obtain ψ0(x,μ) = 0. As φt (x,μ)
satisfies (12),

∂tφ
t (x,μ) = �φt + et�∂tψ

t (x,μ) = �φt + Y (φt (x,μ),μ),

(C5)

and ψt (x,μ) satisfies

∂tψ
t (x,μ) = e−t�Y (φt (x,μ),μ). (C6)

Integrating (C6) and using ψ0(x,μ) = 0,

ψt (x,μ) =
∫ t

0
e−τ�Y (φτ (x,μ),μ)dτ. (C7)

By substituting ψt back into (C4) we obtain the desired
result. �

As Y is nonlinear, the terms in φt of order k, φt
k , are given by

(C3) in terms of lower-order terms. We must simultaneously
solve (C3) and φ1(x,μ) = F (x,μ) order by order in powers
of x and μ. As some of the fixed points (10) have coordinates
proportional to the square root of μ, we will consider from
now on that the parameters μ are O(x2). Therefore a term of
the form xpμq is of order p + 2q. This justifies the inclusion
of the linear terms in μ that appear in (7) into the nonlinear
term N in (11).

At order one, φt
1(x,μ) = et�x and φ1

1 = e�x = F1 = Lx.
We arrive at the equation

e� = L. (C8)

This equation does not have a solution in general; for example
if L is real with some negative eigenvalues, then it do not
exists a real � satisfying it. One must resort in these cases to
more convoluted strategies, like looking for iterates of F (see
Ref. [18], Chap. 9), or replacing F by MF , with an appropriate

constant matrix [16]. In the present problem, as L is the identity
matrix, (C8) is easy to solve: � = 0. Then (C3) reduces to

φt (x,μ) = x +
∫ t

0
Y (φτ (x,μ),μ)dτ. (C9)

The iterative procedure to solve this equation is given by the
following.

Proposition 2. The nonlinear terms in Y (x,μ) and φt (x,μ)
can be computed iteratively for k � 2 as:

Hk(x,μ,t) =
∫ t

0

(
Y(k−1)

(
φτ

(k−1)(x,μ),μ
))

k
dτ, (C10)

Yk(x,μ) = Nk(x,μ) − Hk(x,μ,1), (C11)

φt
k(x,μ) = tYk(x,μ) + Hk(x,μ,t). (C12)

where the subindex (m) indicates all the terms up to and
including order m.

Proof. The order-k term in (C9), for k � 2, is

φt
k(x,μ) =

∫ t

0
Y(k)

(
φτ

(k−1)(x,μ),μ
)
k
dτ, (C13)

where we have considered φτ
(k−1) because Y starts at second

order. As Y(k) = Yk + Y(k−1), and in Yk only the lower-order
terms of φτ

(k−1) contribute to order k,

Yk

(
φτ

(k−1)(x,μ),μ
)
k

= Yk(x,μ), (C14)

because φt (x,μ) = x + O(2) (C9). Substituting into (C13) we
obtain

φt
k(x,μ) = tYk(x,μ) +

∫ t

0

(
Y(k−1)

(
φτ

(k−1)(x,μ),μ
))

k
dτ

= tYk(x,μ) + Hk(x,μ,t). (C15)

Using φ1
k (x,μ) = Nk(x,μ) we arrive at the desired result,

φ1
k (x,μ) = Nk(x,μ) = Yk(x,μ) + Hk(x,μ,1).

�
The nonzero terms in N (x,μ) are

N2 =
(

μ1 + 1
2

(
ax2

1 + bx2
2

)
−x1x2

)
,

(C16)

N3 =
(

μ2x1 + 1
6cx3

1 + 1
2dx1x

2
2

0

)
.

Second-order terms. As Y(1) = 0, H(2) = 0 and

Y2(x,μ) = N2(x,μ) =
(

μ1 + 1
2

(
ax2

1 + bx2
2

)
−x1x2

)
,

(C17)

φt
2(x,μ) = tY2(x,μ) =

(
μ1t + 1

2

(
ax2

1 + bx2
2

)
t

−x1x2t

)
.
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Third-order terms. Y(2)(x,μ) = Y2(x,μ), and

φt
(2)(x,μ) = x + φt

2(x,μ) =
(

x1 + μ1t + 1
2

(
ax2

1 + bx2
2

)
t

x2 − x1x2t

)
,

Y(2)
(
φt

(2)(x,μ),μ
)

3 =
(

aμ1x1t + 1
2a2x3

1 t + 1
2b(a − 2)x1x

2
2 t

−μ1x2t − 1
2 (a − 2)x2

1x2t − 1
2bx3

2 t

)
,

Y3(x,μ) = N3(x,μ) −
∫ 1

0
Y(2)

(
φt

(2)(x,μ),μ
)

3dt =
((

μ2 − 1
2aμ1

)
x1 + (

1
6c − 1

4a2
)
x3

1 + (
1
2d + 1

4 (2 − a)b
)
x1x

2
2

1
2μ1x2 − 1

4 (2 − a)x2
1x2 + 1

4bx3
2

)
.

In this way we arrive at the sought ODE up to terms of O(x4), O(x2μ), and O(μ2), given in (13).
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