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Abstract: This paper deals with the description of a general method for calculating the residues of a linear system.
Considering, physical models, it is well-assumed that the system described only presents simple eigenvalues, or
at least simple-complex eigenvalues. However, as demonstrated in this paper, it is not completely true for all the
real systems, and a method to evaluate the residues for these cases is required. In this paper, a methodology for
computing the residues, even with the existence of multiple eigenvalues (described by their Jordan normal form) is
developed and presented. Moreover, the calculation of the residues is applied to analyze the output-controllability
of dynamic systems. Finally, some real examples are presented to validate the methodologies proposed.
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1 Introduction
It is well known that for many physical problem de-
scription, the state space representation is used

Ẋ = AX +Bu
Y = CX

}
, (1)

which input-output relationship can be given by the
transfer function

G(s) = C(sI −A)−1B =
r∑
i=1

mi∑
j=1

Rλij
(s− λi)j

.

Matrices Ri are known as residues of the transfer
functions, and their knowledge have some interest
since provide the gain of the transfer function from
input to output as well as reveal which inputs have the
largest influence on the output, among other informa-
tion.

The importance of residues knowledge can be re-
flected in the variety of classic (see [1, 12, 13, 15] for
example) and recent (for example [8, 14, 16, 17]) pub-
lications which can be found. Concretely, P. Navratil
and L. Pekar in [16] use the residues calculation to
study the problem of decoupling considering multi-
inputmulti-output (MIMO) systems.

In the literature (see, e.g., [12]), there are several
studies explaining how to obtain the residues ofAma-
trix, for the case whereA only has simple eigenvalues;
However, it is not described for the general case, it

means when the matrix A has eigenvalues (both real
and complex) of algebraic multiplicity greater than
one. It is worth to say that generally the matrices
have simple eigenvalues (at least the complex), but
not all mathematical models that represents physical
problems are generic. In this paper, algorithms for ob-
taining the residues for the general case are presented.
In [13], it is developed a calculation method for partial
fraction expansion of transfer matrices which uses a
Vandermonde matrix formed by the eigenvalues of the
matrix of the system, however the method requires to
calculate the powers of the matrixA, making it though
and hard to develop.

Other authors as L. De Tommasi, M. de Magistris,
D. Deschrijver and T. Dhaene in [17] present an al-
gorithm for the identification of a positive real ratio-
nal transfer matrix of a MIMO system from frequency
domain data samples. The algorithm is based on the
combination of least-squares pole identification by the
Vector Fitting algorithm and residue identification.

This paper aims to give a general method to obtain
the residues to any system. Moreover, a new approach
to analyze output-controllability using residues is pre-
sented. Finally, some application examples where the
general method is required are shown in the paper.

This paper is organized as follows. In Section 2,
the classical procedure for computing the residues is
presented. Different methods for reducing the size of
the system are explained in Section 3. In Section 4,
a general method for computing the residues is devel-
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oped. The method is also developed for composite
systems in Section 5. In Section 6, a relationship be-
tween the residues and the output-controllability con-
cept is presented. Finally, in Section 7, some applica-
tion examples are done to show the real requirement
of the general method proposed.

2 Preliminaries
Consider the general state space system presented in
equation (1)

Ẋ = AX +Bu
Y = CX

}
,

where A ∈ Mn(IC), B ∈ Mn×m(IC), and C ∈
Mp×n(IC).

The transfer matrix can be calculated from the
Laplace transform of the state equations

G(s) = C(sI −A)−1B

Usually for the analysis of dynamic systems, it is nec-
essary to find the partial fraction expansion in terms
of the individual modes.

Let λi, i = 1, . . . , r be the eigenvalues of A with
multiplicities mi respectively. Remembering that the
inverse of a square matrix can be obtained from its
adjunct matrix (or adjugate matrix) which is the trans-
pose of the matrix formed by the cofactors of elements
([7]). It can be stated that

(sI −A)−1 = A0sn−1+A1sn−2+...+An−2s+An−1

(s−λ1)m1 (s−λ2)m2 ...(s−λr)mr

A0s
n−1 +A1s

n−2 + . . .+An−2s+An−1 =
Adj (sI −A)

(s− λ1)m1(s− λ2)m2 . . . (s− λr)mr =
det(sI −A).

Then, decomposing into simple fractions:

(sI −A)−1 =
r∑
i=1

mi∑
j=1

Kλij

(s− λi)j
, (2)

where Kλij are the matrix residues of the partial frac-
tion expansion. It will be written simply Kij in order
to avoid confusion.

Then, by multiplying the simple fraction decom-
position of the inverse (in (2)) by input and output ma-
trices, the transfer matrix can be defined as a partial
fraction expansion,

C(sI −A)−1B =
r∑
i=1

mi∑
j=1

Rλij
(s− λi)j

,

whereRλij are the matrix residues which will be writ-
ten simply Rij if confusion is not possible, and it will
be denoted simply as Ri in the case where mi = 1 for
all i.

Example
Let

Ẋ = AX +Bu,
Y = CX

}
be a system with

A =

(
2 1
0 2

)
, B =

(
2
1

)
, C =

(
3 4

)
,

(sI −A)−1 =

(
1
s−2

1
(s−2)2

0 1
(s−2)

)
,

C(sI −A)−1B =
10

s− 2
+

3

(s− 2)2
.

Then K11 = I , K12 =

(
0 1
0 0

)
,

and R11 = 10, R12 = 3.

3 Reduction
3.1 Reduction to the SISO systems

Let C ∈ Mp×n(IC) and Bn×m(IC) be the output and

input matrices respectively, then C =

C1
...
Cp

 and

B =
(
B1 . . . Bm

)
with Ck ∈ M1×n(IC) and

B` ∈Mn×1(IC) for i = k, . . . , p and ` = 1, . . . ,m.
Then the transfer matrix G(s) = C(sI − A)−1B

can be partitioned in the following manner

(Ci)(sI −A)−1(Bj) = (Ci(sI −A)−1Bj) (3)

Consequently

C(sI −A)−1B =

 r∑
i=1

mi∑
j=1

(Rkλij`)

(s− λi)j

 .
So, the study can be reduced simply to the study of
single input single output systems.

3.2 Reduction to the canonical reduced from

Another reduction can be achieved if an equivalence
relation which preserves the transfer matrix is consid-
ered, allowing to consider the state matrix in a simpler
form.
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Let S ∈ Gl(n; IC) be such that J = S−1AS where
J is the Jordan canonical reduced form of the matrix,
that is to say:

J =

J1 . . .
Jr

,

Ji =


Ji1

. . .
Jisi

, Jij = λiI +N where

N =


0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . .
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 ∈Mnij
(IC),

λ1, . . . , λr the distinct eigenvalues of A with multi-
plicities mi respectively, ni1 + . . . + nisi = mi, and
si = dim Ker (λiI −A).

Remark 1 In the case where λi 6= λj for all i 6= j the
matrix J is obviously diagonal and it will be written
simply as J = D.

Using the expression A = SJS−1 in the transfer ma-
trix G(s) the following proposition can be obtained.

Proposition 2 The transfer matrix is invariant under
basis change in the state space on the system.

Proof:
Let x = Sx1 be such that J = S−1AS, then

G(s) = C(sI −A)−1B = CS(sI − J)−1S−1B.

ut

Then, taking C ′ = CS and B′ = S−1B, the
SISO case in its Jordan reduced form can be consid-
ered.

4 Computation of residues
For simplicity and because of the a diagonalizable sys-
tem is the most extended, the case where the matrix A
is diagonalizable, is analyzed first.

4.1 Diagonalizable case

i) Simple eigenvalues
In the case where the matrix has simple eigenval-

ues, it is well known that

Proposition 3

Ri = CviuiB

where vi is a right eigenvector (column vector) and ūi
left eigenvector (row vector) which are chosen in such
a way that uivi = 1.

Corollary 4 Let G(s) be the transfer matrix of a
MIMO system. Then, the residue matrix Ri corre-
sponding to the eigenvalue λi is

Ri = (Rki`) = (CkviuiB`).

ii) Multiple eigenvalues
Supposing now that the eigenvalue λi appears

with multiplicity mi; in this case

C ′(sI −D)−1B′ =

C ′


1

s−λ1 Im1

. . .
1

s−λr Imr

B′, (4)

then, the following result is obtained

Lemma 5
R11 = c′1b

′
1 + . . .+ c′m1

b′m1
,

...
Rr1 = c′m1+...+mr−1+1b

′
m1+...+mr−1+1 + . . .+ c′nb

′
n.

Theorem 6 Let A be a diagonalizable matrix,
λ1, . . . , λr the different eigenvalues of A with multi-
plicity mi for all i = 1, . . . , r and S the matrix of
corresponding eigenvectors. The rows of S−1 are the
corresponding left eigenvectors of the matrixA. Thus,

R11 =
∑m1
`=1Cv`u`B, . . . , Rr1

=
∑n
`=m1+...+mr−1+1Cv`u`B.

Remark 7 In the case where only one Ri1 is of in-
terest, to invert the matrix S is not necessary to ob-
tain the corresponding left eigenvectors. It suffices
to obtain the right eigenvectors vi1 , . . . , vimi (col-
umn vectors) and then to select the left eigenvectors
ui1 , . . . , uimi (row vectors) in such a way that

ui1
...

uimi

(vi1 . . . vimi

)
= Ir.

Corollary 8 Let G(s) be the transfer matrix of a
MIMO system. Then, the residue matrix Ri corre-
sponding to the eigenvalue λi is defined as1

Ri1 = (Rji1k) = (
mi∑
`=1

Cjv`u`Bk).
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4.2 General case

The matrix (sI − J)−1 in the transfer matrix can be
decomposed into blocks in the following manner

(sI − J)−1 = sIi − Ji
. . .

sIi − Ji


−1

=

(sI − J1)−1
. . .

(sI − Jr)−1


and

(sIi − Ji)−1 =
(sIi1 − Ji1)−1

. . .
(sIimi − Jimi )

−1

 .
i) Case of non-derogatory matrices with single
eigenvalue

Suppose the matrix J has only one block, that is
to say that the matrix A has a unique eigenvalue λ
with dim Ker (A− λI) = 1. Then J = S−1AS, with
J = λI +N ∈Mn(IC).

Then

(sI − J)−1 =
1

s− λ
In + . . .+

1

(s− λ)n
Nn−1,

and the following result is obtained.

Lemma 9

R11 = c′1b
′
1 + . . .+ c′nb

′
n

R12 = c′1b
′
2 + . . .+ c′n−1b

′
n

...
R1n c′1b

′
n.

Hence, as a consequence, the following proposition is
obtained.

Proposition 10

R11 =
∑n
i=1CviuiB = c1b1 + . . . cnbn

R12 =
∑n−1
i=1 Cviui+1B

...
R1n = Cv1unB.

Proof:

CS(sI − J)−1S−1B = CS(
∑n
i

1
(s−λ)iN

i−1)S1B =∑n
i CS

1
(s−λ)iN

i−1S−1B.

Then the matrix K11 is

CS
1

s− λ
InS

−1B =
1

s− λ
CSS−1B =

1

s− λ
CB.

ut

Corollary 11 Let G(s) be the transfer matrix of a
MIMO system. Then, the residue matrix R1 corre-
sponding to the single eigenvalue λ is

R11 = (Rj11k) = CB.

ii) Case non-derogatory matrix with r eigenvalues
Suppose that A has a r eigenvalues λi with multi-

plicity mi respectively, and dim Ker (A− λi) = 1 for
all i = 1, . . . , r.

So, A = S−1JS with J =

J1 . . .
Jr

 and

Ji = λiI +N ∈Mmi(IC).
Then

(sI − J)−1 =

sIm1 − J1
. . .

sImr − Jr


−1

,

(5)
and

(sImi − Ji)−1 = 1
s−λi Imi + . . .+ 1

(s−λi)miN
mi−1
mi ,

(Imi , Nmi ∈Mmi(IC)).
The matrix shown in (5) can be decomposed in

the following manner

Π1 + . . .+ Πr

with

Π1 =


(sIm1 − J1)−1

0
. . .

0


...

Πr =


0

0
. . .

(sImr − Jr)−1

 .
As a consequence, the following result is obtained.
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Proposition 12

Rλi1 = CS



0
. . .

0
Imi

0
. . .

0


S−1B,

1 ≤ i ≤ n.

Remark 13 If only the residue of a specific eigen-
value is of interest, it is not necessary to obtain the
complete Jordan basis for the matrix A. It suffices
to obtain a sub-basis (vi1, . . . , vimi) (column vectors)
corresponding to the eigenvalue block and the corre-
sponding left sub-basis (ui1, . . . , uimi) (row vectors)

such that
(
vi1 . . . vimi

) ui1
...

uimi

 = Imi , as we can

proof in the following manner.

Let S =
(
v11 . . . v1m1 . . . vr1 . . . vrmr

)

be the Jordan basis and S−1 =



u11
...

u1m1

...
ur1

...
urmr


the corre-

sponding left Jordan basis such that SS−1 = In.
So, calling

(
V1 . . . Vr

)
=(

v11 . . . v1m1 . . . vr1 . . . vrmr

)

Pi =



0
. . .

0
Imi

0
. . .

0



U1
...
Ur

 =



u11
...

u1m1

...
ur1

...
urmr


we have

(
V1 . . . Vr

)
Pi

U1
...
Ur

 =

(
vi1 . . . vimi

) ui1
...

uim1

 = Imi .

iii) Case derogatory matrix with single eigenvalue
Suppose now the matrix A is equivalent to J =

diag (J1, . . . , Js), with Ji = λIi + Ni ∈ Mni , n1 +
. . . + ns = n. Without loss of generality, it can be
considered n1 ≥ . . . ≥ ns.

Calling N = diag (N1, . . . , Ns), we have

(sI − J)−1 =

(sI1 − J1)−1
. . .

(sIs − Js)−1


=
∑s

1
1

(s−λ)iN
i−1

(observe that N i = 0 for all i ≥ n1).
Then, the following result is obtained

Lemma 14

R11 = c′1b
′
1 + . . .+ c′nb

′
n.

And as a consequence,

Proposition 15

R11 = CB = c1b1 + . . .+ cnbn.

Finally, the case derogatory matrix with multiple
eigenvalues is a simple corollary.

5 Residues of Composite systems
In physical or engineering problems, a system is
sometimes built by interconnecting some other sys-
tems.

WSEAS TRANSACTIONS on MATHEMATICS M. I. Garcia-Planas, J. L. Dominguez-Garcia

E-ISSN: 2224-2880 751 Issue 7, Volume 12, July 2013



Let

Ẋi = AiXi +Biui
Yi = CiXi

}
, for i = 1, 2,

be two systems.
These systems can be connected in different

ways, the most common are the following.
i) Serialized one after the other, so that the input in-
formation u2 = Y1(t). Consequently

Ẋ =

(
A1 0
B2C1 A2

)(
X1

X2

)
+

(
B1

0

)
u

Y =
(
0 C2

)(X1

X2

)
.


Proposition 16 Let Ẋi = AiXi + Biui, Yi = CiXi

for i = 1, 2 be two systems. If

r∑
i=1

mi∑
j=1

R
(1)

λ
(1)
i ,j

(s− λ(1)i )j

and
s∑
i=1

ni∑
j=1

R
(2)

λ
(2)
i ,j

(s− λ(2)i )j

are the fractional expansion of the transfer matrices
of the given systems, then the fractional expansion of
the serial concatenated system is

r∑
i=1

mi∑
j=1

R
(1)

λ
(1)
i ,j

(s− λ(1)i )j
·
s∑
i=1

ni∑
j=1

R
(2)

λ
(2)
i ,j

(s− λ(2)i )j
.

Proposition 17 Suppose that matrices A1 and
A2 have simple eigenvalues λ

(1)
1 , . . . , λ

(1)
n1 and

λ
(2)
1 , . . . , λ

(2)
n2 with λ(1)i 6= λ

(2)
j for all 1 ≤ i ≤ n1,

1 ≤ j ≤ n2. Then

R
λ
(1)
i

=
R

(1)
i R

(2)
j

λ
(1)
i − λ

(2)
j

, R
λ
(2)
j

=
R

(1)
i R

(2)
j

λ
(2)
j − λ

(1)
i

.

Proof:
The fractional expansion of the transfer matrix is(∑n1

i
R

(1)
i

s−λ(1)i

)
·
(∑n2

j

R
(1)
j

s−λ(2)j

)
=

R
(1)
i

R
(2)
j

λ
(1)
i
−λ(2)

j

s−λ(1)i
+

R
(1)
i

R
(2)
j

λ
(2)
j
−λ(1)

i

s−λ(2)j
.

ut
ii) The second model considered in this work is the
parallel connection. This type of connection is of spe-
cial interest particularly the so-called interleaver par-
allel concatenation (see [2], [3], and [10] for exam-
ple).

Ẋ =

(
A1 0
0 A2

)(
X1

X2

)
+

(
B1

B2

)
u

Y =
(
C1 C2

)(X1

X2

)
.


Proposition 18 Let Ẋi = AiXi + Biui, Yi = CiXi

for i = 1, 2 be two systems. If

r∑
i=1

mi∑
j=1

R
(1)

λ
(1)
i ,j

(s− λ(1)i )j

and
s∑
i=1

ni∑
j=1

R
(2)

λ
(2)
i ,j

(s− λ(2)i )j

are the fractional expansion of the transfer matrices
of the given systems, then the fractional expansion of
the parallel concatenated system is

r∑
i=1

mi∑
j=1

R
(1)

λ
(1)
i ,j

(s− λ(1)i )j
+

s∑
i=1

ni∑
j=1

R
(2)

λ
(2)
i ,j

(s− λ(2)i )j
.

Corollary 19 i) If λ(1)i 6= λ
(2)
j then

R
λ
(k)
i,j

= R
(k)

λ
(k)
i,j

ii) If λ(1)i = λ
(2)
j for some i, j then

R
λ
(k)
i,j

= R
(1)

λ
(1)
i,j

+R
(2)

λ
(2)
i,j

6 Residues and output-controllabi-
lity

The knowledge of the residues of a system can be
used to analyze the character of output-controllability
of this system.

The output controllability concept generally
means that the system under study can steer output
of dynamical system independently of its state vector.
More concretely,
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Definition 20 Dynamical system (1) is said to be out-
put controllable if for every y(0) and every vector
y1 ∈ IRp, there exist a finite time t1 and control
u1(t) ∈ IRm, that transfers the output from y(0) to
y1 = y(t1).

For a linear continuous-time system, alike in (1),
described by matrices A, B, and C, the output con-
trollability matrix can be defined:

oC(A,B,C) =(
CB CAB . . . CAn−1B

)
,

(6)

and the following result is obtained.

Theorem 21 Dynamical system 1 is output control-
lable if and only if rank oC(A,B,C) = p.

Proposition 22 The output controllability character-
istic is invariant under basis change in the state space
form of the system.

Proof:
Let x = Sx1 be such that J = S−1AS, and call-

ing C ′ = CS and B′ = S−1B, then

rank oC(A,B,C) = rank oC(J,B′, C ′).

ut
So, the matrix A in its Jordan reduced form can

be considered.

J i =

J1 . . .
J ir

 =

(λ1 +N1)
i

. . .
(λr +Nr)

i

 .
Proposition 23 Let J a non derogatory matrix with a
single eigenvalue. Then

rank oC = rank
(
R11 R12 . . . R1n

)
.

Proof:
Matrix J is in the form λI + N . Now, it suffices

to observe that

CJ `B = C(
∑̀
j=0

(
`
j

)
λjN j)B

and

C(sI − J)−1B =
n−1∑
j=0

CN jB

(s− λ)j+1
.

ut

Corollary 24 Let A a matrix with a single eigen-
value. Then

rank oC = rank
(
R11 R12 . . . R1n

)
.

Proof:
It suffices to apply propositions (22) and (23). ut

Proposition 25 Let A be a matrix having n simple
eigenvalues λ1, . . . , λn. Then

rank oC(A,B,C) =

rank
(∑n

i=1Ri1
∑n
i=1 λiRi1 . . .

∑n
i=1 λ

n−1
i Ri1

)
Proof:

It suffices to consider the system in its diagonal
reduced form. ut
Example

Let

G(s) =
s− 1

s3 − 6s2 + 11s− 6

be the transfer matrix of a system. Then, the output
controllability matrix is defined as

oC =
(∑3

i=1Ri1
∑3
i=1 λiRi1

∑3
i=1 λ

2
iRi1

)
=
(
0 1 5

)
If a representation of this system is considered, as for
example (A,B,C,D) with

A =

1 1 1
0 2 1
0 0 3

,

B =

0
0
1

,

C =
(
1 0 0

)
,

and D = (0), it is easy to prove that the control-
lability matrix is

oC(A,B,C) =
(
CB CAB CA2B

)
=
(
0 1 5

)
.

Taking another representation as for example
(A,B,C,D) with

A =

6 −11 6
1 0 0
0 1 0

,

B =

1
0
0

,
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C =
(
0 1 −1

)
,

and D = 0, to obtain the output controllability
matrix is easy.

oC(A,B,C) =
(
0 1 5

)
It is worth to remark that the output controllability ma-
trix does not depends on the representation.

A more general result is the following.

Theorem 26 Let G(s) be a system with eigenvalues
λ1, . . . , λr. Then the output controllability matrix is

oC(A,B,C) =(∑r
i=1Ri1

∑r
i=1 λiRi1 +

∑r
i=1Ri2 . . .∑r

i=1 λ
n−1
i Ri1 +

∑r
i=1(n− 1)λn−2i Ri2 + . . .

+
∑r
i=1Rin

)
The proof is analogous to the particular cases pre-

viously presented.

Remark 27 Notice that proposition (23) is a direct
corollary of this theorem.

7 Application examples
In this section, two examples of physical problems are
presented which highlight the necessity to know the
residues of the transfer function corresponding to no
simple eigenvalues.

7.1 Exemple 1: Synchronous machine infi-
nite bus (SMIB)

This example is based on a classical power system
problem that can be found in [12], where a simpli-
fied synchronous machine against an infinite bus is
presented. The scheme of the system under study is
shown in Figure 1. Applying Taylor’s method to the
mechanical equations, the linearized system equations

Ȧ = AX +Bu
Y = CX

}

can be described as follows:

(
∆ω̇r
∆δ̇

)
=

(
−KD

2H −Ks
2H

ω0 0

)(
∆ωr
∆δ

)
+

(
1
2H
0

)
∆Tm

Y =X


(7)

where

E1 ∂ EBI = 0.995    0
Et = 1.0   36

o

j0.3 j0.15 j0.5

Figure 1: Synchronous machine infinite bus electrical
scheme

H = 3.5

Ks = E′EB
Xr

cos δ0 = 0.757,

ω0 = 120π

and KD as parameter.
In order to obtain the eigenvalues of the matrixA,

the characteristic equation can be computed.

λ2 + 0.143KDλ+ 40.79 = 0. ⇔
λ2 + 2ξ · ωnλ+ ω2

n = 0.

}

λ = ξωn ± jωn
√
ξ2 − 1

So,
ωn =

√
40.79 = 6.387rad/s = 1.0165Hz,

ξ = 0.143KD
2·6.387 = 0.0112KD.

In the case where ξ = 1, the matrix A has a dou-
ble eigenvalue with single eigenvector, that is to say
the Jordan equivalent form is

J =

(
−6.387 1

0 −6.387

)
,

and the generalized (right) eigenvectors are

S =

(
−6.387 1

377 0

)
.

Then

R11 =

(
1
2H
0

)
,

and

R12 =

(
−6.387

2H
377
2H

)
.

Remark 28 Notice that the left generalized eigenvec-
tors are compute as S−1.
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7.2 Example 2: Multiple vehicle system

The following example is based on one that can be
found in [4], four identical vehicles moving in a single
lane are considered (Figure 2). The dynamical equa-
tions corresponding to the problem of maintaining the
distance between adjacent vehicles at a predetermined
value h0 are given by:

Ẋ = AX +Bu

with

v4 v3 v2 v1

u4 u3 u2 u1

y4 y3 y
m4 m3 m2 m1y3 y2 y1

Figure 2: Multiple vehicle system representation

A =



−k/m 0 0 0 0 0 0
1 0 −1 0 0 0 0
0 0 −k/m 0 0 0 0
0 0 1 0 −1 0 0
0 0 0 0 −k/m 0 0
0 0 0 0 1 0 −1
0 0 0 0 0 0 −k/m



B =



1/m 0 0 0
0 0 0 0
0 1/m 0 0
0 0 0 0
0 0 1/m 0
0 0 0 0
0 0 0 1/m


where:

X =
(
v̄1 y12 v̄2 y23 v̄3 y34 v̄4

)t
,

u =
(
u1 u2 u3 u4

)t
,

with v̄i = vi − v0, yi,i+1 = yi − yi+1 − h and vi the
velocities, yi the positions and ui the applied force of
the ith vehicle.

In this case the eigenvalues of the matrix A are 0
and −k/m with multiplicities 3 and 4 respectively.

The matrices of residues are:
For λ = 0

R11 =



0 0 0 0
1/k −1/k 0 0
0 0 0 0
0 1/k −1/k 0
0 0 0 0
0 0 1/k −1/k
0 0 0 0



For λ = −k/m

R21 =



1/m 0 0 0
−1/k 1/k 0 0

0 1/m 0 0
0 −1/k 1/k 0
0 0 1/m 0
0 0 −1/k 1/k
0 0 0 1/m


So, the output controllability matrix is

oC(A,B,C) =(
R11 +R21 −k/mR21 k2/m2R21 −k3/m3R21

k4/m4R21 −k5/m5R21 k6/m6R21

)
and

rank oC(A,B,C) =

rank
(
R11 +R21 −k/mR21

)
=

rank



1
m

0 0 0 − k
m2 0 0 0

0 0 0 0 1
m

− 1
m

0 0

0 1
m

0 0 0 − k
m2 0 0

0 0 0 0 0 1
m

− 1
m

0

0 0 1
m

0 0 0 − k
m2 0

0 0 0 0 0 0 1
m

− 1
m

0 0 0 1
m

0 0 0 − k
m2


= 7 = p.

So, the system is output-controllable.

Observe that in this case, output-controllability
coincides with controllability of the system. That is
obviously true when as in this case, the C is a nonsin-
gular square matrix.

8 Conclusions
The conventional method to compute the residues up
to now has been presented. Moreover, a general ap-
proach for computing the residues of dynamical sys-
tems has been proposed in the paper. This method
has introduced the assumption of existence of non
simple eigenvalues, as occurs up to now. Moreover,
a relationship between the residues and the output-
controllability concept is given. Finally, some ap-
plication examples have been presented including a
simple power systems (Synchronous Machine Infinite
Bus) and a multiple vehicle system, in order to show
that the development of this general method is really
required.
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