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ABSTRACT 

The main challenge for models of building acoustics is being able to consider all the geometrical and physical 

details of real structures with a reasonable computational cost for high frequencies. The SEA (Statistical 

Energy Analysis) framework is suitable for these frequencies, but presents some difficulties for dealing with 

complex structural configurations. For instance, modelling absorbing materials with SEA is an open issue, 

since they are neither reverberant subsystems nor conservative couplings. 

In this work, a model to account for absorbing materials with a SEA-like approach is performed. It is 

obtained by analogy with an electrical circuit. This approach is combined with numerical simulations in order 

to solve vibroacoustic problems in real structural configurations (including complex geometries or 

dissipative connections) throughout the entire frequency range required by regulations. The proposed 

technique is applied to modelling the sound insulation of double walls. These walls consist of two leaves of 

plasterboard connected through metallic studs and filled with a layer of absorbing material. The combination 

of numerical simulations and SEA arises as a good technique for modelling the acoustic behaviour of real life 

structures with an affordable computational cost.  
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1. INTRODUCTION 

Problems in the field of building acoustics can be modelled in two main ways. On the one hand, 

they can be addressed in a deterministic way using numerical methods, like the Finite Element Method 

[1], to solve the differential equations governing the problem. On the other hand, statistical methods 

such as SEA (Statistical Energy Analysis) [2] can be used. 

Deterministic approaches, complemented with numerical methods, provide detailed information 

about vibroacoustic systems. They are useful for modelling complex elements, since they can take into 

account complicated geometries or heterogeneities. The main drawback of these approaches is the 

high computational cost required for the calculation at high frequencies, especially when working in 

large domains.  

The statistical energy analysis is suitable for high frequencies, and has a very low computational 

cost. It deals directly with averaged energies but requires specific parameters of power transmission, 

like internal loss factors and coupling loss factors, whose values cannot be calculated analytically for 

complex geometries. It is also restricted to systems consisting of reverberant subsystems and 
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conservative couplings, and therefore shows problems when dealing with thin layers of absorbing 

materials, or any other type of non-conservative couplings [3].  

In this work two main ideas are presented. On the one hand, an SEA-like model for 

non-conservative couplings is proposed. On the other hand, numerical simulations and SEA are 

coupled so that real-life problems can be modelled for the whole frequency range required by 

regulations with a reasonable computational cost.  

2. AN SEA-LIKE MODEL FOR NON-CONSERVATIVE COUPLINGS 

The SEA framework divides the problem domain into two types of elements: subsystems and 

connections. 

An SEA subsystem is a part of the domain such that the energy associated to each of its modes is 

ideally the same. Every subsystem has its own modal density and an internal loss factor that 

characterises the fraction of energy dissipated in it.  

SEA connections are those elements connecting the subsystems. They have a conservative 

behaviour, transmitting energy from one subsystem to the other without losses. They are characterised 

by a coupling loss factor that relates the power across the connection with the energies of the 

subsystems connected by it. 

The effect of a point connection between two SEA subsystems may be studied with the equivalent 

circuit approach [4]. This technique is used by Hopkins [5] to compute the coupling loss factor of a 

spring connecting two leaves. In general, for any point device connecting two subsystems, the global 

system may be represented as a circuit like that of Figure 1 where Y1 and Y2 are the point mobilities of 

subsystems 1 and 2 (excited and unexcited leaf respectively) and YC is the mobility of the connection. 

 

 

Figure 1 – Circuit equivalent to a double wall 

 

The mechanical–electrical analogy is described in Table 1 and the assumptions of the analysis are: 

 Leaf 1 has an external excitation and leaf 2 has none. 

 v0 is the velocity at the point where the excitation acts. It is not affected by the (weak) 

connection. 

 Any point of the unexcited leaf that is far enough from the connection point has a negligible 

velocity compared to v0. 

 v1 and v2 are the velocities at the connecting point of leaves 1 and 2 respectively.  

 

Table 1 – Mechanical-electrical analogy 

Mechanics Electrics 

Force F Intensity I 

Velocity v Potential V 

Admittance (point mobility Y) Impedance Z 

 

By analogy with the electrical circuit, the excitation force can be expressed in terms of  the 

velocities and point mobilities as 

,
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And the velocities of the leaves at the connecting point can be expressed as v1 = (Y2 +YC) F and v2 = 

Y2F. 

 

The power entering the connection (on the closest side to leaf 1) is [5]  
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and the power leaving the connection (on the leaf 2 side) is 

   
.

22 2

21

2

02
*

2)2(

12

CYYY

vYFv







  (3) 

Therefore, the power dissipated at the connection is 
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If the connection is conservative, the power leaving subsystem 1 enters subsystem 2 without losses. 

This means that Π12
diss

=0: the connection mobility YC is purely imaginary. That is the case of a 

connection consisting of a spring. In that case, YC = iω/K (purely imaginary), where K is the spring 

stiffness, i is the imaginary unit, ω= 2 p f and f is the vibration frequency.  

If the coupling, on the contrary, has a dissipative behaviour, part of the power leaving subsystem 1 

is transmitted to subsystem 2 and the rest is dissipated at the connection. The mobility YC in this case 

has a non-zero real part. For instance, in the particular case of the set of spring and dashpot shown in 

Figure 2, YC = 1/(C+K/iω) and therefore the real part of YC is different from zero. Some power is 

dissipated at the connection. 

 

 

Figure 2 – Connection consisting of a spring and a dashpot. 

 

The power balances of the two leaves are 
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for the excited and the unexcited one respectively, where Π1
in

 is the power injected to leaf 1, Πi
diss

= 

ηiiωEi is the power dissipated, ηii the internal loss factor and Ei the averaged energy of leaf i. 

Assuming that E1 = M1 vrms
2
, where M1 is the mass of leaf 1 and vrms

2 
= v0

2
/2, the power dissipated 

at the connection can be expressed as 

11212 Ediss   (6) 

and the power transmitted to subsystem 2 as 
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Therefore, the power entering the connection from subsystem 1 is 
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In Equations (6) and (7), two new parameters have been introduced. On the one hand, a factor 

governing the amount of power dissipated at the connection: the Non-conservative Coupling Loss 
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Factor (NCLF)  
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On the other hand, a factor governing the amount of power reaching the unexcited leaf: the 

Conservative Coupling Loss Factor (CCLF) 
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The power balances of Equation (5) can be rewritten in terms of the averaged energies for the 

non-conservative coupling as 
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Following the same procedure in a more general case, with excitations on both subsystems, the 

global system yields 
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The effect of the non-conservative connection leads to an SEA-like system with two new factors: 

the non-conservative coupling loss factors γ12 and γ21. If these factors are equal to zero, the 

conservative case is recovered. However, if the coupling dissipates energy, they are different from zero 

and factors η12 and η21 change with respect to the conservative case.  

Equation (12) provides similar relations between the connection losses and the energies of the 

subsystems as Sheng et al. [6] do. However, the information included in the coefficients is different. 

Sheng et al. define a new equivalent internal loss factor instead of adding an extra term in the diagonal 

(defined here as NCLF). The advantage of defining the NCLF is that several non-conservative 

couplings of the same type can be concatenated easily without having to recompute any parameter. The 

equivalent internal loss factor defined in [6] needs to be recomputed when the subsystem is in contact 

with more than one non-conservative coupling. 

Another remarkable difference with Sheng et al. is the nomenclature used for the loss factors. In 

their formulation, they incorporate the value of γij within the equivalent internal loss factor. Therefore, 

they only have one coupling loss factor, which they call non-conservative coupling loss factor. In this 

work, however, a formulation with two coupling loss factors has been developed. They have been 

called CCLF and NCLF because, if the dissipative component of the coupling is removed, the NCLF 

becomes zero and the CCLF becomes the classical coupling loss factor. Therefore, the name 

non-conservative coupling loss factor is used with a different meaning in the two works. 

3. ESTIMATION OF COUPLING LOSS FACTORS 

Both in classical SEA problems and in SEA-like systems like those defined in Section 2, the power 

distribution throughout the domain is defined by the internal and coupling loss factors. In typical 

building applications, the subsystems are walls and rooms and their associated internal loss factors are 

usually known. However, the connections between these subsystems are not always simple devices, 

and sometimes have complex geometries or even absorbing characteristics, that need to be taken into 

account in the coupling loss factor. 

The main idea presented here is that numerical simulations of two coupled systems can be used to 

estimate the coupling los factors (both conservative and non-conservative) between them. These 

factors can then be applied to solve larger problems with a SEA (or SEA-like) formulation. 

3.1 Conservative case 

The classical SEA formulation for a system consisting of two subsystems when only the first one is 

excited is 
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The coupling loss factors satisfy the consistency relation η12 n1 = η21 n2, where ni is the modal 

density of subsystem i. 

The general procedure is to use SEA to compute the averaged energies of the subsystems. The input 

powers are usually known for a given excitation and, for most subsystems used in building acous tics, 

the internal loss factors can be computed with analytical expressions, available in the literature [7]. 

However, the analytical expression for the coupling loss factor is only available for simple 

connections.  

In this work, the SEA formulation for a system consisting of two subsystems is used to estimate the 

coupling loss factors. The averaged energies of the subsystems are obtained from the numerical 

simulation of the same vibroacoustic problem and the SEA power balances are used to compute ηij. 

Since the energy values are frequency dependent, the CLF obtained will also depend on the frequency, 

and therefore the result of the computation will not be a single value but a CLF law in terms of the 

frequency. 

Using Equation (13) and the consistency relation, the CLF can be isolated from the power balance 

of subsystem 1 (first SEA equation) as  
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or from the power balance of subsystem 2 (second SEA equation) as 
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Also computing the power transmitted through the connection and using that 
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the CLF can be obtained as 
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(17) 

Since the values of the energies are computed numerically, they may have a certain error. Operating 

with them may lead to higher errors for the CLF estimation if not done carefully. An analysis in this 

sense was performed in [8], leading to the conclusion that Equation (14) is not trustable for computing 

the CLF, because it implies the subtraction of two very similar quantities . Indeed, the subtraction of 

two similar quantities is prone to amplify any errors in the numerical estimation of the energies and 

powers, leading to unreliable results for the CLF. Equations (15) and (17) are both trustable, since the 

relative error of the CLF is of the same order of magnitude as that of the energies and powers used in 

the computation. Equation (17) requires some extra postprocessing effort to obtain the power at the 

connection and therefore the recommended expression is Equation (15). 

3.2 Non-conservative case 

Parameters ηij and γij of a non-conservative coupling between two subsystems can be obtained from 

numerical simulations of the energy transmission between the two subsystems. These simulations 

should include the dissipative behaviour of the coupling. For a given excitation, both the input powers 

Πi
in

 and the averaged energies of the leaves Ei can be computed solving the vibroacoustic problem 

numerically. Assuming that ηii is known for every subsystem, the rest of the SEA parameters can be 

isolated from the power balances of the system. 

If the two subsystems have different properties (which is the most common case), the structure is 

not symmetric and there are four parameters to compute: η12, η21, γ12 and γ21. 
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To obtain them all, the SEA formulation of two mutually independent problems is required. These 

two problems correspond to the system behaviour for two different excitations: one on subsystem 1 

and the other on subsystem 2. For each different excitation, the averaged energies of the subsystems 

are computed numerically. If these energies are replaced in the SEA-like formulation of each problem 

(12), a 4x4 linear system can be solved to obtain the four parameters desired  
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(18) 

 

In system (18), Ei and Êi are the averaged energies of subsystem i for excitations applied to 

subsystems 1 and 2 respectively. 

System (18) is a robust way for computing the conservative coupling loss factor η12 but it is 

unreliable for computing γ12 if γ12 << η11. This unreliability is caused by the implicit subtraction of two 

similar numbers in the computation of γ12 with system (18). The equations leading to this conclusion 

are shown in detail in [9]. 

Due to the unreliability of Equation (18) for γ12 << η11, an alternative formulation is proposed. If the 

power exchanged between the subsystems and the connection is computed on both sides of the 

connection, it can be expressed in terms of the energies of the subsystems for the two types of 

excitations as 
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Subtracting the two equations of each system and rearranging them, the following system results:  
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As shown in [9], Equation (21) is only unreliable if the coupling transmission is much higher than 

the dissipation (Π12
(2) 

>> Π12
(1)

- Π12
(2)

). However, in that case the connection may be considered 

conservative and the classical SEA formulation should be used, assuming γ12=0. Therefore, Equation 

(21) is more robust than Equation (18) for computing the NCLF because its reliability does not depend 

on the properties of the subsystems. 

4. RESULTS 

To illustrate the potential of the two techniques described in Section 3, an example  with both 

conservative and non-conservative couplings is shown here. It reproduces the sound transmission 

between two rooms divided by a double wall filled with absorbing material . This problem is solved 

with a SEA-like approach, dividing the system in four subsystems: sending room, leaf 1, leaf 2 and 

receiving room (see Figure 3). The absorbing material is considered as a non-conservative connection 

between subsystems 2 and 3.  

The internal loss factors of subsystems 2 and 3 are the loss factors of the leaves ηii = η = 0.03) and 

the internal loss factors of subsystems 1 and 4 are computed as  

,
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(22) 

where Scav is the surface of the room boundary, α = 0.1 is the absorption coefficient at that boundary, c 
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is the sound speed in the air and Vcav is the volume of the room. The excitation is a sound source in one 

of the rooms (subsystem 1). 

 

Figure 3 – Small problems solved numerically to obtain the CLFs. 

 

To obtain all the coupling loss factors ηij and γij required by the SEA-like approach, three small 

deterministic problems have been solved. On the one hand, the double wall itself has been simulated, 

in order to obtain the values of η23, η32, γ23 and γ32 between the two leaves. The simulation has been 

performed with a combination of modal analysis for the leaves and the Finite Layer Method for the 

cavity, as described in [10]. This method combines a FEM-like disretisation in the direction 

perpendicular to the wall with trigonometric functions in the other two directions.  The absorbing 

material is modelled as an equivalent fluid with the Delany-Bazley-Miki approach [11], and the 

excitation of the system is a pressure wave impinging on one of the leaves.  

On the other hand, the coupling loss factors between each leaf and its adjacent room have been 

computed. To do so, two numerical simulations of systems consisting of a room in contact with a leaf 

are performed. One of them has a sound source on the room and is used to obtain η12 and η21. The 

excitation of the other simulation is a pressure wave impinging on the leaf. That one is used to compute 

η34 and η43. The importance of computing the CLF with the same excitation of the problem where it is 

going to be applied has been shown in [8]. In the two room-leaf simulations, the vibroacoustic problem 

has been solved with modal analysis. 

Once all the coupling loss factors are obtained, the SEA-like system  
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(22) 

is used to obtain the energies in all the subsystems. The energies of the sending and receiving room (E1 

and E4 respectively) are used to obtain the sound reduction index of the double wall. 

The described approach has been used to analyse the influence of the absorbing material filling the 

double wall in the sound insulation of the wall. In Figure 4 the effect of the flow resistivity of the 

material on the sound reduction index between the two rooms is analysed. The insulating effect of 

filling the cavity with an absorbing material is remarkable. However, different values of the flow 

resistivity only provide different values of the sound reduction index for high frequencies.  

This behaviour was also reported by Stani et al. [12]. The explanation for this phenomenon is that 

increasing the resistivity causes an increment both on the density and the wavenumber of the 

equivalent fluid. An increment of the fluid density causes a better propagation of the waves through it. 

On the other hand, a larger wavenumber results in a lower transmission of the waves through the fluid. 
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At low frequencies the increment of the wave number compensates the increment of the density and 

the sound insulation does not change with the resistivity. However, at high frequencies the effect of the 

wave number dominates that of the density and larger resistivities cause more insulating behaviours.  

 

 

Figure 4 – Effect of the flow resistivity on the sound reduction index 

5. CONCLUSIONS 

 The combination of numerical and statistical methods is useful to solve realistic 

vibroacoustic problems. It allows reaching the whole frequency range required by 

regulations with a reasonable computational cost for large domains. 

 Non-conservative connections can be taken into account in a SEA-like formulation with 

two types of coupling loss factors: the conservative ηij and the non-conservative γij 

coupling loss factors. 

 Factors ηij and γij required for modelling couplings can be computed with numerical 

simulations of a system consisting of 2 subsystems. Attention must be paid to the error 

propagation in these computations. Once they are computed, these factors can be used to 

solve larger problems with SEA. 

 The influence of the flow resistivity of the absorbing material filling a plasterboard double 

wall is only relevant for high frequencies. At low frequencies, the behaviour is different if 

the cavity is empty or filled with absorbing material, but the resistivity of the material does 

not affect the sound insulation. 

6. FUTURE WORK 

The estimation of (conservative or non-conservative) coupling loss factors requires the division of 

the domain into subsystems. These subsystems are usually defined as those sets of modes that have a 

similar response for any kind of excitation. 

In many cases, especially in building acoustics, the subdivision is clear. However, complicated 

geometries or heterogeneous systems with alternation of acoustic and mechanical domains may be 

difficult to subdivide, and therefore difficult to analyse with statistical energy analysis.  

Numerical simulations may be a helpful tool to solve this problem. Since the definition of 

subsystem is done in terms of modes, an eingenvalue analysis can provide insights of the modal 

behaviour of the domain. Then, the independence between the different regions of the domain can be 
studied, as well as the different types of relevant modes existing in each region. 

The ongoing work is based on using modal analysis at low and medium frequencies to identify the 
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different subsystems in a vibroacoustic domain. The final goal is to use numerical simulations to 

provide all the extra information required to deal with complex vibroacoustic problems with SEA.  

First, the subsystem division would be performed with modal analysis. Then, numerical 

simulations of each pair of contiguous subsystems would be performed to estimate their coupling loss 

factors. Finally, the global problem would be solved with statistical energy analysis.  

ACKNOWLEDGEMENTS 

The financial support of the Ministerio de Educación y Ciencia (FPU scholarship program) is 

gratefully acknowledged.  

REFERENCES 

[1] A. Rabold, A. Düster and E. Rank. "FEM based prediction model for the impact sound level of floors", 

Proc. Acoustics'08, 2993-2998 (2008). 

[2] R.H. Lyon. Statistical Energy Analysis of Dynamical Systems (M.I.T. Press, 1975). 

[3] F.J. Fahy. “Statistical Energy Analysis: A Critical Overview,” Philosophical Transactions of the 

Royal Society of London A 346. 429-554 (1994). 

[4] H.F. Olson, Dynamical Analogies (D.Van Nostrand Company Inc, 1943). 

[5] C. Hopkins, Sound insulation (Elsevier Ltd., 2007). 

[6] M.P. Sheng, M.Q. Wang,J.C. Sun. and B. Qian. “Statistical energy analysis for complicated 

coupled system and its application in engineering,” J. Sound Vib., 274(3-5), 877–891 (2004). 

[7] R.J.M. Craik, Sound transmission through buildings using statistical energy analysis  (Gower 

Publishing Ltd. 1996). 

[8] Díaz-Cereceda, J. Poblet-Puig and A. Rodríguez-Ferran. “Numerical estimation of coupling loss 

factors in building acoustics,” J. Sound Vib. (in press).  

[9] C. Díaz-Cereceda, J. Poblet-Puig and A. Rodríguez-Ferran. “An SEA-like model for 

non-conservative couplings” (submitted). 

[10] Díaz-Cereceda, J. Poblet-Puig and A. Rodríguez-Ferran. “The finite layer method for modelling 

the sound transmission through double walls,” J. Sound Vib., 331(22), 4884-4900 (2012). 

[11] Y. Miki. “Acoustical properties of porous materials: modifications of Delany-Bazley models,” J. 

Acoust. Soc. Jpn., 11(1), 19-24 (1990). 

[12] M.M. Stani, H. Muellner, I. Plotizin and K. Zlabinger. “Sound insulation of plasterboard walls and 

airflow resistivity: an empirical examination with respect to practical applications.” Proc. Forum 

Acusticum 2005, 1987-1992 (2005). 

 


