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1. INTRODUCTION

We are interested in the study of periodic orbits of planar integrable birational maps. That is

• Planar rational: F : U ⊆ R2 −→ U where F (x , y) =
(

f1
f2
,

f3
f4

)
where fi are polynomials.

• Birational: The inverse map F−1 is also rational.

• Integrable: There is a function V which is a first integral of F in U . That is if

V (F (x , y)) = V (x , y), for all (x , y) in U .

In addition, we will consider that V is a rational func-
tion

V (x , y) =
P(x , y)

Q(x , y)
.

So the map preserves a foliation of the plane given
by algebraic curves

Fh = {P(x , y)− h Q(x , y) = 0, h ∈ Im(V )}.
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Examples

They appear in Number theory and Algebraic Geometry as automorphisms of algebraic curves.

The Lyness map Fa(x , y) =
(

y , a+y
x

)
associated to xn+2 =

a+xn+1
xn

.

It has the with first integral

V (x , y) =
(x + 1)(y + 1)(x + y + a)

xy
.

So it preserves the foliation given by

Fh := {(x + 1)(y + 1)(x + y + a)− hxy = 0}

Among a large literature, see for instance Barbeau et al. 1995; Bastien & Rogalski, 2004a;
Beukers & Cushman, 1998; Duistermaat, 2010; Esch & Rogers, 2001; Zeeman, 1996.
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They appear as reduction of differential–difference soliton equations. For instance QRT maps,

introduced in Quispel et al. 1989, see also Duistermaat, 2010.

D∆ Nonlinear Schrödinger equation.

Soliton equation: −i d
dt un = un+1 − 2un + un−1 + 1

2 |un|2(un+1 + un−1)

Reduction: un(t) = xn exp (iωt)

Map: F (x , y) =

(
y ,−x + (ω+2)y

1+ 1
2 y2

)
a type of Gumovski-Mira map,

also in the Mc Millan family of maps, and QRT.

First integral V (x , y) = x2y2 − 2(ω + 2)xy + 2x2 + 2y2

⇔ Fh := {x2y2 − 2(ω + 2)xy + 2x2 + 2y2 − h = 0}
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On the rationality hypothesis on the first integral.

Are there planar integrable birational maps with nonrational first integrals?

F (x , y) =

(
x
(

a+y+day+bx+dy2+cxy
)

(a+y)(bx+a+y)
,

(
abex+adxy+bexy+cx2y+dxy2+a2e+2aey+bx2+ey2+ax+xy

)
y

(cxy+bx+a+y)(bx+a+y)

)

The map is associated to 5-periodic Lyness differ-
ence equations

xn+2 =
an + xn+1

xn
, with an = {a, b, c, d , e}.

They are non rationally integrable, in fact non mero-

morphically integrable, for a generic set of parame-

ters Cima et al. 2013ab, although numerically show

integrable “features”.
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Our objective:

To show the relationship between the algebraic-geometric properties of the invariant foliation F
and the dynamics of the map F .

More precisely, we will focus on the case that F is generically elliptic.

The topics:

• The locus of periodic orbits.
• Existence of rational periodic orbits.
• The rotation number function and the set of periods of a map or a family.

• And two short digressions.

The examples (our results):

• The Lyness Map Fa(x , y) =
(

y , a+y
x

)
. Gasull et al. 2012.

• The composition map Fb,a(x , y) := (Fb ◦ Fa)(x , y) =
(

a+y
x , a+bx+y

xy

)
associated to 2-periodic

Lyness recurrences. Bastien et al. 2013.
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2. A FIRST DYNAMICAL RESULT: RESTRICTION TO GENUS 0 AND 1 CASES

A natural phase space to study planar birational maps is

CP2 = {[x : y : z] 6= [0 : 0 : 0], x , y , z ∈ C}/ ∼

where [x1 : y1 : z1] ∼ [x2 : y2 : z2] if and only if [x1 : y1 : z1] = λ[x2 : y2 : z2] for λ 6= 0.

The points [x : y : 1] are called affine points and the points [x : y : 0] are called infinity points.

The Lyness map F (x , y) =

(
y ,

a + y
x

)
can be seen as the map

F̃ ([x : y : z]) = [xy : az2 + yz : xz]

except for the points [x : 0 : 0], [0 : y : 0] and [0 : −a : 1].

The invariant real planar foliation Ch = {(x + 1)(y + 1)(x + y + a)− hxy = 0} is now

C̃h := {(x + z)(y + z)(x + y + az)− hxyz = 0},

In general we will drop ˜
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Algebraic curves in CP2 are Riemann surfaces and are characterized by their genus.

g = 0 g = 1, g = 2

The degree-genus formula states that for a given irreducible curve Ch ∈ F :

g =
(d − 1)(d − 2)

2
−

∑
p∈Sing(Ch)

mp(mp − 1)

2

For instance the Lyness’ Foliation

F̃h := {(x + z)(y + z)(x + y + az)− hxyz = 0},

has degree d = 3, so generically the curves have genus g = 1, and the singular curves have

genus g = 0.
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If our map is NOT Globally periodic, F is a genus 0 or 1-foliation.

Proposition.

A birational map in U ⊆ K2 with a rational first integral V , such that the curves {V = c} are

non-singular with with genus g > 1, must be globally periodic.

Proof:

• If the curves {V = c} have generically genus g > 1 then there exists an open set V ⊆ U foliated by curves of these type.

• By Hurwitz Theorem on each of these curves the map must be periodic.

Theorem (Hurwitz, 1893)

The group of birational maps on a non-singular algebraic curve in K2 of genus g > 1 is finite and of order at most 84(g − 1).

• So F is pointwise periodic on V , and hence by the Montgomery Theorem F must be globally periodic on V .

Theorem (Montgomery, 1937)

Pointwise periodic homeomorphisms in connected metric spaces are globally periodic.

• Since F is rational then it must be periodic on the whole K2 except at the points where its iterates are not well defined.
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3. THE GENUS 1 CASE. ELLIPTIC FOLIATIONS

An elliptic curve is a projective algebraic curve of genus 1.

Curves of genus 1 are birationally isomorphic to smooth cubic curves.

In the case that F is given (generically) by elliptic curves, then the group structure of the elliptic

foliation characterizes the dynamics of any birational map preserving it.

Theorem (after Jogia, Roberts, Vivaldi. 2006.)

Any birational map F that preserves an elliptic curve Ch, can be expressed in terms of the group
law of the curve as either

• F|Ch
: P 7→ P + Q where Q ∈ Ch or

• F|Ch
: P 7→ i(P) + Q where i (and F) is GP of orders 2,3,4 or 6.

where + denotes the inner sum of Ch.

What is the group structure? what is this inner sum?
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The chord-tangent group law in a non-singular cubic

Take two points P and Q in a nonsingular cubic C

(1) Select a point O to be the neutral element.

(2) Take the third intersection point P ∗ Q.

(3) The point P + Q is defined as P + Q = O ∗ (P ∗ Q).

(C,+,O), is an abelian group.

Group law with an affine neutral element O

Group law with O = [0 : 1 : 0]
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Theorem (Jogia et al. 2006.)

Any birational map F that preserves an elliptic curve Ch, there is a choice of O such that

• F|Ch
: P 7→ P + Q where Q ∈ Ch or

• F|Ch
: P 7→ i(P) + Q where i (and F) is GP of orders 2,3,4 or 6.

Taking O := [1 : −1 : 0], on each elliptic level
the Lyness map is

F (P) = P + [1:0:0]

Fb,a(x , y) :=
(

a+y
x , a+bx+y

xy

)
preserves Ch := {(bx + a)(ay + b)(ax + by + ab)− hxy = 0} .

Setting O := V = [0 : 1 : 0], on each elliptic level

Fb,a(P) = P + [1:0:0]

This implies that on each elliptic curve Ch

the map is conjugate to a rotation with

associated rotation number θ(h).

⇓

If P ∈ Ch is p-periodic for F then any other

point P′ ∈ Ch is p-periodic. .

Observe that F n(P) = P + nQ, so Ch is full

of p-periodic orbits iff p · Q = O, i.e. iff Q is

in the torsion of (Ch,+).
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If F|Ch
: P 7→ P + Q, the map is conjugate to a rotation with rotation number θ(h).

Because

(Ch(R),+) ∼= {(eit ,±1); t ∈ [0, 2π)}; with the operation (eit , v) · (eis,w) = (ei(t+s), v w)

A birational map F on (Ch,+,O) is

F n : P −→ P +n Q

Hence Ch is full of p-periodic orbits⇔ p · Q = O.

Q is called a torsion point of Ch .

In summary:

• Q ∈ Tor(Ch)⇒ all the orbits in Ch(R) are periodic.

• Q 6∈ Tor(Ch)⇒ the orbits of F fill densely the connected components of Ch(R).

Vı́ctor Mañosa (UPC) Periodic orbits of birational maps NOMA’13 13 / 31



4. THE LOCUS OF THE PERIODIC ORBITS. Example 1. The Lyness map

Each map

Fa([x : y : z]) = [xy : az2 + yz + xz]

preserves

Ch = {(x + z)(y + z)(x + y + az)− hxyz}

Elliptic except for h ∈ {0, a− 1, h±c }.

Taking O = [1 : −1 : 0] and Q = [1 : 0 : 0]. Observe that both O,Q ∈ Ch for all Ch.

F|Ch
: [x : y : z] 7→ [x : y : z]+[1 : 0 : 0]⇔ F n

|Ch
: [x : y : z] 7→ [x : y : z]+n[1 : 0 : 0]

Observe that there exists a p-periodic orbit iff p · [1 : 0 : 0] = O = [1 : −1 : 0]
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When a(a− 1) 6= 0, using the group operation on each elliptic curve, we get

2Q = [−1 : 0 : 1], 3Q = [0 : −a : 1],

4Q =

[
−a :

ah − a + 1

a− 1
: 1
]
,

and

−Q = [0 : 1 : 0], −2Q = [0 : −1 : 1], −3Q = [−a : 0 : 1],

−4Q =

[ ah − a + 1

a− 1
: −a : 1

]
,

−5Q =

[
−a2 − ah + 2a− 1

a(a− 1)
:

ah − a + 1

a− 1
: 1

]
,

• Are there 4 periodic orbits on the elliptic levels? NO

4Q =

[
−a :

ah − a + 1
a− 1

: 1
]
6= [1 : −1 : 0] = O !!

If a = 1, then 4Q = [0 : h : 0] 6= [1 : −1 : 0] = O, and no 4-periodic orbits on the genus-0 levels (very easy).

• Are there 9-periodic orbits on the elliptic levels? YES

4Q =

[
−a :

ah − a + 1
a− 1

: 1
]

=

[
−a2 − ah + 2a− 1

a(a− 1)
:

ah − a + 1
a− 1

: 1

]
= −5Q ⇔

The 9-periodic orbits are in Ch9 where h9 =
(a− 1)(a2 − a− 1)

a
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5. ON RATIONAL PERIODIC ORBITS.

The group structure of the F plays a crucial role when searching rational periodic orbits

A rational orbit is an orbit such that all the iterates have rational coordinates.

Our motivation was:

Conjecture (Zeeman, 1996; Bastien and Rogalski, 2004a)

There is no rational periodic orbit of period 9 for the Lyness recurrence xn+2 =
a+xn+1

xn
.

Where are the periodic orbits for birational maps on elliptic curves?

‘‘If we wish study possible period with a computer, it is easier to work with rational numbers.

so, we suppose that a is rational, and that the point (u1, u0) is rational. With the use of a

computer and a program of calculation with fractions, is it possible to see periodic points?

Only in few cases!’’ Bastien and Rogalski, 2004b
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A numerical digression: where are the periodic orbits?

Our maps F restricted to Ch can be interpreted as a smooth one-parameter family of

diffeomorphism of S1. Thus generically the graph of the rotation function θ(h) has a devil’s

staircase shape:

The existence of an open interval Im where θ(h) ≡ q/p, is a consequence of the existence of a

hyperbolic p-periodic orbit.

⇓
Generically, periodic orbits are numerically visible.

In our case θ(h) is piecewise analytic, but even when θ(h) is analytic if we have NOT a birational

map on elliptic curves you see periodic orbits, e.g. proper Poncelet maps.
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But even when θ(h) is analytic we find P.O.: playing with a proper Poncelet map.

1000 iterates of a Poncelet map 5000 iterates

A 57-periodic orbit after 20000 iterates The Poncelet process

Poncelet Maps are not birational, but using Lie symmetries θ(h) is analytic, Cima et al. 2010
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The points with rational coordinates in (Ch,+,O) form a subgroup denoted by Ch(Q).

Theorem (Mordell, 1922 + Mazur, 1978)

If E is a non-singular cubic, then (E(Q),+) is either the finitely-generated abelian group

E(Q) ∼= Z⊕ · · · ⊕ Z

or

E(Q) ∼= Z⊕ · · · ⊕ Z ⊕ Z/p where 1 ≤ p ≤ 10 or p = 12

or

E(Q) ∼= Z⊕ · · · ⊕ Z ⊕ Z/2⊕ Z/p where p = 2, 4, 6, 8

Remember that F|Ch
: P −→ P + Q will be periodic⇔ Q ∈ Tor(Ch)

⇓

Corollary

Any birational map on Ch(R) only can have rational periodic orbits of periods

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,��11 , 12.

That’s why we “don’t see” periodic orbits.
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Back to the Lyness maps and the Zeeman conjecture

Theorem

For any p ∈ {1, 2, 3,�4, 5, 6, 7, 8, 9, 10,��11 , 12} there are a ∈ Q+ ∪ {0} and rational initial

conditions x0, x1 such that the sequence generated by xn+2 = (a + xn+1)/xn is p-periodic.

Moreover these values of p are the only possible minimal periods for rational initial conditions

and a ∈ Q.

A counterexample to Zeeman’s Conjecture: taking a = 7 and the initial condition x0 = 3/2,
x1 = 5/7, we have

3
2
−→

5
7
−→

36
7
−→ 17 −→

14
3
−→

35
51
−→

28
17
−→

63
5
−→

119
10
−→

3
2
−→

5
7
−→ . . .
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In fact, we only need to find one rational 9-periodic point to find an infinite number of them.

Proposition

If a ∈ Q+ is s.t. ∃ an initial condition (x0, x1) ∈ Q+ × Q+ s.t. the sequence is 9-periodic, then
there infinite rational ones. In fact these points fill densely the elliptic curve Ch9

(x + 1)(y + 1)(x + y + a)−
(a− 1)(a2 − a + 1)

a︸ ︷︷ ︸
h9

xy = 0

Proof: Suppose that we have a ∈ Q+, such that Q = [1 : 0 : 0] ∈ Tor(Ch9 ) (⇔ 9-P.O.)

• If P = (x , y) ∈ Q+ × Q+ is on the oval of Ch9 then (2k + 1)P ⇒ is also on it.

Notice that (2k + 1) · P are not iterates of F .

• The the points (2k + 1)P are rational and fill densely the oval (i.e. (2k + 1)P 6= O) because all
9-torsion points are not in Q+ × Q+,

Remember that (E(R),+) ∼= {eit : t ∈ [0, 2π)} × {1,−1}; with the operation (eit , v) · (eis,w) = (ei(t+s), vw)
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Theorem

There are an infinite number of values a ∈ Q+ and initial conditions x0(a), x1(a) ∈ Q+ giving rise

to 9-periodic orbits for the Lyness Eq.

Proof:

•We want to find infinitely many points (x(a), y(a), a) ∈ (Q+ × Q+ × Q+) ∩ Sa , where

Sa := {(a; x, y) : a(x + 1)(y + 1)(x + y + a)− (a− 1)(a2 − a + 1)xy = 0, x > 0, y > 0, a > a∗}.

and a∗ is the infimum s.t. Ch9
has an oval in R2,+.

• The points in Sa s.t. x + y = 23/4, are in an elliptic curve isomorphic to

E : Y 2 = X3 −
1288423179

71639296
X +

8775405707427

303177500672
.

• If we find ONE valid rational point R ∈ E NOT in the torsion, then k · R gives an infinite number.

Remember that (E(R),+) ∼= {eit : t ∈ [0, 2π)} × {1,−1}; with the operation (eit , v) · (eis,w) = (ei(t+s), vw)

• Using MAGMA we found our seed:

R =

( 18243

8464
,

81

184

)

• Recovering the values (x(a), y(a), a) corresponding to the points kR, we get the result.
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Universality of the Lyness example. Gasull et al. 2012.

Theorem (Lyness normal form)

The family of elliptic curves Ca,h = {(x + 1)(y + 1)(x + y + a)− hxy = 0} over any field K (not

of char. 2 or 3) together with the points O = [1 : −1 : 0] and Q = [1 : 0 : 0], is the universal

family of elliptic curves with a point of order n, n ≥ 5 (including n =∞).

For any elliptic curve E(K) with a point R of order n ≥ 5, ∃ ! values a(E,R), h(E,R) ∈ K and a

unique isomorphism between E and Ca(E,R),h(E,R)
sending the zero of E to O and R to Q.

E(K)
∼=−→ Ca,h

R −→ [1 : 0 : 0]
O −→ [1 : −1 : 0]

The known results on elliptic curves with a point of order greater than 4 also holds in Lyness curves.

See http://web.math.pmf.unizg.hr/∼duje/tors/generic.html
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Proof:

• Any elliptic curve having a point R that is not a 2 or a 3 torsion point can be brought to the Tate
normal form

Y 2Z + (1− c)XYZ − bYZ 2 = X 3 − bX 2Z .

where R is sent to (0, 0).

• The change of variables

X = bz, Y = bc(y + z), Z = c(x + y) + (c + 1)z

and the relations

h = −
b
c2
, a =

c2 + c − b
c2

,

show that the curves Ca,h = {(x + z)(y + z)(x + y + az)− hxyz = 0} and the Tate normal form
are equivalent.

• The case c = 0 corresponds to a curve with a 4-torsion point.
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7. THE SET OF PERIODS.

Proposition

A birational map preserving a foliation of elliptic curves is either rigid or it has an infinite number
of periods.

Proof:

• From JRV Theorem on each elliptic curve
Ch our map is conjugate to a rotation.

• The rotation number function θ(h) is piece-
wise continuous for h ∈ Im(V ).

• Generically θ(h) is not constant⇒ ∃ rota-
tion interval I.

For all the irreducible q
p ∈ I, ∃ periodic orbits of F of minimal period p.

You can construct p0 such that q/p ∈ I for all p > p0,

and then check if there is any missing period if I is not optimal.
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Which are the periods of a particular F? ⇔Which are the irreducible fractions in I?

• It is possible to construct p0 s.t. for any r > p0 there exists an irreducible fraction q/r ∈ I.

• A finite checking determines for which values of p ≤ p0 there exists q/p ∈ I.

• Still the forbidden periods must be detected if I 6= Im(θ(h)).

To construct this value p0 we can use, among other methods, this one:

Lemma (Cima et al. 2007)

Consider a non empty interval (c, d);

Let p1 = 2, p2 = 3, p3, . . . , pn, . . . be all the prime numbers.

• Let pm+1 be the smallest prime number satisfying that pm+1 > max(3/(d − c), 2),

• Given any prime number pn, 1 ≤ n ≤ m, let sn be the smallest natural number such that psn
n > 4/(d − c).

• Set p0 := p
s1−1
1 p

s2−1
2 · · · psm−1

m .

Then, for any p > p0 there exists an irreducible fraction q/p ∈ (c, d).
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Example 2. The composition map associated to 2-periodic Lyness’ equations Bastien et al. 2013

We study the set of periods of the map

Fb,a(x , y) :=
(a + y

x
,

a + bx + y
xy

)
which preserves the (generically) elliptic curves

Ch := {(bx + a)(ay + b)(ax + by + ab)− hxy = 0}

This map appears of the composition map associated to the the 2-periodic Lyness’ equations

un+2 =
an + un+1

un
where an =

{
a for n = 2` + 1,
b for n = 2`.

Indeed, Fb,a = Fb ◦ Fa

(u1, u2)
Fa−−→ (u2, u3)

Fb−−→ (u3, u4)
Fa−−→ (u4, u5)

Fb−−→ (u5, u6)
Fa−−→ · · ·

Setting O := V , on each elliptic level (Ch,+,V ):

Fb,a(P) = P + [1:0:0]
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Theorem.

Consider the family Fb,a with a, b ∈ R.

(a) If (a, b) 6= (1, 1), then ∃ p0(a, b) ∈ N, generically computable, s.t. for any p > p0(a, b) ∃ at
least a curve Ch filled by p–periodic orbits.

(b) The set of periods of the family {Fb,a, a, b ∈ R} contains all minimal periods except 2, 3.

The set of periods when we restrict ourselves to the case a, b > 0 and x , y > 0 contains all

minimal periods except 2, 3, 4, 6, 10.

⇓

Corollary.

Consider the 2–periodic Lyness’ recurrence for a, b > 0 and positive initial conditions u1 and u2.

(a) If (a, b) 6= (1, 1), then ∃ p0(a, b) ∈ N, generically computable, s.t. for any p > p0(a, b) ∃ continua of initial conditions giving
2p–periodic sequences.

(b) The set of minimal periods arising when (a, b) ∈ (0,∞)2 and positive initial conditions are considered contains all the even
numbers except 4, 6, 8, 12, 20.

If a 6= b, then it does not appear any odd period, except 1.
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Proposition

Fixing a, b > 0 ⇒ ∃ hc such that ∀ h > hc Ch is elliptic.

The dynamics of Fb,a restricted to Ch is conjugate to a rotation with rotation number θ(h).

Proposition.

(a) lim
h→+∞

θ(h) = 2
5

(b) lim
h→hc

θ(h) = σ(a, b) = 1
2π arccos

(
1
2

[
−2 + 1

xc yc

])
.

Hence we have, generically, a rotation interval

I(a, b) :=
〈
σ(a, b), 2

5

〉
.

• (a) is proved using the parametrization of the elliptic curves given by the Weierstrass ℘ function as in Bastien et al. 2004a.

• Taking the family a = b2 we found that:⋃
b>0 I(b2, b) =

(
1
3 ,

1
2

)
\
{

2
5

}
⊂
⋃

a>0, b>0 I(a, b) ⊂
⋃

a>0, b>0 Image (θ (hc ,+∞)) .

• It can be proved that there are q/p ∈ (1/3, 1/2) with all denominators except 2, 3, 4, 6 and 10.

•We get the result by studying the energy levels using

p · O = p · [1 : 0 : 0] = [0 : 1 : 0] for p = 2, 3, 4, 6, 10.
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8. THE GENUS 0 CASE. Only few words

What happens if F = {P − hQ = 0︸ ︷︷ ︸
Ch

} has genus 0, or Ch is a genus 0 curve?

Each genus 0 curve Ch admits a rational parametrization

R −→ Ch
F−→ Ch −→ R

t −→ (x(t), y(t)) → F (x(t), y(t)) −→ t ′

Hence our birational map F on each curve Ch admits a representation given by the
one-dimensional birational map t → t ′.

The only one-dimensional birational maps are the Möbius transformations

t −→
a t + b
c t + d

which are well known.
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