Periodic orbits of planar integrable birational maps.

Víctor Mañosa*

Departament de Matemàtica Aplicada III Control, Dynamics and Applications Group (CoDALab) Universitat Politècnica de Catalunya.

NOMA'13 International Workshop on Nonlinear Maps and their Applications September 2013, Zaragoza, Spain.

A general approach, with examples from works with

G. Bastien, A. Cima, I. Gálvez, A. Gasull, M. Rogalski, X. Xarles.

^{*} Supported by Spanish Ministry of Economy and Competitiveness grant DPI2011-25822 and SGR program.

1. INTRODUCTION

We are interested in the study of periodic orbits of *planar integrable birational maps*. That is

• Planar rational: $F : U \subseteq \mathbb{R}^2 \longrightarrow U$ where $F(x, y) = \left(\frac{f_1}{f_2}, \frac{f_3}{f_4}\right)$ where f_i are polynomials.

- Birational: The inverse map F^{-1} is also rational.
- Integrable: There is a function V which is a *first integral* of F in \mathcal{U} . That is if

V(F(x, y)) = V(x, y), for all (x, y) in \mathcal{U} .

In addition, we will consider that *V* is a *rational function*

$$V(x,y)=\frac{P(x,y)}{Q(x,y)}.$$

So the map preserves a foliation of the plane given by *algebraic curves*

$$\mathcal{F}_h = \{ P(x, y) - h Q(x, y) = 0, h \in \operatorname{Im}(V) \}.$$

Examples

They appear in Number theory and Algebraic Geometry as automorphisms of algebraic curves.

The Lyness map
$$F_a(x, y) = \left(y, \frac{a+y}{x}\right)$$
 associated to $x_{n+2} = \frac{a+x_{n+1}}{x_n}$

It has the with first integral

$$V(x,y) = \frac{(x+1)(y+1)(x+y+a)}{xy}.$$

So it preserves the foliation given by

$$\mathcal{F}_h := \{ (x+1)(y+1)(x+y+a) - hxy = 0 \}$$

Among a large literature, see for instance Barbeau et al. 1995; Bastien & Rogalski, 2004a; Beukers & Cushman, 1998; Duistermaat, 2010; Esch & Rogers, 2001; Zeeman, 1996.

They appear as reduction of differential–difference soliton equations. For instance QRT maps, introduced in Quispel et al. 1989, see also Duistermaat, 2010.

D\Delta Nonlinear Schrödinger equation.Soliton equation: $-i\frac{d}{dt}u_n = u_{n+1} - 2u_n + u_{n-1} + \frac{1}{2}|u_n|^2(u_{n+1} + u_{n-1})$ Reduction: $u_n(t) = x_n \exp(i\omega t)$ Map: $F(x, y) = \left(y, -x + \frac{(\omega+2)y}{1+\frac{1}{2}y^2}\right)$ a type of Gumovski-Mira map,
also in the Mc Millan family of maps, and QRT.First integral $V(x, y) = x^2y^2 - 2(\omega + 2)xy + 2x^2 + 2y^2$
 $\Leftrightarrow \mathcal{F}_h := \{x^2y^2 - 2(\omega + 2)xy + 2x^2 + 2y^2 - h = 0\}$

On the rationality hypothesis on the first integral.

Are there planar integrable birational maps with nonrational first integrals?

$$F(x,y) = \left(\frac{x(a+y+day+bx+dy^{2}+cxy)}{(a+y)(bx+a+y)}, \frac{(abex+adxy+bexy+cx^{2}y+dxy^{2}+a^{2}e+2aey+bx^{2}+ey^{2}+ax+xy)y}{(cxy+bx+a+y)(bx+a+y)}\right)$$

The map is associated to 5-periodic Lyness difference equations

$$x_{n+2} = \frac{a_n + x_{n+1}}{x_n}$$
, with $a_n = \{a, b, c, d, e\}$.

They are non rationally integrable, in fact non meromorphically integrable, for a generic set of parameters Cima *et al.* 2013ab, although numerically show integrable "features".

Our objective:

To show the relationship between the algebraic-geometric properties of the invariant foliation \mathcal{F} and the dynamics of the map F.

More precisely, we will focus on the case that \mathcal{F} is generically elliptic.

The topics:

- The locus of periodic orbits.
- Existence of rational periodic orbits.
- The rotation number function and the set of periods of a map or a family.
- And two short digressions.

The examples (our results):

- The Lyness Map $F_a(x, y) = \left(y, \frac{a+y}{x}\right)$. Gasull *et al.* 2012.
- The composition map $F_{b,a}(x, y) := (F_b \circ F_a)(x, y) = \left(\frac{a+y}{x}, \frac{a+bx+y}{xy}\right)$ associated to 2-periodic Lyness recurrences. Bastien *et al.* 2013.

2. A FIRST DYNAMICAL RESULT: RESTRICTION TO GENUS 0 AND 1 CASES

A natural phase space to study planar birational maps is

$$\mathbb{C}P^{2} = \{ [x: y: z] \neq [0:0:0], x, y, z \in \mathbb{C} \} / \sim$$

where $[x_1 : y_1 : z_1] \sim [x_2 : y_2 : z_2]$ if and only if $[x_1 : y_1 : z_1] = \lambda [x_2 : y_2 : z_2]$ for $\lambda \neq 0$.

The points [x : y : 1] are called *affine* points and the points [x : y : 0] are called *infinity* points.

The Lyness map $F(x, y) = \left(y, \frac{a+y}{x}\right)$ can be seen as the map

$$\tilde{F}([x:y:z]) = [xy:az^2 + yz:xz]$$

except for the points [x : 0 : 0], [0 : y : 0] and [0 : -a : 1].

The invariant real planar foliation $C_h = \{(x + 1)(y + 1)(x + y + a) - hxy = 0\}$ is now

$$\widetilde{C}_h := \{(x+z)(y+z)(x+y+az) - hxyz = 0\},\$$

In general we will drop

Algebraic curves in $\mathbb{C}P^2$ are Riemann surfaces and are characterized by their *genus*.

The *degree-genus* formula states that for a given *irreducible* curve $C_h \in \mathcal{F}$:

$$g = \frac{(d-1)(d-2)}{2} - \sum_{p \in \text{Sing}(C_h)} \frac{m_p(m_p-1)}{2}$$

For instance the Lyness' Foliation

$$\widetilde{\mathcal{F}_h} := \{(x+z)(y+z)(x+y+az) - hxyz = 0\},\$$

has degree d = 3, so generically the curves have genus g = 1, and the singular curves have genus g = 0.

Víctor Mañosa (UPC)

If our map is NOT Globally periodic, \mathcal{F} is a genus 0 or 1-foliation.

Proposition.

A birational map in $U \subseteq \mathbb{K}^2$ with a rational first integral *V*, such that the curves $\{V = c\}$ are non-singular with with genus g > 1, must be globally periodic.

If our map is NOT Globally periodic, ${\mathcal F}$ is a genus 0 or 1-foliation.

Proposition.

A birational map in $U \subseteq \mathbb{K}^2$ with a rational first integral *V*, such that the curves $\{V = c\}$ are non-singular with with genus g > 1, must be globally periodic.

Proof:

- If the curves $\{V = c\}$ have generically genus g > 1 then there exists an open set $\mathcal{V} \subseteq \mathcal{U}$ foliated by curves of these type.
- By Hurwitz Theorem on each of these curves the map must be periodic.

Theorem (Hurwitz, 1893)

The group of birational maps on a non-singular algebraic curve in \mathbb{K}^2 of genus g > 1 is finite and of order at most 84(g - 1).

• So F is pointwise periodic on V, and hence by the Montgomery Theorem F must be globally periodic on V.

Theorem (Montgomery, 1937)

Pointwise periodic homeomorphisms in connected metric spaces are globally periodic.

• Since F is rational then it must be periodic on the whole \mathbb{K}^2 except at the points where its iterates are not well defined.

3. THE GENUS 1 CASE. ELLIPTIC FOLIATIONS

An elliptic curve is a projective algebraic curve of genus 1.

Curves of genus 1 are birationally isomorphic to smooth cubic curves.

In the case that \mathcal{F} is given (generically) by *elliptic curves*, then the *group structure* of the elliptic foliation characterizes the dynamics of any birational map preserving it.

Theorem (after Jogia, Roberts, Vivaldi. 2006.)

Any birational map F that preserves an elliptic curve C_h , can be expressed in terms of the group law of the curve as either

- $F_{|C_h}: P \mapsto P + Q$ where $Q \in C_h$ or
- $F_{|C_h}: P \mapsto i(P) + Q$ where *i* (and F) is GP of orders 2,3,4 or 6.

where + denotes the inner sum of C_h .

What is the *group structure*? what is this *inner sum*?

The chord-tangent group law in a non-singular cubic

Take two points P and Q in a nonsingular cubic C

- (1) Select a point \mathcal{O} to be the neutral element.
- (2) Take the third intersection point P * Q.
- (3) The point P + Q is defined as $P + Q = \mathcal{O} * (P * Q)$.

 $(C, +, \mathcal{O})$, is an *abelian group*.

Group law with an affine neutral element \mathcal{O}

The chord-tangent group law in a non-singular cubic

Take two points P and Q in a nonsingular cubic C

- (1) Select a point \mathcal{O} to be the neutral element.
- (2) Take the third intersection point P * Q.
- (3) The point P + Q is defined as $P + Q = \mathcal{O} * (P * Q)$.

 $(C, +, \mathcal{O})$, is an *abelian group*.

Group law with an affine neutral element $\ensuremath{\mathcal{O}}$

Group law with $\mathcal{O} = [0:1:0]$

Víctor Mañosa (UPC)

Periodic orbits of birational maps

NOMA'13 11/31

Theorem (Jogia et al. 2006.)

Any birational map F that preserves an elliptic curve C_h , there is a choice of \mathcal{O} such that

- $F_{|C_h}: P \mapsto P + Q$ where $Q \in C_h$ or
- $F_{|C_h}: P \mapsto i(P) + Q$ where *i* (and F) is GP of orders 2,3,4 or 6.

 $F_{b,a}(x,y) := \left(\frac{a+y}{x}, \frac{a+bx+y}{xy}\right) \text{ preserves } C_h := \{(bx+a)(ay+b)(ax+by+ab) - hxy = 0\}.$ Setting $\mathcal{O} := V = [0:1:0]$, on each elliptic level

$$F_{b,a}(P) = P + [1:0:0]$$

Víctor Mañosa (UPC)

If $F_{|C_h} : P \mapsto P + Q$, the map is *conjugate to a rotation* with *rotation number* $\theta(h)$. Because $(C_h(\mathbb{R}), +) \cong \{(e^{it}, \pm 1); t \in [0, 2\pi)\};$ with the operation $(e^{it}, v) \cdot (e^{is}, w) = (e^{i(t+s)}, v w)$

A birational map F on $(C_h, +, \mathcal{O})$ is

$$F^{n}: P \longrightarrow P + n Q$$

Hence C_h is full of *p*-periodic orbits $\Leftrightarrow p \cdot Q = O$.

Q is called a *torsion point* of C_h .

In summary:

- $Q \in \text{Tor}(C_h) \Rightarrow$ all the orbits in $C_h(\mathbb{R})$ are periodic.
- $Q \notin \text{Tor}(C_h) \Rightarrow$ the orbits of *F* fill densely the connected components of $C_h(\mathbb{R})$.

Each map $F_a([x : y : z]) = [xy : az^2 + yz + xz]$ preserves $C_h = \{(x + z)(y + z)(x + y + az) - hxyz\}$ Elliptic except for $h \in \{0, a - 1, h_c^{\pm}\}$.

Taking $\mathcal{O} = [1:-1:0]$ and Q = [1:0:0]. Observe that both $\mathcal{O}, Q \in C_h$ for all C_h .

 $F_{|C_h}: [x:y:z] \mapsto [x:y:z] + [\mathbf{1}:\mathbf{0}:\mathbf{0}] \Leftrightarrow F_{|C_h}^{\mathbf{n}}: [x:y:z] \mapsto [x:y:z] + \mathbf{n}[\mathbf{1}:\mathbf{0}:\mathbf{0}]$

Observe that there exists a *p*-periodic orbit iff $p \cdot [1:0:0] = O = [1:-1:0]$

Víctor Mañosa (UPC)

When $a(a - 1) \neq 0$, using the group operation on each elliptic curve, we get

$$2Q = [-1:0:1], \ 3Q = [0:-a:1],$$

$$4Q = \left[-a:\frac{ah-a+1}{a-1}:1\right],$$
and
$$-Q = [0:1:0], \ -2Q = [0:-1:1], \ -3Q = [-a:0:1],$$

$$-4Q = \left[\frac{ah-a+1}{a-1}:-a:1\right],$$

$$-5Q = \left[\frac{-a^2-ah+2a-1}{a(a-1)}:\frac{ah-a+1}{a-1}:1\right],$$

Are there 4 periodic orbits on the elliptic levels? NO

$$4Q = \left[-a: \frac{ah-a+1}{a-1}: \mathbf{1}\right] \neq [1:-1:\mathbf{0}] = \mathcal{O} !!$$

If a = 1, then $4Q = [0 : h : 0] \neq [1 : -1 : 0] = O$, and no 4-periodic orbits on the genus-0 levels (very easy). • Are there 9-periodic orbits on the elliptic levels? YES

$$4Q = \left[-\mathbf{a}:\frac{ah-a+1}{a-1}:1\right] = \left[\frac{-\mathbf{a}^2-\mathbf{ah}+2\mathbf{a}-1}{\mathbf{a}(\mathbf{a}-1)}:\frac{ah-a+1}{a-1}:1\right] = -5Q \Leftrightarrow$$

The 9-periodic orbits are in C_{h_9} where $h_9 = \frac{(a-1)(a^2-a-1)}{a}$

Víctor Mañosa (UPC)

5. ON RATIONAL PERIODIC ORBITS.

The group structure of the \mathcal{F} plays a crucial role when searching rational periodic orbits

A rational orbit is an orbit such that all the iterates have rational coordinates.

5. ON RATIONAL PERIODIC ORBITS.

The group structure of the \mathcal{F} plays a crucial role when searching rational periodic orbits

A rational orbit is an orbit such that all the iterates have rational coordinates.

Our motivation was:

Conjecture (Zeeman, 1996; Bastien and Rogalski, 2004a)

There is no *rational* periodic orbit of period 9 for the Lyness recurrence $x_{n+2} = \frac{a+x_{n+1}}{x_n}$.

Where are the periodic orbits for birational maps on elliptic curves?

''If we wish study possible period with a computer, it is easier to work with rational numbers. so, we suppose that a is rational, and that the point (u_1, u_0) is rational. With the use of a computer and a program of calculation with fractions, is it possible to see periodic points? Only in few cases!'' Bastien and Rogalski, 2004b

A numerical digression: where are the periodic orbits?

Our maps *F* restricted to C_h can be interpreted as a *smooth one-parameter family of diffeomorphism* of \mathbb{S}^1 . Thus *generically* the graph of the rotation function $\theta(h)$ has a *devil's staircase* shape:

The existence of an *open interval* I_m where $\theta(h) \equiv q/p$, is a consequence of the *existence of a hyperbolic p*-periodic orbit.

₩

Generically, periodic orbits are numerically visible.

In our case $\theta(h)$ is *piecewise analytic*, but even when $\theta(h)$ is analytic if we have **NOT** a birational map on elliptic curves you see periodic orbits, e.g. *proper Poncelet maps*.

Víctor Mañosa (UPC)

But even when $\theta(h)$ is analytic we find P.O.: playing with a proper *Poncelet map*.

A 57-periodic orbit after 20000 iterates

The Poncelet process

Poncelet Maps are not birational, but using *Lie symmetries* $\theta(h)$ is analytic, Cima *et al.* 2010

Víctor Mañosa (UPC)

The points with rational coordinates in $(C_h, +, \mathcal{O})$ form a *subgroup* denoted by $C_h(\mathbb{Q})$.

Theorem (Mordell, 1922 + Mazur, 1978) If *E* is a non-singular cubic, then $(E(\mathbb{Q}), +)$ is either the *finitely-generated abelian group* $E(\mathbb{Q}) \cong \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ or $E(\mathbb{Q}) \cong \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \mathbb{Z}/p$ where $1 \le p \le 10$ or p = 12or $E(\mathbb{Q}) \cong \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/p$ where p = 2, 4, 6, 8

Remember that $F_{|C_h} : P \longrightarrow P + Q$ will be periodic $\Leftrightarrow Q \in \text{Tor}(C_h)$

∜

Corollary

Any birational map on $C_h(\mathbb{R})$ only can have rational periodic orbits of periods

 $1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \mathcal{H}, 12.$

That's why we "don't see" periodic orbits.

Víctor Mañosa (UPC)

Theorem

For any $p \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \mathcal{M}, 12\}$ there are $a \in \mathbb{Q}^+ \cup \{0\}$ and rational initial conditions x_0, x_1 such that the sequence generated by $x_{n+2} = (a + x_{n+1})/x_n$ is *p*-periodic. Moreover these values of *p* are the only possible minimal periods for rational initial conditions and $a \in \mathbb{Q}$.

A counterexample to Zeeman's Conjecture: taking a = 7 and the initial condition $x_0 = 3/2$, $x_1 = 5/7$, we have

$$\frac{3}{2} \longrightarrow \frac{5}{7} \longrightarrow \frac{36}{7} \longrightarrow 17 \longrightarrow \frac{14}{3} \longrightarrow \frac{35}{51} \longrightarrow \frac{28}{17} \longrightarrow \frac{63}{5} \longrightarrow \frac{119}{10} \longrightarrow \frac{3}{2} \longrightarrow \frac{5}{7} \longrightarrow \dots$$

In fact, we only need to find one rational 9-periodic point to find an infinite number of them.

Proposition

If $a \in \mathbb{Q}^+$ is s.t. \exists an initial condition $(x_0, x_1) \in \mathbb{Q}^+ \times \mathbb{Q}^+$ s.t. the sequence is 9-periodic, then there *infinite* rational ones. In fact these points *fill densely* the elliptic curve C_{h_0}

$$(x+1)(y+1)(x+y+a) - \underbrace{\frac{(a-1)(a^2-a+1)}{a}}_{h_9} xy = 0$$

Proof: Suppose that we have $a \in \mathbb{Q}^+$, such that $Q = [1 : 0 : 0] \in \text{Tor}(C_{h_9}) \iff 9\text{-P.O.})$

• If $P = (x, y) \in \mathbb{Q}^+ \times \mathbb{Q}^+$ is on the oval of C_{h_g} then $(2k + 1)P \Rightarrow$ is also on it.

Notice that $(2k + 1) \cdot P$ are not iterates of *F*.

• The the points (2k + 1)P are rational and fill densely the oval (i.e. $(2k + 1)P \neq O$) because all 9-torsion points are not in $\mathbb{Q}^+ \times \mathbb{Q}^+$,

Remember that $(E(\mathbb{R}), +) \cong \{e^{it} : t \in [0, 2\pi)\} \times \{1, -1\}$; with the operation $(e^{it}, v) \cdot (e^{is}, w) = (e^{i(t+s)}, vw)$

Theorem

There are an *infinite* number of values $a \in \mathbb{Q}^+$ and initial conditions $x_0(a), x_1(a) \in \mathbb{Q}^+$ giving rise to 9-periodic orbits for the Lyness Eq.

Theorem

There are an *infinite* number of values $a \in \mathbb{Q}^+$ and initial conditions $x_0(a), x_1(a) \in \mathbb{Q}^+$ giving rise to 9-periodic orbits for the Lyness Eq.

Proof:

• We want to find infinitely many points $(x(a), y(a), a) \in (\mathbb{Q}^+ \times \mathbb{Q}^+ \times \mathbb{Q}^+) \cap S_a$, where

 $S_a := \{(a; x, y) : a(x+1)(y+1)(x+y+a) - (a-1)(a^2 - a + 1)xy = 0, x > 0, y > 0, a > a_*\}.$

and a_* is the infimum s.t. $C_{h_{\alpha}}$ has an oval in $\mathbb{R}^{2,+}$.

• The points in S_a s.t. x + y = 23/4, are in an elliptic curve isomorphic to

$$\mathcal{E}: \quad Y^2 = X^3 - \frac{1288423179}{71639296} X + \frac{8775405707427}{303177500672}$$

• If we find ONE valid rational point $R \in \mathcal{E}$ NOT in the torsion, then $k \cdot R$ gives an infinite number.

Remember that $(E(\mathbb{R}), +) \cong \{e^{it} : t \in [0, 2\pi)\} \times \{1, -1\};$ with the operation $(e^{it}, v) \cdot (e^{is}, w) = (e^{i(t+s)}, vw)$

• Using MAGMA we found our seed:

$$R = \left(\frac{18243}{8464}, \frac{81}{184}\right)$$

• Recovering the values (x(a), y(a), a) corresponding to the points kR, we get the result.

Theorem (Lyness normal form)

The family of elliptic curves $C_{a,h} = \{(x + 1)(y + 1)(x + y + a) - hxy = 0\}$ over any field \mathbb{K} (not of char. 2 or 3) together with the points $\mathcal{O} = [1 : -1 : 0]$ and Q = [1 : 0 : 0], is the universal family of elliptic curves with a point of order $n, n \ge 5$ (including $n = \infty$).

For any elliptic curve $E(\mathbb{K})$ with a point R of order $n \ge 5$, $\exists !$ values $a_{(E,R)}, h_{(E,R)} \in \mathbb{K}$ and a unique isomorphism between E and $C_{a_{(E,R)},h_{(E,R)}}$ sending the zero of E to \mathcal{O} and R to Q.

The known results on elliptic curves with a point of order greater than 4 also holds in Lyness curves.

See http://web.math.pmf.unizg.hr/~duje/tors/generic.html

Proof:

• Any elliptic curve having a point *R* that is not a 2 or a 3 torsion point can be brought to the *Tate* normal form

$$Y^{2}Z + (1 - c)XYZ - bYZ^{2} = X^{3} - bX^{2}Z.$$

where R is sent to (0, 0).

• The change of variables

$$X = bz$$
, $Y = bc(y + z)$, $Z = c(x + y) + (c + 1)z$

and the relations

$$h=-rac{b}{c^2},\quad a=rac{c^2+c-b}{c^2},$$

show that the curves $C_{a,h} = \{(x + z)(y + z)(x + y + az) - hxyz = 0\}$ and the *Tate normal form* are equivalent.

• The case c = 0 corresponds to a curve with a 4-torsion point.

7. THE SET OF PERIODS.

Proposition

A birational map preserving a foliation of elliptic curves is either *rigid* or it has an infinite number of periods.

For all the irreducible $\frac{q}{p} \in I$, \exists periodic orbits of *F* of minimal period *p*.

You can *construct* p_0 such that $q/p \in I$ for all $p > p_0$,

and then check if there is any missing period if I is not optimal.

Víctor Mañosa (UPC)

Which are the periods of a particular $F? \Leftrightarrow$ Which are the irreducible fractions in *I*?

- It is possible to *construct* p_0 s.t. for any $r > p_0$ there exists an irreducible fraction $q/r \in I$.
- A finite checking determines for which values of $p \le p_0$ there exists $q/p \in I$.
- Still the forbidden periods must be detected if $I \neq \text{Im}(\theta(h))$.

To construct this value p_0 we can use, among other methods, this one:

Lemma (Cima et al. 2007)

Consider a non empty interval (c, d);

Let $p_1 = 2, p_2 = 3, p_3, \ldots, p_n, \ldots$ be all the prime numbers.

- Let p_{m+1} be the smallest prime number satisfying that $p_{m+1} > \max(3/(d-c), 2)$,
- Given any prime number p_n , $1 \le n \le m$, let s_n be the smallest natural number such that $p_n^{s_n} > 4/(d-c)$.
- Set $p_0 := p_1^{s_1-1} p_2^{s_2-1} \cdots p_m^{s_m-1}$.

Then, for any $p > p_0$ there exists an irreducible fraction $q/p \in (c, d)$.

Example 2. The composition map associated to 2-periodic Lyness' equations Bastien et al. 2013

We study the set of periods of the map

$$F_{b,a}(x,y) := \left(\frac{a+y}{x}, \frac{a+bx+y}{xy}\right)$$

which preserves the (generically) elliptic curves

$$C_h := \{(bx + a)(ay + b)(ax + by + ab) - hxy = 0\}$$

This map appears of the composition map associated to the the 2-periodic Lyness' equations

$$u_{n+2} = \frac{a_n + u_{n+1}}{u_n} \text{ where } a_n = \begin{cases} a & \text{for } n = 2\ell + 1, \\ b & \text{for } n = 2\ell. \end{cases}$$

Indeed, $F_{b,a} = F_b \circ F_a$

$$(u_1, u_2) \xrightarrow{F_a} (u_2, u_3) \xrightarrow{F_b} (u_3, u_4) \xrightarrow{F_a} (u_4, u_5) \xrightarrow{F_b} (u_5, u_6) \xrightarrow{F_a} \cdots$$

Setting $\mathcal{O} := V$, on each elliptic level $(C_h, +, V)$:

$$F_{b,a}(P) = P + [1:0:0]$$

Víctor Mañosa (UPC)

Periodic orbits of birational maps

NOMA'13 27 / 31

Theorem.

Consider the family $F_{b,a}$ with $a, b \in \mathbb{R}$.

(a) If $(a, b) \neq (1, 1)$, then $\exists p_0(a, b) \in \mathbb{N}$, generically computable, s.t. for any $p > p_0(a, b) \exists$ at least a curve C_h filled by *p*-periodic orbits.

(b) The set of periods of the family $\{F_{b,a}, a, b \in \mathbb{R}\}$ contains all minimal periods except 2, 3.

The set of periods when we restrict ourselves to the case a, b > 0 and x, y > 0 contains all minimal periods except 2, 3, 4, 6, 10.

Corollary.

Consider the 2-periodic Lyness' recurrence for a, b > 0 and positive initial conditions u_1 and u_2 .

(a) If $(a, b) \neq (1, 1)$, then $\exists p_0(a, b) \in \mathbb{N}$, generically computable, s.t. for any $p > p_0(a, b) \exists$ continua of initial conditions giving 2p-periodic sequences.

 \parallel

(b) The set of minimal periods arising when $(a, b) \in (0, \infty)^2$ and positive initial conditions are considered contains all the even numbers except 4, 6, 8, 12, 20.

If $a \neq b$, then it does not appear any odd period, except 1.

Proposition

Fixing $a, b > 0 \Rightarrow \exists h_c$ such that $\forall h > h_c C_h$ is elliptic.

The dynamics of $F_{b,a}$ restricted to C_h is conjugate to a rotation with rotation number $\theta(h)$.

- (a) is proved using the parametrization of the elliptic curves given by the Weierstrass \wp function as in Bastien et al. 2004a.
- Taking the family $a = b^2$ we found that:

 $\bigcup_{b>0} I(b^2, b) = \left(\frac{1}{3}, \frac{1}{2}\right) \setminus \left\{\frac{2}{5}\right\} \subset \bigcup_{a>0, b>0} I(a, b) \subset \bigcup_{a>0, b>0} \operatorname{Image}\left(\theta\left(h_c, +\infty\right)\right).$

- It can be proved that there are $q/p \in (1/3, 1/2)$ with all denominators except 2, 3, 4, 6 and 10.
- · We get the result by studying the energy levels using

 $p \cdot \mathcal{O} = p \cdot [1:0:0] = [0:1:0]$ for p = 2, 3, 4, 6, 10.

What happens if $\mathcal{F} = \{\underbrace{P - hQ = 0}_{C_h}\}$ has genus 0, or C_h is a genus 0 curve?

Each genus 0 curve C_h admits a rational parametrization

Hence our birational map *F* on each curve C_h admits a representation given by the one-dimensional birational map $t \to t'$.

The only one-dimensional birational maps are the Möbius transformations

$$\rightarrow \frac{at+b}{ct+d}$$

which are well known.

References.

- Barbeau, Gelbord, Tanny; 1995. J. Difference Equations Appl. 1.
- Bastien, Rogalski; 2004a. J. Difference Equations Appl. 10.
- Bastien, Rogalski; 2004b. J. Math. Anal. Appl. 300.
- Bastien, Mañosa, Rogalski; 2013. Int. J. Bifurcations and Chaos. 23.
- Beukers, Cushman; 1998. J. Differential Equations 143.
- Cima, Gasull, Mañosa; 2007. J. Difference Equations Appl. 13.
- Cima, Gasull, Mañosa; 2010. Computers & Math. with Appl. 60.
- Cima, Gasull, Mañosa; 2013a. Dynamical Systems. To appear.
- Cima, Zafar; 2013b. J. Math. Anal. Appl. To appear.
- Esch, Rogers; 2001 Discrete Comput. Geom. 25.
- Gasull, Mañosa, Xarles; 2012. Discrete and Continuous Dynamical Systems -A. 32.
- Duistermaat; 2010. Discrete Integrable Systems. Springer.
- Jogia, Roberts, Vivaldi; 2006. J. Physics A 39.
- Montgomery; 1937. Amer. J. Math. 59.
- Quispel, Roberts, Thompson; 1988 and 1989. Phys. Lett. A 126. and Phys. D 34.
- Silverman; 2009 The Arithmetic of Elliptic Curves. Springer.
- Silverman, Tate; 1992. Rational Points on Elliptic Curves. Springer.
- Zeeman; 1996. Geometric unfolding of a difference equation. Unpublished paper.

Periodic orbits of birational maps

NOMA'13