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Abstract

It is known the relationship between cyclic codes and
invariant subspaces. We present in this work some
codes which are obtained from invariant and hyperin-
variant subspaces of the linear maps having associated
matrices, in the standard basis, of a special form.
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1 Introduction

Let ¢ be an endomorphism of a vector space V' over
a field F. A -invariant subspace F' C V is called
hyperinvariant if F' is invariant under all linear maps
commuting with ¢.

The main goal of this work is to regard some kind of
codes as invariant linear subspaces of " with respect
to a, 8 cyclic shift map over a position, Despite the
commutative algebra is the tool normally used to study
linear cyclic codes (see [MacWilliams, Sloane, 1977],
for example) the linear codes have a structure of linear
subspaces of [F”, then is natural to describe linear codes
in terms of linear algebra.

2 Preliminaries

Let F = GF(q) be a finite field of ¢ elements, ¢ =
p", p a prime number and let F” be the n-dimensional
vector space over the field F. We consider the standard

basis e; = (07...0,1,07...,0),f0ri:L...,n.

We consider the following linear map

p:F* — F?
(1, 2n) — (Tn,x1, ..

D

. 7In—l)

with associated matrix with respect to the standard ba-

sis,

00...01
10...00

A= 01...00 . (2)
00...10

This linear map is clearly orthogonal (A" = A~!) and
verifies A" = I,,. Cayley Hamilton Theorem ensures
that the characteristic polynomial is

p(s) = det(A — sI,) = (=1)"(s" — 1).

In order to obtain the hyperinvariant subspaces we
need to compute the centralizer of the linear map A.

Proposition 2.1. The centralizer C(A) of A is the set
of circulant matrices

1 T2 ...Tp—-1 ITp

Tpn T1 ...Tp—-2 Tn—-1
X=|%n-1%n .- Tn-3 Tn-2

o I3 ... Tp I

Proof. 1t suffices to solve the matrix equation AX —
XA=0.

Remark 2.1. If X is any circulant matrix of order n,
then the centralizer of X is C(A). That is to say, two
circulant matrices of the same order commute.

Definition 2.1. If + = (x1,...,2,) and y =
(y1,-..,Yyn) are two vectors in F", we will say that x
and y are orthogonal when x - y* = 0.

Remark 2.2. Notice that X € C(A) if, and only if,
Xt € C(A). In particular all circulant matrices are
normal matrices (in the sense that X X' = X'X), and
we have the following Proposition.



Proposition 2.2. If F' is an hyperinvariant subspace of
@, then F- is also hyperinvariant.

Proof. Given any w € Ft, c € F, X € C(A), if
(w')t = X*w?! then taking into account 2.2 we have:

w'et = wXet =0

and then w’ € F+ and F~ is hyperinvariant.

Notice that if v = (v1,...,v,) is an eigenvector of A,
then the following equalities hold:

Uy, = AU
v = )\'UQ
3)
Un—2 = Avn—l
Up—1 = Avn

In particular, we obtain that

v= ("L

and we have the following Proposition

Proposition 2.3. Given any A € GF(q)* such that
A = 1, then [v] with v = (A"~1A"=2 ...\ 1) is
an hyperinvariant subspace.

Corollary 2.1. The subspace F = [(1,1,...,1,1)] is
hyperinvariant.

The Euler-Fermat Theorem provides information about
the roots of \™ — 1.

Theorem 2.1. IfF = GF(q), then \9™* = 1 has ¢ — 1
different roots.

Example 2.1. Consider n = 4 and F = GF(5). In
this case, as a consequence of Euler-Fermat Theorem,
the characteristic polynomial has four different roots.
In particular the eigenvalues of A are \1 = 1, Ay = 2,
A3 =3\ =4

The subspace G=[(3,4,2,1)] is A-invariant:

0001
1000
0100
0010

— N oW
— N e W

and G is also hyperinvariant because

Ty T2 T3 T4
Tq T1 T2 T3
T3 Tq T1 T2
T2 T3 T4 T1

= (Bzo+4x3+2x4+27)

N o W
— N W

The subspace H=[(1,4,1,4)] is A-invariant:

0001\ /1 1
1000 4| _,[4
0100] |1 1
0010/ \4 4

and H is also hyperinvariant because

Ty T2 T3 T4
T4 Ty T2 T3
T3 T4 T1 T2
T2 T3 Tg T

= (.’171 +4xo+x3 +4.’174)

N e
[N N

In general we have the following result.

Proposition 2.4. Let v an eigenvector of A corre-
sponding to the simple eigenvalue o. Then v is an
eigenvector of X forall X € C(A).

Proof. As a consequence of the definitions,
AXv=XAv = Xav = aXv,

then Xwv is the zero vector or it is an eigenvector of A
of eigenvalue « for all X € C(A).

Taking into account that « is simple we have that
Xwv = Mo, and the proof is completed.

We can compute the value of the eigenvalue as fol-
lows.

Let v be an eigenvector of A corresponding to the
eigenvalue a. Taking into account that v # 0 we can

consider v = (vy,...,v;—1, L, V541, .., 0n).
v v
T1 X2 ...Tp_1 Tn 1 1
LTn T1 .-« Tp-2 Tp-1 :
Tpn—1 Ty -+ Tpn-3 Tp-2 1 =\ 1
To I3 ... Tp T Vp, VUp,
The i-th coordinate of Xv is =,_;40v1 + ... +

Tp—i+1Un = A

Not only one dimensional invariant subspaces are hy-
perinvariant, but invariant subspaces are also hyperin-
variants.

Proposition 2.5. Let F' be an invariant subspace of A.
Then it is hyperinvariant.

Proof. It suffices to observe that, for all X € C(A)
then

X=ol+aA" '+ .. . +z, 1A%+ 2, A.

Then F' is an invariant subspace of X.



A generalization of ¢ is the following linear map:

(,0(1 . F'IL 5 ]F"L
(1, xn) — (@ Ty, 21, ..., Tp_1)
where a # 0 and associated matrix respect to the stan-
dard basis,

00...0a
10...00
A, = 01...00
00...10

This linear map verifies A;' = A} /o and A7 = al,,.
Cayley Hamilton Theorem ensures that the characteris-
tic polynomial is

p(s) = det(A — sl,) = (=1)"(s" — a).

As in the case of the map ¢, we need to compute the
centralizer of the linear map A,, in order to obtain the
hyperinvariant subspaces.

Proposition 2.6. The centralizer C(A,) of Aq is the
set of matrices

r1 axg ... ATxpn—-1 aIp
Tp T1 ...0Tp—2 ATp_1
Tn—1 Tpn -..0Tp—-3 AL p—2

xZ9 r3 ... Tp X1
Proof. 1t suffices to solve the matrix equation A, X, —
XA, =0.

Remark 2.3. If X, € C(A,) then X}, € C(Ay,,). For
that, it suffices to observe that

yi iy, 1%@/3 1iyz
Y2 Y1 2 Yn—-3 Yn—2

a . %ynf‘B Eyn72

Xt =Yi/q = Ys Y2
Yn Yn—1 .- Y2 Y1
where y, = x1 and y; = ax; forall i # 1.

Proposition 2.7. Let F' be a hyperinvariant subspace
of A,. Then, F* is a hyperinvariant subspace of A, Ja-

Proof. Given any w € F+,c € F, X € C(A,), if
(w")t = X'twt then, we have:

w'ct =wXet =0

€ C(Al/a)

and then X'w! = (w')! € F+ and F is invariant for
any matrix in C(A;/,); that is to say, it is an hyperin-
variant subspace for A, /,.

Notice that if v = (v1,...,v,) is an eigenvector of
A, then the following equalities hold:

av, = vy
v = )\UQ
. 4)
Un—2 = )\Un—l
Up—1 = AUy

In particular, we obtain that
v=A""L A2 N

and we have the following Proposition:

Proposition 2.8. Given any A € GF(q)* such that
A" = a, then [v] with v = (A""L A"=2 ..\ 1) is
an hyperinvariant subspace.

Proposition 2.5 can be generalized to the case of A,
maps.

Proposition 2.9. Let F' be an invariant subspace of
A,. Then it is hyperinvariant.

Proof. Tt suffices to observe that, for all X, € C(A,),
Xy =211+ nggfl +...+ xn,lAg + z,A,.

Then F' is an invariant subspace of X,,.

Example 2.2. Over F = GF'(5) we consider

002
A,= 100
010
F =[(1,2,4)] is invariant
002 1 1
100 21 =312
010 4 4

and also it is hyperinvariant

T 2%‘2 2.’1}3 1
Tr3 T1 2.132 2
To T3 X1 4

= (:L‘l + dxo + 31‘3)

S

Notice that in fact we have solved the following
slightly more general case



©Oab - F* — F™
(x1,...,2n) — (@ Tp,b-21,...,b-Tp_1)
with associated matrix with respect to the standard ba-
sis,

00...0a
b0...00
Ay = 06...00
00...60

for a, b such that ab # 0 because of
A X — XAgp = D(Aup X — X Ausp)

with D = diag (b).

Finally we show the two parameter case. Given two
different non-zero elements «, 5 in IF, we are interested
in the following linear map

Pa,8 F" — F"
(1, ., xn) — (B Tp, 21,0 T, Ty—1)

with associated matrix with respect to the standard ba-
sis,

000...08
100...00
Oa0...00
Asp=100a...00
000...a0

The characteristic polynomial of A, g is pa,g(s) =
(=D (s" —a"72B),

Proposition 2.10. The centralizer C(Aq,g) of Aag is
the set of matrices X g with:

T, Py %xg %1’3 g
éfl’nfl In E(L’l ?.TQ el T

Xag =

)
1 B B
axg ry4 Ty g ... E(ﬂl 5L
1 B
EZ‘Q r3 X4 Ty ... Ip 51‘1
X1 To T3 T4 Tp—1 Tn

The proof is analogous to those of Propositions 2.1 and
2.6.

Notice that if v = (vy, ...
A, g, then:

,Up) is an eigenvector of

/an = vy
V1 = )\1)2

(5
QUp_2 = AMUp_1
QUp—1 = AUy,

In particular, we obtain that

v = (A"_la_("_2), N 202 AT 1)
and we have the following Proposition:
Proposition 2.11. Given any X € GF(q)*
such that A" = Ba™=2,  then wv| with
v o= (Alam(2 A2 (=2 Aat 1)

is an hyperinvariant subspace.

Proposition 2.12. Let F' be an invariant subspace of
Aq g. Then it is hyperinvariant.

Proof. Tt suffices to observe that, for all X,z €
C(Aayg) then

X
7 1 n—1 T2 n—3
el + 5o T s das T
Tn—2 ,o Tp—1
o2 Aoz.ﬂ—"_ o AQ,B

3 Linear cyclic codes

Throughout this section, [F denotes a fixed finite field
and n a positive integer such that the characteristic of ¥
does not divide the length of the code n. This condition
is the usual assumption from the theory of cyclic block
codes in order to guarantee that the polynomial s — 1
factorize into different prime polynomials over F.

Definition 3.1. A code C with length n over the field F
is called cyclic, if whenever ¢ = (ay,...,a,) isin C,
its cycle shift sc = (ap, a1, ...,an_1) is also in C.

Example 3.1. The linear code C = {000,110, 011,
101} over GF(2) is cyclic. To prove that, we compute
the shift sc for all ¢ € C: s(000) = 000, s(110) =
011, s(011) = 101, and s(101) = 110.

It is easy to prove the following statement from the def-
initions.

Let P; be a full cycle permutation matrix obtained
from the identity matrix I3 by moving its first column
to the last column (observe that Ps corresponds to the
matrix A of Equation (2) for n = 3). The shift sc can
be expressed as

001 0101 0011
100 0110])=({0101
010 0011 0110



In general the shift sc can be expressed as P, ct where
P, be a full cycle permutation matrix obtained from the
identity matrix I,, by moving its first column to the last
column.

Taking into account that P, is a linear transformation
of F™ (the map ¢ defined in Equation (1)), we can
construct a cyclic code, as follows: take a word ¢, and
construct the set S consisting of ¢ and its successive
images by this linear map

S ={c" P.ct,..., PPt}

and define the linear subspace C' as the linear space
generated by S; that is to say, C = [S]. Then C is
defined as the smallest linear cyclic code containing c.

The two Propositions below are proved in [Radkova,
Van-Zanten, 2009] and [Radkova, Bojilov, Van-Zanten,
2007].

Proposition 3.1. A linear code C' with length n over
the field F is cyclic if, and only if, C' is a P,-invariant
subspace of F™.

Proposition 3.2. Let C be a cyclic code, and p(s) =
(=D)™p1(s) - ... - pr(s) the decomposition of p(s) in
irreducible factors. Then C = Kerp;,(A) @ ... ®
Ker p;_ (A) for some minimal p-invariant subspaces
Kerp;, (A) of F".

After Proposition 2.5 we deduce the following result.

Proposition 3.3. A linear code C with length n over
the field F is cyclic if, and only if, C is a P,-
hyperinvariant subspace of F'".

Example 3.2. Consider the matrix A of ¢ forn = 7
and ¢ = 2. Then we have p(s) = s + 1. Factoriz-
ing p(s) into irreducible factors over GF(2) we have
P(s) = p1()p2 ()P (5) = (5 + 1)(5 + 5+ 1)(s +
52 +1). The factors p;(s) define minimal P,,-invariant
subspaces F; = Kerp;(A), fori=1,2,3.

We define a cyclic linear code C' by

C=F & F,=Ker(pi(A)) ® Ker (p2(A))

p1(s)-pa(s) = s*+ 52+ 52+ 1and A* + A3+ A2+ 1
is the following matrix

1001110
0100111
1010011
1101001
1110100
0111010
0011101

Ker (A*+ A3+ A2 + 1) =
[(1,0,1,1,0,0,0),(1,1,1,0,1,0,0),(1,1,0,0,0,1,0),
(0,1,1,0,0,0,1)].

4 Constacyclic codes

As a first generalization of cyclic codes we have
the constacyclic codes which were introduced in
[Berlekamp, 1968].

Definition 4.1. Let a be a nonzero element of F. A
code C with length n over the field F is called consta-
cyclic with respect to a if whenever ¢ = (ay,...,ay)
is in C, so is its cycle constashift sc = (a -
Gy A1y vy Op—1)-

Obviously, when a =
cyclic.

The constashift sc can be expressed as P, c' where
P,, is a generalized full cycle permutation matrix ob-
tained from the identity matrix [,, by moving its first
column multiplied by a to the last column.

1 the constacyclic code is

00 ...0a
10 00
00...10

According to [Radkova, Van-Zanten, 2009], we have
the following Propositions.

Proposition 4.1. A linear code C' with length n over
the field ¥ is constacyclic if, and only if, C is an P,,, -
invariant subspace of F".

Suppose now that (n, q) = 1and pe(s) = (—1)"(s"—
a) has no multiple roots and splits into distinct irre-
ducible monic factors.

Proposition 4.2. Let C' be a constacyclic code, and
Da(8) = (=1)"pa, (8)-. . . Da, (s) the decomposition of
Pa(s) in irreducible factors. Then C = Kerp,, (A) ©
... @ Kerpg, (A) for some minimal ¢ ,-invariant sub-
spaces Kerpa, (A) of F™.

After Proposition 2.9 we deduce the following result.

Proposition 4.3. A linear code C' with length n over
the field F is constacyclic if and only if C'is an P, -
hyperinvariant subspace of F™.

Example 4.1. Consider the matrix A, of P,, forn =
8, q = 5and a = 4. Then we have p(s) = s5 — 4.
Factorizing p(s) into irreducible factors over GF(5)
we have p(s) = p1(s)p2(s) = (s* — 2)(s* +2). The
factors p;(s) define minimal P, -invariant subspaces
F; = Kerp;(4,), fori=1,2.

We define a constacyclic linear code C, by

Ca = Fy = Ker (p1(4))



p1(s) = s* — 2 and A* — 21 is the following matrix

30004000
03000400
00300040
00030004
10003000
01000300
00100030
00010003

Ker (A% — 21)
[(2,0,0,0,
(0.0

5 Two-parameter cyclic codes

In this section, we will to generalize the concept of
constacyclic code to two parameter cyclic code as fol-
lows.

Definition 5.1. Let «, 8 be two nonzero elements of F.
A code C with length n over the field F is called two-
parameter cyclic with respect to o and (3 if whenever
¢ =(ay,...,ay)isin C, so is its cycle two parameter
shift sc = (8- ap,a1, - Qg ..., Q- Gp_1).

Obviously, when o = 1 the two-parameter cyclic code
is constacyclic and when o = 3 = 1 it is cyclic.

The two-parameter shift sc can be expressed as
P, p,c" where P, g, is a generalized full cycle per-
mutation matrix obtained from the identity matrix I,
multiplying by « the third to n column and by moving
its first column multiplied by 3 to the last column.

00...0p8
10 00
Pog, = 0 « 00
00 ...a0

As immediate consequence of definition we have the
following Proposition.

Proposition 5.1. A linear code C' with length n over
the field F is two-parameter cyclic if, and only if, C' is
an P, g, -invariant subspace of F".

After Proposition 2.12 we have the following result.

Proposition 5.2. A linear code C' with length n over
the field F is two-parameter cyclic if, and only if, C' is
a P, g, -hyperinvariant subspace of F™.

Suppose now that (n, ¢) = 1 and p,_g(s) has no multi-
ple roots and splits into distinct irreducible monic fac-
tors.

Proposition 5.3. Let C be a two parameter cyclic
code, and po g(s) = (—1)"pa,s (8) - ... - Da,p,.(5)

the decomposition of pa(s) in irreducible fac-
tors. Then C = Kerpagp, (Aap) © ... @
Kerpa, g, (Aa,p) for some minimal P, g, -invariant
subspaces Kerpa. g, (Aa,p) of F™.

Proof. Firstof all, it is easy to see that Ker p, g, (Aq,3)
for ¢« = 1,...,r are P,pg, -invariant: let v €
Kel‘pa”gi(Aaﬁ) then Paﬁnv = pa,,é’l(Aaﬂ) R
Pa,p, (Aa,p)v = 0.

The subspaces Kerpa g, (Aa,
the polynomials p, g, (s) are irreducible.

Now, we define D;(s) = pa.s(s)/Pa,p;(s). Taking
into account (p1(s),...,Dpr(s)) = 1, there exist poly-
nomials ¢1($), ..., q-(s) such that ¢, (s)p1(s) + ... +
4 (5)Pr(s) = 1.

Let ¢ € C, then ¢ = q1(Aap)p1(Aap)c+ ... +
Q’I'(Aa,ﬂ)ﬁT'(A(X,B)C' Calling ¢; = Qi(Aa,B)ﬁi(Aa,B)c
and taking into account that C' is P, g-invariant, and
that ¢; € Kerpa g, (Aq,3) we have that ¢; € C N

Kerpa,ﬁi (AOé’B)'

Example 5.1. Consider the matrix Ay g of Pu g, for
n =8 q = 5 a = 2and B = 4. Then
we have p(s) = s% — 1. Factorizing p(s) into
irreducible factors over GF(5) we have p(s) =
P1(5)p2(5)p3(5)pa(5)p5 ()6 (5) = (5 -+ 1)(s+2) (5 +
3)(s+4)(s2+2)(s2+3). The factors p;(s) define mini-
mal P, g, -invariant subspaces F; = Ker p;(Aq. ), for
i=1,2,3,4,5,6.

We define a two-parameter cyclic linear code C,g by

) are minimal because

Ca,ﬂ = F1 D F5 = Ker (pl(Aa,,B)) D Ker (p5(Aa”@))

pi(s) -ps(s) = s° + 5% + 25+ 2and A% 5+ A2, 5 +
2A. g + 21 is the following matrix

20000133
22000034
24200003
44420000
03442000
00344200
00034420
00003442

+A —|—2Aa[3+2])
34 ,1),(1,0,4,0,2,0,1,0),

3
2,1
(0,3.0,4.0,2,0,1)] .

er (A
[(4

6 Cyclic codes as convolutional codes
The cyclic block codes can be represented by means
of polynomials in the following way

p:F* — Fls]/(s" — 1)

c=(ag,--,an_1) — p(c) = 22:01 a;st

The map p translates the cyclic shift into multiplica-
tion by s. As a consequence, a cyclic block code C' can



be represented as an ideal p(C') in F[s]/(s™ — 1) and
vice versa.
In fact, we have the following Proposition.

Proposition 6.1. A linear code C' is cyclic if and only
if p(C) is an ideal of F[s]/(s™ — 1).

Proposition 6.2. Let C' be a cyclic code, then there ex-
ists a monic polynomial g(s) of minimal degree r such
that p(C) = (g(s)), and dimension of p(C) isn — r.

p(C) = (p(s)g(s) | degreep(s) <n —r)

This Proposition allows to view the cyclic code as
convolutional code defining the encoder by

Example 6.1. Ler {(000000), (111000), (000111),
(111111)} be some codewords of a cyclic code.

Considering their images,

p(C) = {1+s5+52, 83 +s1+5° 1+s5+52+s3+s5+
5 C[1+s+52, 83 +54+55 1+s5+52+53+58+59)
inF[s]/(s® —1).

Observe that s°—1 = (s> +s+1)(s*+s*+s+1) and
3454455 = 3(s245+1), 1+5+52+52+s5t+5° =
(1+53)(s®+5+1), then 1+ s+ 52 can be the generator
of the code.

Then the ideal p(C') is generated by {g(s)) = (1+s+
s2), the dimension is n — degre g(s) = 6 — 2 = 4 and
C is constituted by the multiples of g(s), C = {1+ s+
s2, s+ 82 +83 82+ 83+ 83+ 51+ 50}

The corresponding (4,1,5) convolutional code is the
rational matrix associated G(s) defined as follows:

1+S+82
3454485
2

1-|—82+S3 sts24s?

3 4 5
s+s" 457 | | s (34 5%+ 5°) =
2, 3, 4= s°+ st +8%) =
§$°+s°+s 5 3 4
3. 44 5 S ts s
s°+ 8%+ s 34 sitsb

1

G(s)(s® + s* + s%).

A realization of this code is (A, B,C, D) where A =

—-1-1000 1

1 0000 0 00111
0 1000, B=1]0|,C=(01110],
0 0100 0 11100
0 0010 0

D = 03x1.

It is easy to verify that C(sI — A)™'B + D =

1+s+s®
53 +s54455

s+s2+33
s3+51485

52—%53—Fs4
83 +54485

1

Notice that this system in not minimal, controllable
but not observable (see in [Garcia-Planas, Souidi, Um,
2013]).

Simplifying the fractions in G(s) we observe that the

s3

w
w“”

matrix G(s) is equivalent to G(s) =

®» |»
| o

The realization of this rational matrix is given by

- N 000\ _ 1
(A,B,C,D) where A = (100, B = 0],
010 0
B 001
C = 010 ClndD:03><1.
100

It is easy to show that C(sI — A)™*B + D = G(s).

This realization is minimal, controllable and observ-
able, (see more in [Garcia-Planas, Souidi, Um, 2013]).

In general, given G(s) associated to a cyclic code, we
observe that it is equivalent to the matrix

n—r—1
8 S

snfrfl

n—r—2

Sn—r—l

A realization of this convolutional code is



(Z, B , C , 15) where Radkova D., Van Zanten D.J. (2009) Constacyclic
codes as invariant subspaces, Linear Algebra and its
Applications 430, pp. 855-864.

00...00
10...00

A= X EMn—T—l(F)a
00...10
1
0

B= : eJ\4(71—7‘—1)><1(IF)3 (6)
0
0...01
0...10

C = EMn—r—l(F)
1...00

D = 0(n—r—l)><1~

And we have the following Proposition.

Proposition 6.3. A sufficient condition for the lin-
ear system (A, B,C, D) be the realization of a lin-
ear cyclic code is that it is equivalent to the system

(A, B, C, D) considered in (6), under the equivalence

relation (A, B,C,D) = (P~*AP, P~'B,CP, D).

Remark 6.1. The equivalence relation considered pre-
serve the transfer matrix of the system:

C(sI—A)"'B+D=

CP(sI — P"YAP)"'P~1B+ D =
CPP~Y(sI — A)"'PP'B+ D =
C(sI — A)"'B+D.
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