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Abstract
In this work a study of the behavior of a simple

eigenvalue of singular linear system family E(p)ẋ =
A(p)x + B(p)u, y = C(p)x smoothly dependent on
a vector of real parameters p = (p1, . . . , pn) is pre-
sented.
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1 Introduction
Let us consider a finite-dimensional singular linear

time-invariant system

Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

}
x(t0) = x0, (1)

where x is the state vector, u is the input (or con-
trol) vector, E,A ∈ Mn×q(C), B ∈ Mn×m(C),
C ∈ Mp×q(C) and ẋ = dx/dt. We will represent the
systems as 4-tuples of matrices (E,A,B,C). In this
paper we will consider the case where n = q. For the
square case and ifE = In the systems are standard and
we will denote them, as 3-tuples (A,B,C).
Singular systems (also called diferential/algebraic

systems, descriptor systems or generalized systems),
are found in engineering systems such as electrical,
chemical processing circuit or power systems, aircraft
guidance and Control, mechanical industrial plants,
acoustic noise control, among others, and they have at-
tracted interest in recent years.
It is well known that the eigenvalues and eigenvec-

tors of the system matrix play a key role in determin-
ing the response of the system. Sometimes it is pos-
sible to change the value of some eigenvalues intro-
ducing proportional and derivative feedback controls
in the system and proportional and derivative output
injection. The values of the eigenvalues that can not

be modified by any feedback (proportional or deriva-
tive) and/or output injection (proportional or deriva-
tive), correspond to the eigenvalues of the singular pen-

cil
(
sE −A B
C 0

)
, that we will simply call eigenvalues

of the 4-tuple (E,A,B,C).
Perturbation theory of linear systems has been ex-

tensively studied over the last years starting from
the works of Rayleigh and Schrodinger [Kato,
1980], and more recently different works as [Ben-
ner, Mehrmann, Xu, 2002], [Garcı́a-Planas, S. Tarrag-
ona, 2011],[Garcı́a-Planas, S. Tarragona, 2012], can be
found. this treatment of eigenvalues is a tool for effi-
ciently approximating the influence of small perturba-
tions on different properties of the unperturbed system.
Small perturbations of simple eigenvalues with a

change of parameters is a problem of general interest
in applied mathematics and concretely, this study for
the kind of systems under consideration have some in-
terest because in the case where m = p < n, the most
generic types of systems have n −m simple eigenval-
ues.
In the sequel and without lost of generality, we will

consider systems such that matrices B and C have full
rank and m = p < n.

2 Lie group action
An equivalence relation induced by the action of a Lie

group can be considered in the space of singular sys-
tems

Definition 2.1. Two 4-tuples (E′, A′, B′, C ′) and
(E,A,B,C) are called equivalent if, and only if, there
exist matrices P,Q ∈ Gl(n;C), R ∈ Gl(m;C),
S ∈ Gl(p;C), FBA , FBE ∈ Mm×n(C) and FCA , F

C
E ∈

Mn×p(C) such that

(E′, A′, B′, C′) =
(QEP + FCE CP +QBFBE , QAP + FCACP +QBFBA ,

QBR, SCP ),
(2)



It is easy to check that this relation is an equivalence
relation.
A system (E,A,B,C), for which there exist matrices
FBE and/or FCE such that E + BFBE + FCE C is invert-
ible is called standardizable, and in this case there exist
matrices P,Q, FBE , F

C
E such that QEP + QBFBE +

FCE CP = In. Consequently the equivalent system is
standard. Notice that the standardizable character is
invariant under the equivalence relation being consid-
ered.
If the original system is standard and if we want to

preserve this condition under the equivalence relation
we restrict the operation to the case where Q = P−1,
FBE = 0 and FCE = 0.

2.1 Eigenvalues and eigenvectors
The eigenvalue concept defined for standard systems

can be generalized to singular systems in the following
manner

Definition 2.2. Let (E,A,B,C) be a system. λ0 is an
eigenvalue of this system if and only if

rank
(
λ0E −A B

C 0

)
< rank

(
λE −A B
C 0

)
.

We denote by σ(E,A,B,C) the set of eigenvalues of
the 4-tuple (E,A,B,C) and we call it the spectrum of
the system.

Proposition 2.1. Let (E,A,B,C) be a system. The
spectrum of this system is invariant under equivalence
relation considered.

Proof. It suffices to observe that

rank
(
λE −A B
C 0

)
=

rank
(
Q λFCE − FCA
0 S

)(
λE −A B
C 0

)(
P

λFBE − FBA R

)
.

Definition 2.3. i) v0 ∈ Mn×1(C) is an eigenvector
of this system corresponding to the eigenvalue λ0
if and only if, there exist a vector w0 ∈Mm×1(C)
such that

(
λ0(E +BFBE )− (A+BFBA ) B

C 0

)(
v0
w0

)
= 0,

for all FBE , FBA .
ii) u0 ∈ M1×n(C) is a left eigenvector of the system

corresponding to the eigenvalue λ0 if and only if,
there exist a vector ω0 ∈M1×p(C) such that

(
u0 ω0

)(λ0(E + FCE C)− (A+ FCAC) B
C 0

)
= 0,

for all FCE , FCA .

Proposition 2.2. Let λ0 be an eigenvalue and v0 an
associated eigenvector of the (E,A,B,C). Then λ0
is an eigenvalue and v0 an associated eigenvector of
(E + BFCE + FCE C,A + BFBA + FCAC,B,C) for all
FBE , FCE , FBA , FCA .

Proof. Let w0 = w0 − (λ0F
B
E − FBA )v0.

(
I λ0F

C
E − FCA

0 I

)(
λ0E −A B

C 0

)(
I 0

λ0F
B
E − FBA I

)(
v0
w0

)
=(

I λ0F
C
E − FCA

0 I

)(
λ0E −A B

C 0

)(
v0

(λ0F
B
E − FBA )v0 + w0

)
=(

I λ0F
C
E − FCA

0 I

)(
λ0E −A B

C 0

)(
v0
w0

)
=(

I λ0F
C
E − FCA

0 I

)(
0
0

)
=

(
0
0

)
Proposition 2.3. Let λ0 be an eigenvalue and u0 an
associated left eigenvector of the (E,A,B,C). Then
λ0 is an eigenvalue and u0 an associated left eigenvec-
tor of (E + BFCE + FCE C,A + BFBA + FCAC,B,C)
for all FBE , FCE , FBA , FCA .

Proof. Analogous to the proof of proposition 2.2, tak-
ing ω0 = ω0 − u0(λ0FCE − FCA ).

Remark 2.1. Unlike the case of triples of matrices
(E,A,B) (see [Garcı́a-Planas, S. Tarragona, 2012])
If λ0 is an eigenvalue of the 4-tuple (E,A,B,C) it
is not necessarily a generalized eigenvalue of the pair
(E,A), as we can see in the following example.

Example 2.1. Let (E,A,B,C) be a system with E =

I , A =

(
0 0
1 2

)
, B =

(
3
0

)
,C =

(
1 1
)
.

det

(
λE −A B
C 0

)
= −3λ+ 3 = 0.

Then, the eigenvalue of the system is λ = 1. Observe
that v0 = (−3, 3)t is an eigenvector associated to λ =
1 (there exist w0 = 1).
But det(λE − A) = λ(λ − 2), so the eigenvalues of

the pair (E,A) are λ1 = 0 and λ2 = 2.

We will distinguish one type of eigenvalue that in
some sense is generic.

Definition 2.4. An eigenvalue λ0 of the system
(E,A,B,C) is called simple if and only if verifies the
following conditions

i) rank
(
λ0E −A B

C 0

)
= rank

(
λE −A B
C 0

)
− 1,

and

ii)
rank


λ0E −A B 0 0

C 0 0 0
E 0 λ0E −A B
0 0 C 0

 =

rank
(
λ0E −A B

C 0

)
+ rank

(
λE −A B
C 0

)
.



It is easy to proof the following proposition.

Proposition 2.4. The simple character is invariant un-
der equivalence relation considered.

Proposition 2.5. Let λ0 be a simple eigenvalue of the
standard system (A,B,C). Then, there exist an asso-
ciate eigenvector v0 and an associate left eigenvector
u0 such that u0v0 = 1.

Proof. If λ0 is a simple eigenvalue, the system, this

can be reduced to
((

A1 0
0 λ0

)
,

(
B1

0

)
, (C1 0)

)
, with

rank
(
λ0I −A1 B1

C1 0

)
= n− 1.

In this reduced form it is easy to observe that v0 =
(0, ..., 0, 1)t is an eigenvector and v0 = (0, ..., 0, 1) is a
left eigenvector verifying u0v0 = 1. Now, taking into
account propositions 2.2 and 2.3, we can check easily
that Pv0 is an eigenvector of the system (A,B,C) and
u0P

−1 is a left eigenvector for some invertible matrix
P .

Remark 2.2. In general, for singular systems this re-
sult fails.

But, we have the following more general result.

Proposition 2.6. Let λ0 be a simple eigenvalue of the
singular system (E,A,B,C) with m = p = 1 and

rank
(
λE −A B
C 0

)
= n + 1. Then, there exist an asso-

ciate eigenvector v0 and an associate left eigenvector
u0 such that u0Ev0 6= 0.

Proof. If λ0 is a simple eigenvalue


λ0E −A B 0 0

C 0 0 0
E 0 λ0E −A B
0 0 C 0



v0
w0

v1
w1

 6= 0

for all v1 and w1. So taking v1 = 0 and w1 = 0 we
have that Ev0 6= 0.
Suppose now that u0Ev0 = 0, in this case we have

that

0 6=
(
Ev0
0

)
∈ Ker

(
u0 ω0

)
= Im

(
λ0E −A B

C 0

)
.

Then,
(
Ev0
0

)
=

(
λ0A−A B

C 0

)(
v1
w1

)
for some

(v1, w1) 6= (v0, w0) because Ev0 6= 0.
So


λ0E −A B 0 0

C 0 0 0
E 0 λ0E −A B
0 0 C 0



v0
w0

v1
w1

 = 0

ans λ0 can not be simple. Therefore u0Ev0 6= 0.

3 Perturbation analysis of simple eigenvalues of
standard systems

For a more comprehensive analysis, we begin study-
ing the case of standard systems. So, we consider
systems in the form ẋ = Ax + Bu, y = Cx with
A ∈ Mn(C), B ∈ Mn×m(C) and C ∈ Mm×n(C)
represented as a triple of matrices (A,B,C).
Let (A,B,C) be a linear system and assume that

the matrices A, B, C smoothly depend on the vec-
tor p = (p1, . . . , pr) of real parameters. The function
(A(p), B(p), C(p)) is called a multi-parameter family
of linear systems. Eigenvalues of linear system func-
tions are continuous functions λ(p) of the vector of pa-
rameters. In this section, we are going to study the be-
havior of a simple eigenvalue of the family of linear
systems (A(p), B(p), C(p)).
Let us consider a point p0 in the parameter space and

assume that λ(p0) = λ0 is a simple eigenvalue of
(A(p0), B(p0), C(p0)) = (A0, B0, C0), and v(p0) =
v0 is an eigenvector, i.e. there exists w0 ∈ Mm×1(C)
such that

A0v0 −B0w0 = λ0v0
C0v0 = 0

}
.

Equivalently

(A0 +B0F
B
A )v0 −B0w0 = λ0v0

C0v0 = 0

}
,

∀FBA ∈Mm×n(C).
Now, we are going to review the behavior of a simple

eigenvalue λ(p) of the family of standard linear sys-
tems.
The eigenvector v(p) corresponding to the simple

eigenvalue λ(p) determines a one-dimensional null-

subspace of the matrix operator
(
A B
C 0

)
smoothly de-

pendent on p. Hence, the eigenvector v(p) (and corre-
sponding w(p) can be chosen as a smooth function of
the parameters. We will try to obtain an approximation
by means of their derivatives.
We rephrase the eigenvalue problem as follows

A(p)v(p)−B(p)w(p) = λ(p)v(p)
C(p)v(p) = 0.

}
. (3)

Taking the derivatives with respect to pi, we have

(
∂λ(p)
∂pi

I − ∂A(p)
∂pi

)
v(p) + ∂B(p)

∂pi
w(p) =

(A(p)− λ(p)I)∂v(p)∂pi
−B(p)∂w(p)

∂pi

∂C(p)
∂pi

v(p) = −C(p)∂v(p)∂pi

 .



At the point p0, we obtain

(
∂λ(p)
∂pi

I − ∂A(p)
∂pi

)
|p0
v0 +

∂B(p)
∂pi |p0

w0 =

(A0 − λ0I)∂v(p)∂pi |p0
−B0

∂w(p)
∂pi |p0

∂C(p)
∂pi |p0

v0 = −C0
∂v(p)
∂pi |p0

 . (4)

This is a linear equation system for the unknowns
∂λ(p)
∂pi

, ∂v(p)∂pi
and ∂w(p)

∂pi
.

Lemma 3.1. Let v0 and u0 be an eigenvector and a left
eigenvector respectively, corresponding to the simple
eigenvalue λ0 of the system (E,A,B,C). Then, the
matrix

T =

(
λ0I −A0 B0

C0 0

)
+

(
v0u0 0
0 0

)

has full rank.

Proof. It suffices to consider the system in the reduced

form
((

A1 0
0 λ0

)
,

(
B1

0

)
, (C1 0)

)
.

Theorem 3.1. The system (4) has a solution if and only
if

(
u0 ω0

)(∂λ(p)
∂pi

I − ∂A(p)
∂pi

∂B(p)
∂pi

∂C(p)
∂pi

0

)(
v0
w0

)
= 0 (5)

where u0 is a left eigenvector for the simple eigenvalue
λ0 of the system (A0, B0, C0).

Proof. The system (4) can be rewritten as

(
∂λ(p)
∂pi

I − ∂A(p)
∂pi

∂B(p)
∂pi

∂C(p)
∂pi

0

)
|p0

(
v0
w0

)
=(

A0 − λ0I −B0

−C0 0

)(∂v(p)
∂pi
∂w(p)
∂pi

)
|p0

(6)

We have that (4) has a solution if and only if (6) has.
Premultiplying both sides of the equation (6), by
(u0, ω0)

(
u0 ω0

)(∂λ(p)
∂pi

I − ∂A(p)
∂pi

∂B(p)
∂pi

∂C(p)
∂pi

0

)
|p0

(
v0
w0

)
=

(
u0 ω0

)(∂λ(p)
∂pi

I 0

0 0

)
|p0

(
v0
w0

)
−

(
u0 ω0

)( ∂A(p)
∂pi

−∂B(p)
∂pi

−∂C(p)
∂pi

0

)
|p0

(
v0
w0

)
= 0.

We obtain a solution for ∂λ(p)∂pi |(λ0;p0)
.

∂λ(p)

∂pi |p0
=

(
u0 ω0

)( ∂A(p)
∂pi

− ∂B(p)
∂pi

− ∂C(p)
∂pi

0

)
|p0

(
v0
w0

)
u0v0

.

Using the normalization condition, that is to say, tak-
ing v0 such that u0v0 = 1, we have:

∂λ(p)

∂pi |p0
=
(
u0 ω0

)( ∂A(p)
∂pi

− ∂B(p)
∂pi

− ∂C(p)
∂pi

0

)
|p0

(
v0
w0

)
.

Knowing ∂λ(p)
∂pi |p0

we can deduce ∂v(p)
∂pi |p0

.

First of all, we observe that if u0v0 = 1 , then
u0v(p) 6= 0 and we can take v(p) such that u0v(p) = 1
(normalization condition, it suffices to take as v(p) the
vector 1

u0v(p)
v(p)). So

∂u0v(p)

∂pi
= u0

∂v(p)

∂pi
= 0.

Consequently we can consider the compatible equiva-
lent system:

(
∂λ(p)
∂pi
− ∂A(p)

∂pi

∂B(p)
∂pi

∂C(p)
∂pi

0

)
|p0

(
v0
w0

)
=(

A0 − λ0I + v0u0 −B0

−C0 0

)(∂v(p)
∂pi
∂w(p)
∂pi

)
|p0

(7)

In our particular case where m = p, the system has a
unique solution

(
∂v(p)
∂pi
∂w(p)
∂pi

)
|p0

= T−1

(
∂λ(p)
∂pi
− ∂A(p)

∂pi

∂B(p)
∂pi

∂C(p)
∂pi

0

)
|p0

(
v0
w0

)
.

Taking the partial derivative ∂2/∂pi∂pj on both sides
of both equations in the eigenvalue problem (3), we can
obtain a second order approximation for eigenvalues.

4 Perturbation analysis of simple eigenvalues of
singular systems

Now we consider singular systems as in (1). In this
case the eigenvalue problem is written as

A(p)v(p)−B(p)w(p) = λ(p)E(p)v(p)
C(p)v(p) = 0.

}
. (8)

Taking the derivatives with respect to pi, we have



(
∂λ(p)
∂pi

E(p) + λ(p) ∂E(p)
∂pi

− ∂A(p)
∂pi

)
v(p) + ∂B(p)

∂pi
w(p)

= (A(p)− λ(p)E(p)) ∂v(p)
∂pi

−B(p) ∂w(p)
∂pi

∂C(p)
∂pi

v(p) = −C(p) ∂v(p)
∂pi

 .

At the point p0, we obtain

(
∂λ(p)
∂pi

E0 + λ0
∂E(p)
∂pi

− ∂A(p)
∂pi

)
|p0

v0 +
∂B(p)
∂pi |p0

w0

= (A0 − λ0E) ∂v(p)
∂pi |p0

−B0
∂w(p)
∂pi |p0

∂C(p)
∂pi |p0

v0 = −C0
∂v(p)
∂pi |p0

 .

(9)

This is a linear equation system for the unknowns
∂λ(p)
∂pi

, ∂v(p)∂pi
and ∂w(p)

∂pi
.

Suppose now, systems (E,A,B,C) with m = p = 1

and rank
(
λE −A B
C 0

)
= n+ 1.

Lemma 4.1. Let v0 and u0 be an eigenvector and a left
eigenvector respectively, corresponding to the simple
eigenvalue λ0 of the system (E,A,B,C). Then, the
matrix

T =

(
λ0E −A0 B0

C0 0

)
+

(
E0v0u0E0 0

0 0

)
has full rank.

Proof. First of all we proof that E0v0u0E0 6= 0.

(
u0 ω0

)(λ0E0 −A0 + E0v0u0E0 B0

C0 0

)(
v0
w0

)
=(

u0 ω0

)(E0v0u0E0 0
0 0

)(
v0
w0

)
= (u0E0v0)

2 6= 0,

so, E0v0u0E0 6= 0.
In the other hand v0 /∈ KerE0v0u0E0, because 0 6=
(u0E0v0)

2 = u0(E0v0u0E0v0).
Suppose now, that(

λ0E0 −A0 + E0v0u0E0 B0

C0 0

)(
v
w

)
= 0

for some vectors v and w.
Then

0 =
(
u0 ω0

)(λ0E0 −A0 + E0v0u0E0 B0

C0 0

)(
v
w

)
=(

u0 ω0

)(E0v0u0E0 0
0 0

)(
v
w

)
= u0E0v0u0E0v.

Taking into account that u0E0v0 6= 0 we have that
u0E0v = 0, so E0v0u0E0v = 0, then v is an eigenvec-
tor of the system corresponding to the eigenvalue λ0
linearly independent of v0, but λ0 is simple.

Theorem 4.1. The system (9) has a solution if and only
if

(u0 ω0)

(∂λ(p)
∂pi

E0 + λ0
∂E
∂pi

− ∂A(p)
∂pi

∂B(p)
∂pi

∂C(p)
∂pi

0

)
|p0

(
v0
w0

)
= 0

(10)
where u0 is a left eigenvector for the simple eigenvalue
λ0 of the system (E0, A0, B0, C0).

Proof. Analogously to the proof of proposition 3.1 we
observe that proposition 2.6 permits to clear the un-
known ∂λ(p)

∂pi
from equation (10).

On the other hand, taking into account that u0E0v0 6=
0, we have that u0E(p)v(p) 6= 0 in a neighborhood of
the origin. So, u0E0

∂v(p)
∂p = 0. Lemma 4.1 permits to

obtain ∂v(p)
∂pi

and ∂w(p)
∂pi

.

5 Conclusions
In this work families of singular systems in the form
E(p)ẋ = A(p)x+B(p)u, y = C(p)x smoothly depen-
dent on a vector of real parameters p = (p1, . . . , pn)
are considered. A study of the behavior of a simple
eigenvalue of this family of singular linear system is
analyzed and a description of a first approximation of
the eigenvalues and corresponding eigenvectors are ob-
tained.
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