
Two New Algorithms to Compute Steady-state Bounds for Markov Models with
Slow Forward and Fast Backward Transitions*

Juan A. Carrasco, Angel Calder6n and Javier EscribS
Departament d’Enginyeria Electrbnica, UPC

Diagonal 647, plta. 9
08028 Barcelona, Spain

Abstract

Two new algorithms are proposed for the computation of
bounds for the steady-state reward mte of irreducible fi-
nite Markov models with slow forward and fast backward
transitions. The algorithms use detailed knowledge of the
model in a subset of generated states G and partial infor-
mation about the model in the non-generated portion U of
the state space. U is assumed partitioned into subsets Uk,
1 5 k 5 N with a “nearest neighbor” structure. The algo-
rithms involve the solution oi, respectively, IMI + 2 and 4
linear systems of site IGl, where M is the set of values of
k corresponding to the subsets Ur, through which the model
can jump from G to U . Previously proposed algorithms for
the same type of models required the solution of IS1 linear
systems of size IGl+ N , where S is the subset of G through
which the model can enter G from U, to achieve the same
bounds as our algorithms, or gave less tighter bounds if
state cloning techniques were used to reduce the number
of solved linear systems. An availability model with sys-
tem state dependent repair rates is used to illustmte the
application and performance of the algorithms.

1 Introduction
Markov models are widely used for performance, depend-
ability and performability analysis. These models can be
solved using numerical techniques or simulation. Both a p
proaches have their advantages and disadvantages. Nu-
merical methods provide a reliable solution of the model
but suffer from the well-known state explosion problem.
Simulation methods can deal easily with large state spaces
but tend to be less reliable when, due to the rarity of
the important events of the model, have to be combined
with acceleration techniques [2], [6] . Recently, a num-
ber of methods have been proposed to compute steady-
state availability bounds [3], [9], [lo], [ll], [12]. In these
methods, a finite irreducible continuous-time Markov chain
(CTMC) X = {X(t);t 2 01 with state space 62 and re-
ward rate structure ri > o, i € Cl is considered, a subset G
of states is generated, and bounds to the steady-state re-
ward rate limt,, E [T X (~)] are derived using only detailed
knowledge of X in G. In the method developed by Muntz,
Souza e Silva and Goyal [Il l G includes all the states with
up to a given number K of f,ailed components. In its sim-

‘This work was supported by “Comisi6n Interministerial de
Ciencia y Tecnologla (CICYT)” under the National Research Grant
TIC95-0707-C02-02.

0-8186-7235-8196 $5.00 0 1996 IEEE
Proceedings of MASCOTS ’96

89

plest version, the method requires the solution of 1st linear
systems of size [GI + N, where S is the subset of states
through which X can jump to G from U = 52 - G and
N is the number of aggregates in which U is decomposed
(each aggregate includes the states with a given number of
failed components). IS1 is typically almost as large as IGl
and the method can be very costly. In order to reduce the
computational cost, a state cloning technique is proposed
in [ll], in which duplicates for states in G are added to U
so that the new S includes the states with F failed compo-
nents, where F < K. The technique, however, introduces
a looseness in the bounds which increases with decreasing
F. Lui and Muntz [9] have proposed a refinement of the
method for the particular case F = 0 including a reuse
technique which, at the price of an additional looseness in
the bounds, avoids a complete reapplication of the method
each time K is incremented in the search for the desired
accuracy. The additional looseness has been reduced in
a more recent paper from the same authors [IO]. Souza
e Silva and Ochoa [12] have developed state space explo-
ration techniques in which G is generated incrementally
following heuristics which try to obtain the tightest possi-
ble bounds for a given number of generated states. More
recently, Carrasco [3] has developed a bounding method
specifically tailored to availability models which uses the
failure distance concept to bound the behavior in U. The
method provides significantly tightened bounds than [ll]
when down states are sparse in U.

In this paper we develop two new algorithms to obtain
the same bounds as the algorithm described in [ll] without
state cloning. The algorithms solve, respectively,]MI + 2
and 4 linear systems of size IGI, where, when G includes
all the states with up to a given number of failed compo-
nents, M is the set of different cardinalities of the subsets
of components of the model which can fail simultaneously.
The algorithms include a decomposition technique to ac-
celerate the convergence of iterative methods. As the al-
gorithms described in [9], [lo], [ll], [12] our algorithms
apply to a wide range of models, and its presentation will
be intentionally abstracted from the specific peculiarities
of availability models. The rest of the paper is organized as
follows. Section 2 reviews the bounding algorithm without
state cloning described in [11] and develops our algorithms
in i ts basic versions. Section 3 describes the decomposi-
tion technique and combines i t with the basic algorithms
to obtain the final algorithms. Section 4 illustrates the a p
plicability and performance of the algorithms in compari-
son with the algorithm proposed in [ll] with and without
state cloning using an availability model with system state
dependent repair rates. Section 5 concludes the paper.

Figure 1: Structure of the X models.

2 Basic algorithms
For the model X , we will denote by A i j the transition rate
from state a to state j, by X i the output rate of state i , and
by Xi ,c the transition rate from the state i to the subset
of states C (X,,c = E,,-- X i j) . The bounding algorithm
without state cloning described in [ll] assumes that U can
be partitioned into subsets u k , 1 5 k 5 N such that:
1) the subsets have a “nearest neighbor” structure, i.e.,
states in u k , k > 1 have no transitions to vi, i < k - 1
or G, and 2) upper bounds fi(k) 2 0 for xj,~,,,, j E u k ,
0 < i 5 N - k and lower bounds g(k) > 0, k > 1 for
A ~ J J , - ~ , j E u k and g(1) > 0 for x j , ~ , j E U1 are known
(see Figure 1). A lower bound [T]ib and an upper bound
[T]ub for all the reward rates of the model are also assumed
known. Failure/repair models such as those solved in the
SAVE package [5] are examples of models satisfying those
requirements. For those models G can include the states
with up to K failed components and a partition for U
with u k = {states with K + k failed components} can be
considered. With that partition, f i (k) can be taken equal
to the sum of the maximum rates of the failure events of the
model (sets of components which can fail simultaneously)
involving i components and g(k) can be taken equal to the
slowest repair rate. If the measure of interest is the steady-
state unavailability (T , = 0 if i is an operational state and
T , = 1 if i is a down state), we can take [T]lb = 0 and

The bounding algorithm without state cloning de-
scribed in [l l] considers the CTMC’s X i , s E S depicted
in Figure 2. S includes the “return” states of G, i.e., the
states through which X can jump from U to G and the
states Uk collect the transitions from G to the subsets uk.
For availability models, S would include all states with
K failed components. The algorithm can be described as
follows:

[T]ub = 1.

1. For each 8 E S solve the steady-state regime of X i .
Let [R,]lb be the steady-state reward rate of X : with
reward rate structure T I = T i , z E G, T: = [T]I~,
i E {UI, ... , U N } . Let [RsIub be the steady-state
reward rate of X i with reward rate structure T I = ~ i ,

2 E G, T: = [T]ub, 2 E (211, - * 9 UN}.

2. [Rlib = mins~s{[Rs]ib}, [&b = maxs~~{[Rs]ub}

The algorithm involves the solution of IS1 linear systems of
size IGI + N and can be very expensive when IS1 is large.
This is usually the case for availability models since 1st is
typically almost as large as IGI.

To describe our algorithms it is useful to split the mod-
els X: , s E S into two transient CTMC’s. The first one,
YG, is obtained from X by making absorbing the exits of
G; the second one, Y;, has the state transition diagram

Figure 2: Models X:, s E S used in the algorithm without
state cloning described in [ll].

Figure 3: State transition diagram of Y;.

of Figure 3. Let C G , ~ be the expected accumulated re-
ward to absorption of YG with initial state s and same
reward rate structure as X in G, and let T G , ~ be the mean
time to absorption of YG with initial state s. Let a s (k) ,
1 5 k 5 N be the probability that X with initial state s
exits G through u k (identical to the probability that X i
exits G through uk), let T(k), 1 5 k 5 N , be the mean
time to absorption of Y& with initial state Uk, and let M be
the set of values of k for which X has transitions from G to
u k . Then, considering the regenerative structure of X : de-
fined by the times at which X i enters s from (211 , . . . , U N }
and the relationships between X i and YG, Y;, we have:

with
[TU,s]ub = a s (k) T (k) . (3)

* E M

The notation TU,^]^^ is justified by the fact that, by the
mean holding time lemma of [ll], [TU,s]ub upper bounds
the mean time spent by X with return state s in each visit
to U . Using (I), (2) the lower and upper bounds for R can
be written as;

Our first basic algorithm involves the computation of
T(k) , k E M ; crs (k) , s E S, k E M ; and C G , ~ , TG+,
s E S. The second one computes T(k), k E M ; and T,’ =
T G , ~ -I- [Tu,8lub, c: = CG,S 4- [T]ib[Tu,s]ub, c:’ = CO,, +
[T]ub[TU,s]ub, s E s. The bounds for R can be expressed in
terms of Ti, C:, and C:, s E S as:

90

(7)

A direct computation of T(k) , k E M , based on the so-
lution of Y; with each u k as initial state would involve the
solution of IMI linear systems. A more efficient procedure,
specially for large [MI, can be developed exploiting the
following equations, where X(k) = g (k) + ci f i (k) denotes
the output rate of u k in Y;:

- 1) + m T (k + i) ,
X (k)

l < k < N ,
(8)

(9)
1 T (N) = s(~j + T (N - 1).

These equations are obtained as follows. First, consider
(8). T(k), mean time to absorption of Y; with initial state
U k , is equal to the mean sojourn time in u k , l /X(k) , plus
the mean time to absorption from the next visited state.
The next visited state is uk.-1 with probability g (k) / X (k)
and u k + t with probability f,(k)/X(k). Equation (9) is ob-
tained similarly; in this case, X (N) = g (N) and state U N - ~

is the next visited state with probability 1. Equations (8),
(9) can be solved recursively in T(k) , 1 5 k < N in terms
of T (N) , yielding:

1 T(N - 1) = T (N) - -
s (N) ’

T(k) = - [X(k + l)T(k + 1) - 1

(11)
d k + 1)

- f i (k + 1)T(k + 1 -f i)] , 1 5 k < N - 1.
i

It remains to discuss the computation of T (N) . Let ri
denote the mean time to absorption in state ui of Y; with
initial state U N . Then,

N

i= l

The vector T* = (TI . . . rp~) is the solution of the linear
system:

where A is the restriction of the transition rate matrix of
Y; to the transient states. A direct solution of (13) 1s . pos-
sible exploiting the upper Hessenberg structure of A and
the fact that the N - 1 first components of the right-hand
vector of (13) are null. Defining vi = ri/r1 (vi = I), the
first N - 1 equations of (13) give a triangular linear system
on vi, 2 5 i 5 N which can be easily solved. Substituting
then ri by vir1, 2 5 i 5 N , in the last equation of (13) and
using the solution for vi, 2 5 i 5 N found in the previous
step gives an equation on r1. Solving that equation and
using ri = vir1, 2 5 i 5 N we obtain r,, 2 5 i 5 N . The
solution procedure can be described as follows:

rTA = -(O.. . Ol), (13)

U1 = 1, . -

1
r1 =

N-1 I

i = l
ri=uir1, i = 2 ,..., N .

We next develop computational procedures for T G , ~ ,
C G , ~ and cus(k), s E S , k E M , and Ti, Cl, C f , s E S.
We start discussing the computation of T G , ~ , i E G. TG,;
is equal to the mean sojourn time in i plus the mean time
to absorption of YG from the next visited state. Since the
mean sojourn time in i is 1 / X i and the next visited state
is j with probability X i , / X i , we have:

CG,i is equal to the mean accumulated reward during a
visit to i, T i / X i , plus the mean accumulated reward to
absorption of YG from the next visited state, yielding the
equations:

cri(k) is equal to the probability that X jumps from i to
u k plus the probability that X , starting in the next state,
exits G through u k , yielding:

jii

To obtain similar equations for q’, C,!, and C,!l i t is useful
to remember (3) and that a s (k) is the probability that X
with initial state s exits G through uk. This allows us
to decompose [Tu,i],,b in contributions associated to the
probabilities of following transitions out of G at particular
steps of the embedded discrete-time Markov chain. For

= TG,, + TU,,],,^ we obtain:

T ! - - - + *T(k) + ?T;, i E G. (19)
’1 k E M J E Q

C,“ = :+ X’.”.[rIubT(k)+ &Cy, z E G. (21)
A:

3EG
J # *

A,
k € M

Let q13 = Xl,/Xt, equations (16), (IT), (18), (19),
(2 0) and (2 1) can be formulated as linear systems in-
troducing the matrix B = I - (qtJ)r,3EG and the col-
umn vectors T = (TG, ,)~GG, C = (CG,~)~EG, a (k) =
(c w . (~)) * ~ G , T’ = (T.’).EG, C’ = (C,).EC, C” =
(C:’)IEG, = (1 / X s) s E G , c = (T s / k) * E G , P (k) =
(X l , u k /X l) lEG, p’ = ((l / A l) + c k € & f (X * p u k / X l) T (k)) l E G ,

91

C’ = ((r i /k) -k C ~ ~ ~ (X i , U ~ , / X i) [s] l b T (k)) i e G t and C” =
((ri/Ai) -k x k E M (k , U k /Ai)[T]ubT(k))iEG:

BT = p, (22)

BC = C, (23)
Ba(k) = P (k) , k E M , (24)

BT’ = p’, (25)

BC’ = c’, (26)

BC” = c”. (27)
Since X is irreducible, it will exit G with probability 1

from any state i E G and E k E M a i (k) = 1. Then, only
IMI - 1 of the IMI linear systems (24) have to be solved.
For instance, letting kmin = minkeM{k}, it suffices to solve
the linear systems:

Ba(k) = p (k) , k E M - {kmin}, (28)

and compute ai(&,,,) using:

ai(kmin) = 1 - C ai(k). (29)
k€M-{kmsn)

This ends the developments associated to the basic algo-
rithms. For clarity of exposition we give next comprehen-
sive descriptions.
Basic algorithm 1

1. Compute the solution ofthe linear system (13) using

2. Compute T (N) using (12).
3. Compute T (k) , 1 < k < N using (lo), (11).
4. Generate the transient CTMC YG.
5. Solve the linear systems (ZZ), (23), (28).
6. Compute aS(kmin), s E S using (29).
7 . Compute [TU,s]ub, s E S using (3).
8. Compute [R]lb, [R],b using (4), (5).

(141, (15).

Basic a lgor i thm 2

1. Compute the solution of the linear system (13) using

2. Compute T (N) using (12).
3. Compute T(k) , 1 5 k < N using (lo), (11).
4. Generate the transient CTMC YG.
5. Solve the linear systems (25), (26), (27).
6. Compute [RI&, [R]ub using (6), (7).

(141, (15).

3 The decomposition technique

N is typically much smaller than the size of YG. Thus,
most of the computational effort of the basic algorithms is
spent in the generation of YG and the solution of the (M1+1
linear systems (22), (23), (28) or, respectively, the 3 linear
systems (25), (26), (27). The non-zero pattern of the ma-
trix B of the linear systems is determined by the structure
of the state transition diagram of YG, and, very often, B

is sparse. This makes attractive the use of iterative meth-
ods, which preserve the sparseness of the matrix. Using
well-known results from iterative methods theory [13], it
is easy to prove that the method converges under Jacobi
and GaussSeidel if the matrix B is irreducible. First, note
that the sum of the absolute values of the non-diagonal el-
ements of the ith row of the matrix B is xJeGqij < l.
This implies that B is diagonally dominant. The strict in-
equality occurs if and only if X has some transition from i
to U. Since X is irreducible, there must be some transition
from some state of G to U. Then, the strict inequality is
given for at least one row of B and B is irreducibly di-
agonally dominant. This implies the convergence of both
Jacobi and Gauss-Seidel [13, Theorem 3.41. If the matrix
B is reducible we can consider a normal form of B:

where B,,, 1 < i < L, are irreducible. Such a normal can
be obtained easily finding the strongly connected compo-
nents of the restriction of the state transition diagram of
X to G and sorting topologically the DAG establishing
the connection relationships among the components (see,
for instance, [l]). Each component includes the states as-
sociated to a diagonal block of the normal form and any
topological sorting of the components induces a block up-
per triangular pattern. This pattern can be exploited to
reduce the solution of the linear systems associated to the
matrix B to the solution of linear systems associated to the
diagonal blocks B::. Each B,, is irreducible and diagonally
dominant. The strict inequality must also be satisfied for
some row, since the equality for all rows would imply that
the subset of states associated to B,, would be a trap-
ping subset of X (X will never exit the subset), which is
in contradiction with the irreducibility of X . Then, both
Jacobi and Gauss-Seidel converge for the linear systems
associated to Bsv. Thus, whether B is irreducible or not,
we can solve the linear systems (22), (23), (2 5) , (26), (27),
(28) using Jacobi or Gauss-Seidel with guaranteed conver-
gence. However, the convergence of the methods is slow
in the typical case in which YC makes many jumps before
exiting G. Several more advanced iterative methods have
been proposed to speed up the basic iterative methods (see
[7] for a recent review): SOR, block iterative methods, etc.
Block iterative methods are specially well-suited for nearly
complete decomposable models (see, for instance, [SI), but,
YG will not have usually such structure. SOR requires the
selection of an appropriate value for the overrelaxation pa-
rameter, a delicate matter. We have used with success a
decomposition technique which works very well when X
has in G a frequently visited state. For availability mod-
els, the state in which all components are unfailed is such
an state.

Without lost of generality let us assume that the fre-
quently visited state has index 1. The components of the
vectors T, C, a (k) , k E M , T’, C‘, and C” are the
expected accumulated rewards to absorption of YG with
given initial states for different reward rate structures u t ,
i E G. The reward rate structure is v: = 1 for T, ut = rt

92

T : +EkEM k,v, [~] , b T (k) for c". The assertion is true by
definition for C and easily follows for T, a (k) , T', C', and
C" comparing (16), (18), (19), (20), and (21) with (17).
To describe the decomposition technique, let us consider
the generic problem of computing V,, i E G, where V , de-
notes the expected accumulated reward to absorption of
YG with initial state i for the generic reward rate struc-
ture v,, i E G. Let denote the expected accumulated
reward of YG with initial state i to either absorption or
hit to state 1. Let y, denote the probability that YG with
initial state i will exit G without hitting 1. Decomposing
V , in its two contributions delimited by the time at which
YG gets absorbed or hits state I , we obtain:

V, = E + (1 -- yi)&, i E G. (30)

The set of equations (30) can be solved in V,, i E G, yield-
ing:

1 -- y, - V,=c+-- &, i E G .
-rl

is the expected accumulated reward to absorption of the
transient CTMC & obtained from YG by directing to the
absorbing state the transitions of YG to state 1. Then, G,
z E G can be computed as V , , a E G, using the matrix B:

(31)

instead of B. We can also note that yi and a:(k), k E M
are not independent. a{(!) is the expected accumulated
reward to absorption of YG: with reward rate structure
vi = X i p , and yi is the expected accumulated reward to
absorDtion of the same CTMC with reward rate structure

k € . M

Equation (32) can be used to compute y i , z E G and V,,
a E G can be computed from E, i E G and ri, i E G using
(31). The new algorithms incorporating the decomposition
technique can be described a s follows:

Algorithm 1

1.

2.
3.

4.
5.

6.

7. Compute T G , ~ , C G , ~ , and . .* (IC) , s E S, IC E M using:

8. Compute TU,^]^^, s E S using (3).

S. Compute [B]lb, [&b using (4), (5).

Algorithm 2

1. Compute the solution of the linear system (13) using

2. Compute T (N) using (12).

3. Compute T (k) , 1 5 k < N using (lo) , (11).

4. Generate the transient CTMC %.
5. Let the column vectors %'I = (T i) i e ~ , c' = (c , !) i€G,

(141, (15).

- I I
C = (c,!')i€~. Solve the linear systems:

- - 1 BT = p' ,

- - 1
BC = C',

BC = c",
- - I1

6. Compute ys, s E S U (1) using (32).

7. Compute Ti, C:, and Cy, s E S using:

11 Compute the solution of the linear system (13) using
(141, (15).
Compute T (N) using (12).

8. Compute [RI&, [RIu& using (6) , (7).

Compute T(k) , 1 5 IC .: N using (lo), (11).

Generate the transient CTMC VG.
Let the column vectors 2. = (FG, i) iCG, c =
(e G , i) i E G , a(k) = (& i (l i)) t E G . Solve the linear sys-
tems:

fiT = p,

fie = C,

Bap) == P(k), k E M .

Compute ys, s E S U (1) using (32).

Now the algorithms require the solution of, respectivelx,
\MI + 2 and 4 linear systems of size of G . The matrix B
also has the properties which guarantee the convergence
of Jacobi and GaussSeidel, but, since 1 is an often visited
state, YG moves fast to its absorbing state, the convergence
for the new linear systems is much better and the new
algorithms are typically much faster. Algorithm 1 involves
less linear systems than algorithm 2 when IMI = 1 and
more when IMI > 2. Thus, algorithm 1 should be used
when IMI = 1 and algorithm 2 should be used when IMI >
2. For IMI = 2 both algorithms involve 4 linear systems
and should have similar performance.

93

processors

K algorithm 1 basic alg. 1
13.0 9,968 2 0.28 41

3 2.18 [54{ 1,529 (113,4l)O)
> 10,000 4 17.2 (62)

5 106 (67) > 10,000

Figure 4: Block diagram of the fault-tolerant system of the
example.

algorithm 2
0.27 (41
2.15 (531
17.0 (61)
104 (65)

4 Application example

In this section we illustrate the performance of the new
bounding algorithms using an availability model of a re-
pairable fault-tolerant system. The example is a variant of
the large example used in [ll]. Figure 4 shows the block
diagram of the system. The system is operational (up) if at
least one processor of type A or B is unfailed, at least one
controller of each set is unfailed, and at least three disks of
each disk cluster are unfailed. Only one processor of each
set is active. Non-active processors do not fail. A fault in
the active processor A is propagated to the active processor
B with probability 0.10. Active processors and controllers
of one set fail with rate 1/2,000. Controllers of the other
set fail with rate 1/4,000. Disks fail with a different rate for
each cluster. The disk failure rates are 1/6,000, 1/8,000,
1/10,000, 1/12,000, 1/14,000 and 1/16,000. Components
can fail in two modes with equal probabilities. There is
only one repairman which selects the component to be re-
paired at random from the set of failed components. The
repair rate of a component depends on the failure mode of
the component and on the operational/down state of the
system. When the system is operational repair rates are
0.1 in one failure mode and 0.05 in the other failure mode.
The repair rates are 10 times larger when the system is
down. The difference in repair rates between the opera-
tional and down states of the system can be due to more
careful repair procedures in the operational state to avoid
system crashes as a consequence of erroneous maintenance
operations. The system has a moderate complexity (36
components of 10 different types) but a very large state
space: of the order of lo1’ states. The dependencies in-
troduced by failure propagation, repair queuing, and im-
pact of the system operational/down state on t,he repair
rates preclude the computation of the steady-state unavail-
ability by combinatoric techniques. The size of the state
space precludes an exact numerical solution of the Markov
model. Thus, the example illustrates the type of models
for which bounding methods are an attractive approach.

We apply the bounding algorithms including in G all
the states with up to K failed components. U is parti-
tioned according to the number of failed components, i.e.,
u k includes d l states with K + k failed components. We
take f i (k) (i = 1,2) equal to the sum of the maximum

rates of all failure events of the model involving z compo-
nents and g(k) equal to slowest repair rate of the model.
This yields f l (k) = 4.936 x f ~ (k) = 5 x l ow5 , and
g(k) = 0.05. The bounding portions of the CTMC’s used
in the algorithm described in [ll] are built using the same
upper bounds for failure rates and lower bound for repair
rates.

For the example, IMI = 2 and both algorithms with the
decomposition technique solve 4 linear systems of size IGI.
Table 1 compares algorithm 1 with the basic algorithm 1
(without the decomposition technique) and algorithm 2 for
several values of K (the sizes IGI of the generated models
are given in Table 2). We give the CPU times and total
number of iterations2equired for the solution of the lin-
ear systems (matrix B is irreducible). The decomposition
technique is applied selecting the state with all components
unfailed as the frequently visited state. Gauss-Seidel is
used to solve all linear systems, with a convergence cri-
terium of a relative tolerance in all components of the
solution between two iterations smaller than lo-’. The
CPU times include the generation of the Markov models
and were measured in a SPARC-10 workstation. Gener-
ation times were about 50% of the total CPU times of
our algorithms with the decomposition technique. The re-
sults clearly illustrate the efficiency of the decomposition
technique and the fact that algorithms 1 and 2 have very
similar performances for the case IMI = 2. Table 2 shows
the bounds, CPU times, and total number of iterations
required for the solution of the linear systems for the algo-
rithm described in [11] with (F < A”) and without (F = K)
state cloning and our algorithm 1 for several values of K .
For the algorithm described in [ll] and IS1 > 1 we use the
solution of a linear system as a first iterate for the solution
of the linear system associated to the next state in S. We
also give the size IGI of the generated state space and the
number of linear systems IS1 which are solved in the algo-
rithm proposed in [I l l . Our algorithm 1 gives exactly the
same bounds as that algorithm without state cloning in
much smaller CPU times and slightly smaller CPU times
than that algorithm with F = 0, which gives significantly
less tighter bounds. The smaller CPU times of our algo-
rithm are not only due to a smaller number of iterations,
but also to a smaller cost per iteration: This smaller cost
comes from the fact that the matrix B does not include
neither the bounding submodel YA nor the elements cor-
responding to the transition rates Xr,r-rk and & , I , i E G
which are included in the transition rate matrices of the
models Xi solved in the bounding algorithm described in
w1.

94

Table 2: Bounds, CPU times in seconds and number of iterations (n ~) for the algorithm given in Ill] and algorithm 1.

lower bound I upper bound
2.9965 x lov5 I 1.7579 x

- -
7-

0
1
2
0
1
2
3
0
1
2
3
4
0
1
2
5

- -

-

-

-

CPU time (SI)
[ll] I algorithm 1

0.39 (79) I
I 55

’ 2.9972 x 1 0 - ~
3.5522 x

’ 3.5524 x

-+ 1,796 6.7213 x io-‘ 11.2 (5,ooi) 0.28 (41)
1.9900 x lo-‘ 3.04 (77)
1.5832 x lo-’ 10.5 (439) 55 I 209

3.6233 x
3.6233 x lov5
3.6233 x
3.6233 X
3.6306 x lo-”
3.6306 x
3.6306 x
3.6306 x

I 1,53;
10,496

4.7222 x loq5 83.2 (379)
4.4729 x 730 (3,876)
4.2237 x 5872 (31,042)
3.9768 x > 10,000 17.2 (62)
3.7359 x 137 (75)
3.7184 x 396 (305)
3.7024 x 3,535 (3,148)
3.6542 x lov5 > 10,000 106 (67)

1,531
8,700 -

51,391

209
40,895 -

1 2.9972 x I 1.1930 x I 1.41 (496) I

3.5526 x I 1.2123 x lo-’ I 95.3 (4,485) I
3.5526 x I 8.4473 x I 701 (35,276) I 2.18 (54)
3.6233 x I 4.9960 x I 24.3 (76) I

5 Conclusions

We have proposed two new algorithms for the computa-
tion of bounds for the steady-state reward rate of rewarded
CTMC models with slow forward and fast backward tran-
sitions. Availability models with failure and repair transi-
tions are an example of that class of models and we have
illustrated the performance of the method with an exam-
ple of that type. The algorithms compare favorably with
previous algorithms. They achieve the same bounds with,
typically, much smaller CPU times and give tighter bounds
than previous methods incorporating state cloning tech-
niques with slightly smaller CPU times.

Acknowledgements

The authors are grateful to the helpful comments of the
anonymous reviewers, which helped to improve the presen-
tation.

References
[l] A.V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures

and Algorithms, Addison..Wesley, 1983.
[2] J. A. Carrasco, “Failure distance-based Simulation of Re-

pairable Fault-Tolerant Systems,” in Compnter Perfor-
mance Evaluation. Modelling Techniqnes and Tools, G.
Balbo and G. Serazzi eds., Elsevier, pp. 351-366.

[3] J.A. Carrasco, “Improving Availability Bounds using the
Failure Distance Concept,” in Dependable Computing for
Critical Applications vol. 9 , Springer-Verlag, 1995, pp.
479-497.

[4] E. Cinlar, Introduction io Stochastic Processes, Prentice-
Hall, 1975.

[5] A. Goyal, W.C. Carter, E. de Souzae Silvaand S.S. Laven-
berg, “The System Availability Estimator,” in Proc. 16th
IEEE Int. Symp. on Fault-Tolerant Computing FTCS-16,
Vienna, July 1986, pp. 84-89.

[SI A. Goyal, P. Shahabuddin, P. Heidelberger, V.F. Nicola,
and P.W. Glynn, “A Unified Framework for Simulating
Markovian Models of Highly Dependable Systems,” IEEE
Trans. on Computers, vol. 41, no. 1, pp. 36-51, January
1992.

[7] U.R. Krieger, B. Muller-Clostermann, and M. Sczittnick,
“Modeling and Analysis of Communication Methods for
Markov Chains,” IEEE J. on Selected Areas in Commn-
nications, vol. 8, no. 9, pp. 1630-1648, December 1990.

[SI J.R. Koury, D.F. McAllister, and W.J. Stewart, “Iterative
Methods for Computing Stationary Distributions of Nearly
Completely Decomposable Markov Chains,” SIAM J. on
Algebraic and Discreie Methods, vol. 5, pp. 164-185,1984.

[9] J.C.S. Lui and R.R. Muntz, “Evaluating Bounds on Steady
State Availability from Markov Models of Repairable Sys-
tems,” in Numerical Solution of Markov Chains, William
J. Stewart, ed., Marcel Dekker, New York, 1991, pp. 435-
454. ~

[IO] J.C.S. Lui and R.R. Muntz, “Computing Bounds on
Steady State Availability of Repairable Computer Sys-
tems,” Journal of the ACM, vol. 41, no. 4, July 1994,
pp. 676-707.

[ll] R.R. Muntz, E. De Souzae Silva and A. Goyal, “Bounding
availability of Repairable computer systems,” IEEE Trans.
on Compniers, vol. 38, no. 12, December 1989, pp. 1714-
1723.

[12] E. de Souza e Silva and P.M. Ochoa, “State Space Explo-
ration in Markov Models,” Performance Evaluation Re-
view, vol. 20, no. 1, June 1992, pp. 152-166.

[13] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, 1962.

95

