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Abstract 
A hierarchical, object-oriented modeling language for the speci- 
fication of dependability models for complex fault-tolerant com- 
puter systems is overviewed. The language incorporates the 
hierarchical notions of cluster, operational mode and config- 
uration and borrows from object-oriented prograniming the 
concepts of class, parameterization, and instantiation. These 
features together result in a highly expressive environment al- 
lowing the concise specification of sophisticated dependability 
models for complex systems. In addition, the language sup- 
ports the declaration of symmetries that systems may exhibit 
a t  levels higher than the component level. These symmetries 
can be used to automatically generate lumped state-level mod- 
els of significantly reduced size in relation to  the state-level 
models which would be generated from a flat, component-level 
description of the system. 

1. INTRODUCTION 

cification of arbitrary CThlC dependability models but require 
complex and t.hus error-prone descriptions for large systems. 
Another approach [6, 71 is the use of a special-purpose lan- 
guage with an implicit modeling point of view and special con- 
structs easing the specification of often-encountered complex 
dependencies. In addition to being more user-friendly, the use 
of a high-level modeling language has the advantage of convey 
ing semantic knowledge which can be exploited during model 
solution [S ,  9, IO]. 

This paper overviews a hierarchical, object-oriented modeling 
language for fault-tolerant computer systems which takes the 
SAVE modeling language [ 6 ,7 ]  as starting point, but introduces 
many extensions (clusters, operational modes, configurations) 
enhancing significantly its modeling power and user-friendliness 
and supporting automatic generation of state-level models of 
reduced size when, as it is often the case, the system has sym- 
metries a t  levels higher than the component level. The latter 
is important since it is the size of the CTLIC what ultimately 
limits the application of numerical solution methods. The rest _ -  
of the paper is organized as follows. Section 2 overviews the 

description of the language syntax and semantics and addi- 
tional examples can be found in [ll]). Section 3 discusses the 
representaLion of the states of the lumped CTSIC's . Section 4 
concludes the paper 

A fault-tolerant computer system can often be conceptualized 

failure, recovery, and repair processes. Dependencies among 
components often arise in real fault-tolerant computer systems 
due to failure propagation, limited recovery efficiency, iecon- 
figurations, and repair. Stochastic processes allow to consider 

as made up of components ,-hanging their state as a result of language using Of moderate (a 

all these important details. Recovery processes are typically 
several orders of magnitude faster than both failure and repair 2 .  LANGUAGE OVERVIEW 
processes and can be modelled by using instantaneous coverage 
probabilities [l], which can be obt,ained by statistical analysis 2.1. Modeling framework 
[2]  of experimental data  collected from fault-injection experi- 
ments. Typically, failure and repair times are assumed to have In Our language, a fault-tolerant computer system is conceptu- 
exponential distributions so that the stochastic behavior of the alized as made U P  of components and repair teams. Component 
system can be described by a continuolls time ~ ~ ~ l ; ~ ~ ,  states are modified by failure and repair processes. Failure pro- 
(CTMC) having failure repair general, de. cesses only affect unfailed components and are associated with 
pendencies among the behavior of the compoI1eIlts of the sys. Particular components of the spstem but,  in general. can he 
tem are such that the CTMC has to be generated and solved propagated to other components. Repair processes are per- 
using general-purpose, state-level methods, Except for systems formed by repair teams. The system is either operational or 
with an small number of components, tile CTP\IC has a size down, as determined by the unfailed/failed condition of the 
(number of states) sucll that its direct specificat,ion is ,,nprac. conlponents of the system through a coherent structure func- 
tical a.nd autolnatic generation from a higher lcvcl specification tion [12]. Lack of coverage can be modeled in our language by 
is required. failure propagation. This approach is less restrictive than i t  

seems at first glance. For instance, the inefficiency of system- 
Available model specification methodologies show a trntlcoff level recovery procedures can be modelled by introducing a .'re- 
between modeling power and 11st.r-friendliness. Wv l i a v ~  in one covery" component without failure processes which is required 
hand very general specification methodologies like St,ochastic to be unfailed for the system to be operational. and propa- 
Petri nets [3, 41 and Production rules [ 5 ] ,  which allow the spe- gating uncovered failures to the "recovery" component. The 

repair of the "recovery" component would model the restart 
'This work was supported by the E S P R I T  project, of the C o t i i i i i i s ~ i o ~ i  of action usuaily after that  type of system failures. 
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Lack of coverage taking down only part of the system can be 
modeled similarly. 

A component, can be operational, failed, or dormant. As in the 
SAVE modeling language [6, 71, the failed state can be refined 
Iiy failed modes, which are determined at  the time the failure of 
tlie component occurs. In addition, in our language, the oper- 
at,ional st,ate can be refined by operational modes. Operational 
~iiodes provide the basis for modeling differences in the fail- 
ure processes affecting a component which may result from the 
configuration in which the system is working, and are an useful 
gcricralization expanding significantly the modeling power of 
the language. We also introduce in our language the concept 
of cluster. Conceptually, a cluster is a collection of components 
wliicli a t  a certain abstraction level can be seen as a whole. 
Clusters can have operational modes and configurations. Con- 
figurat,ions are also defined at  the system level. A configuration 
tlefiiies a mapping of components and clusters instantiated at  
a givm level into operational modes. This allows the concise 
sp-ification of complex configuration strategies by exploiting 
t h  liicrarchical structure of the system. 

Tlie hchavior of components and clusters is described in pa- 
rameterizahle classes which can be instantiated. A collection of 
objects can be instantiated with the same name. The behavior 
of t,he objects with the same name is undistinguishable and this 
information is exploited for the generation of lumped models 
wliose states are defined by factorizing instances with the same 
iiiiiiie and in the same state. By using clusters, symmetries 
that, tlir system may have at  levels higher than the component 
1evc.l (which would be disregarded if a flat, component-level 
description were used) can be made explicit and exploited. 

2.2. An example  

Tlic constructs of the language will be illustrated through an 
cxample of moderate complexity. The example is a distributed 
fanlt-t,olerant database system with 4 sites. Each site contains 
t,wo processors and two databases, keeping two. copies of the 
tlat,a.. .4rcess to data is performed through two front-ends. The 
sitvs and t,lie front-ends are connected by two local-area net- 
ivoIlis (LAN’s) as shown in Figure 1. The system is operational 
if c~acli site has at least one unfaikd processor and one unfailed 
tlatabase, and at least one front-end and the LAN to which the 
frolit-end is connected are unfailed. When the system is down 
all the components are dormant. In addition, when a front- 
cmtl is failcd the corresponding LAX is dormant and viceversa. 
Dormtilit components do not fail. 

Two failed modes are considered for the processors: one re- 
cliiiring repair (hard failure) and another requiring only restart 
(soft failurc). The processor soft failure rate is higher when the 
sitr has only one operational processor, since in this configura- 
t i o r i  the processor has a higher load. Databases have also two 
fiiilcd modes: one requiring repair (hard failure) and another 
rczc1niring only data recovery (soft failure). In order to keep the 
colicx of the data consistent. write accesses are performed in 
Imrallcl t o  all the operational databases of a site. A processor 
f;iilurc contaminates one (and only one) operational database 
with a probability nhich depends on the type of failure (hard 
or soft) of the processor. A contaminated database is in soft 
failcd mode. Data recovery for databases in soft failure can be 
done in two modes. The f i s t  mode (restoring) is possible if the 
the otlier database and at least one processor of the site are op- 

4 ... 

I 1  I 

Figure 1: A distributed fault-tolerant database system. 

erational and the site is accessible from at  least one operational 
front-end. When restoring is not possible the database has t o  
be recovered by a more time-consuming reloading operation. 
Processor restarts also require the site to be available from at  
least one front-end. 

Two field engineers repair databases, front-ends, LAN’s, and 
processors, with the higher priority given to databases, next 
to  front-ends and LAN’s, and next to  processors. Processor 
restarts and database recoveries are carried out by an unlimited 
number of operators. 

2.3. Model constructs 

In our language, a model is described by a set of parameters 
and system, cluster class, component class, and repair team des- 
criptions. The PARAMETERS construct for the distributed fault- 
tolerant database system is given beIow. Each parameter can 
be assigned a default value to be used for CTMC generation if 
a value is not specified for it. 

PARAMETERS 
f e f r :  
l f r :  
phf r : 
pdsf r : 
pssf r : 
dbhf r : 
dbsf r : 
hcov: 

f err : 
lrr : 
prepr : 
presr : 
dbrepr : 
dbresr: 
dbrelr: 

scov: 

1/3600 

1/800 
1/20000 

1/200 
1/100 

1/1200 
1/3600 

1/10 
1/20 
1/5 
1/0.05 
1/20 
1/0.2 
1 

/*  front-end f a i l u r e  ra te  */ 
/* LAN fa i lure  rate */ 
/* processor hard f a i l u r e  ra te  */ 
/*  proc. s o f t  f .  rate  i n  duplex */ 
/*  proc. s o f t  f .  rate  i n  simplex */ 
/*  database hard f a i l u r e  rate */ 
/*  database s o f t  f a i l u r e  rate */ 
/* COV. t o  proc. hard fa i lures  */ 
/* cov. t o  proc. s o f t  fa i lures  */ 
/*  front-end repair rate  */ 
/*  LAN repair rate  */ 
/*  processor repair rate  */ 
/*  processor restart  rate  * /  
/*  database repair rate  */ 
/*  database restore ra te  * /  
/ *  database reload rate */ 

In our language, a system is described hierarchically as a set of 
parameterized instantiations of cluster and component classes. 
This is done by MADE OF constructs included in the SYSTEM and 
CLUSTER CLASS constructs. In addition, the SYSTEM construct 
includes an optional list of resource attributes, either an op- 
erational or a down expression, and configurations. Resource 
attributes are logical variables summarizing the availability of 
unfailed resources instantiated at  the system level and are de- 
fined by logical expressions with atoms of the forms compo- 
nent[integer] and cll~ster.res-att[integer],  where component ( c h -  
ter) is a component (cluster) class or name instantiated at  the 
current (system) level and res-att is a resource attribute of the 
cluster class. These atoms are true when at  least integer in- 
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stances are unfailed or have the resource attribute true, respec- 
tively. Previously defined resource attributes can also be used. 
Resource attributes can be used in the construction of the oper- 
ational/down expression and other expressions included in the 
description of configurations. 

The conditions under which the system is operational are des- 
cribed by either an operational expression or a down expression. 
Both are logical expressions with the same syntax as resource 
attribute expressions. The operational expression evaluates to  
true when the system is operational and its atoms have the 
same semantics as in resource attribute expressions. A down 
expression evaluates to true when the system is down and its 
atoms have reversed semantics (at  least znteger instances are 
failed or have the resource attribute false, respectively). Re- 
source attribute, operational, and down expressions have to be 
built using only the logical and, OT operators. This restriction is 
imposed to  guarantee that the structure function of the system 
is coherent [12]. 

A configuration is described by a list of directives mapping 
unfailed component instances and cluster instances into oper- 
ational modes. Configurations may have requirements and are 
tried in the order they appear so that,  in a given state, the 
first one whose requirements are met is used. Thus, semanti- 
cally, a list of configurations defines a configuration strategy at 
a given level. Unconfigured (unmapped) component and clus- 
ter instances become dormant. A dormant cluster has all its 
clusters and unfailed components dormant. This implicit be- 
havior is followed by many systems and, thus, turns out to be 
useful. 

The SYSTEM construct for the distributed fault-tolerant database 
system is: 

SYSTEM 
MADE OF 

2 Channel of ChannelC 
4 S i t e  of SiteC 

OPERATIONAL IF: Channel.UpC11 and Site.UpC41 
CONFIGURATION 

CLUSTERS: Channel.Up, Site.Up 
operational: a l l  

specifying that the system includes two instances with name 
Channel of the cluster class ChannelC and four instances with 
name S i t e  of the cluster class SiteC, and that the system is 
operational if a t  least one cluster Channel and all clusters S i t e  
have their resource attribute up true. A configuration mapping 
all Up clusters into operational is included. This is necessary 
because, by default, unmapped clusters are dormant. The key- 
word operational is used because the cluster classes do not 
have operational modes. 

A cluster is a set of components seen as a complex entity which 
can be configured and can configure t,he components included 
in it. The cluster concept is hierarchical, i.e., a cluster can be 
defined in terms of lower level clusters. As components. clusters 
are seen as instances of classes. The use of clusters makes the 
specification of the model more concise and allows t,o exploit 
symmetries which the system may exhibit at levels higher than 
the component level. This is the case in the distributed fault- 
tolerant database system and two cluster classes are included 

in the specification of the model. The cluster class ChannelC 
includes one front-end and the L.4N connected to it and is Up 
when both components are unfailed. The cluster class SiteC 
includes the processors and databases of a site. The description 
of SiteC is: 

CLUSTER CLASS: SiteC 
MADE OF 

2 Proc of ProcC 
2 Db of DbC 

RESOURCE ATTRIBUTES 
Up: Proc[l] and DbCl] 

CONFIGURATION 
REQUIREMENTS : Proc [21 
COMPONENTS: Proc 

Duplex: 2 
COMPONENTS: Db 

operational: a l l  
CONFIGURATION 

COMPONENTS: Proc 
Simplex: 1 

COMPONENTS: Db 
operational: a l l  

The resource attribute up is true when at  least one processor 
and one database are unfailed. It is possible, in general. to de- 
fine several resource attributes for a cluster class. The cluster 
class SiteC has two configurations. The first one is used when 
d 1  its processors are unfailed. The second one is used when 
only one processor is unfailed. The first configuration maps 
the two unfailed processors into the operational mode Duplex 
and all unfailed databases into operational. The second config- 
uration maps the unfailed processor into the operational mode 
Simplex and all unfailed databases into operational. Cluster 
or component classes not having operational modes have to be 
mapped into operational if they are not to  become dormant. 
When the cluster class has operational modes each configura- 
tion has to be associated to an operational mode by using the 
construct CONFIGURATION FOR: op-mode .  

The behavior of components is also described in classes. The 
description of a component class includes, in its more general 
form, lists of parameters, operational modes and failed modes. 
and descriptions of failure modes and repair modes. Parameters 
are very useful in practice. For instance, the behavior of front- 
ends and LAN’s, which is qualitatively identical, is described in 
the example by the following component class with parameters 
defining the failure and repair rates: 

COMPONENT CLASS: SimpleC 
PARAMETERS: f a i l r ,  repr  
FAILURE MODE 

RATE: f a i l r  

RATE: repr  
REPAIR TEAM: Fieldengineers 

PLEPAIR MODE 

The values of the parameters are defined when the components 
are instantiated. Thus. a front-end would be instantiated as  
SimpleC(fefr, f e r r ) .  

The general form of a component class construct will be illus- 
trated by the description of the component class Procc of the 
distributed fault-tolerant database: 
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COMPONENT CLASS: ProcC 
OPERATIONAL MODES: Duplex, Simplex 
FAILED MODES: Hf, Sf 
FAILURE MODE 

FAILED MODE: Hf 
RATE: phfr 
PROPAGATION MODE 

PROBABILITY: I-hcov 
PROPAGATION EVENT 

COMPONENTS: Db 
NUMBER: 1 
FAILED MODE: Sf 

FAILURE MODE FROM: Duplex 
FAILED MODE: Sf 
RATE: pdsfr 
PROPAGATION MODE 

PROBABILITY: 1-scov 
PROPAGATION EVENT 

COMPONENTS: Db 
NUMBER: 1 
FAILED MODE: Sf 

FAILURE MODE FROM: Simplex 
FAILED MODE: Sf 
RATE: pssfr 
PROPAGATION MODE 

PROBABILITY: 1-scov 
PROPAGATION EVENT 

COMPONENTS: Db 
NUMBER: 1 
FAILED MODE: Sf 

REPAIR MODE FROM: Hf 
RATE: prepr 
REPAIR TEAM: Fieldengineers 

REPAIR MODE FROM: Sf 
DEPENDS UPON: /Channel [l] 

The component class Procc has two repair modes. The first 
one is used for hard failures and is scheduled to the repair 
team Fieldengineers; the second one is used for soft failures, 
is scheduled to  the repair team Operators, and can only be 
undertaken if a t  least one channel is operational (note that 
this implies that  a t  least one processor and the other database. 
of the site are also operational). 

Repair strategies are specified in REPAIR TEAM constructs which 
are illustrated by the repair team Fieldengineers of the dis- 
tributed fault-tolerant database system: 

REPAIR TEAM: Fieldengineers 
NUMBER: 2 
STRATEGY: priority 

DbC: 1 
SimpleC: 2 
ProcC: 3 

The team has two repairmen and uses a preemptive priority 
strategy, in which failed components scheduled to  the team are 
selected according to  given priorities, with the selection among 
components with the same priority being a t  random when there 
are more failed components than remaining repainnen. Priori- 
ties can be assigned to component with given names as well as 
classes and can be made dependent of the mode in which the 
components are failed. It is possible to  specify and unlimited 
number of repairmen. In this case, the STRATEGY construct is 
omitted. The simpler strategy ros (random order service), in 
which priorities are not specified, can be used when all the com- 
ponents scheduled to the repair team have the same priority. 

RATE: presr 
REPAIR TEAM: Operators 2.4. Metric specification 

The Same type of metrics which are incorporated in 
can be evaluated from a model specified using the lan- 

guage described here. These metrics include, among others, 

time between failures, the mean time to failure, the reliabil- 
ity, and the maintainability, as well as cost and 
related metrics, which result from the assignment of cost or 
pedormance indices to the states of the model. The metric to 
be evaluated is specified using the METRIC construct, This con- 
struct includes the OPTION coIlstruct to select the metric and, 
if required by the chosen option, the INITIAL STATE and INDEX 
constructs. The INITIAL STATE construct can be omitted for the 

state in which all components are unfailed and has the structure 
illustrated in the next section. The INDEX construct specifies a 

The component class Procc has three failure modes. The first 
riiodels hard failures and its active in any operational mode. 
The srcond and third failure modes model soft failures in, re- 

eral, a list of unfailed component states, including operational 
modes and the keywords operational and dormant, can be given 
as the argument of the FAILURE MODE FROM construct. The de- 
scription of a failure mode includes the mode in which the com- 
ponent is failed. which can only be omitted if the component 
class dors not have failed modes, the rate of the event (for 
~ n c h  component instance) and, optionally, a list of p ropagahn  
inodrs. 

spect'ively. the and Simp1ex Operational In gen. the s teadystate  availability, the point availability, the mean 

propagation modcs are exclusive events (at most one of tllenl Options requiring an Operational state with the Of the 

caII occur) and their description includes the probability of 
motlr and a list of propagation Propagation events are 
Ilot exclusive (any combination of them can in general occur). 
.4 propagation event propagates the failure of the component to 
ii given number of operational instances of a set of components 
of a given class. The set is specified using a special construct 
called component selector which allows navigation on the in- 
stantiat,ion tree of the system (starting from the level at which 
t,lie coniponerit is instantiated) using a UNIX-like syntax. The 
:;ctlrction of t,he set of components to which the failure can be 
1,rc)pagated can be refined by specifying a list of operational 
111odes in which the components can be affected. The descrip- 
tioil of a propagation event includes also the mode in which 
tllc coniponrnts are affected and the probability of the everit. 
ProIxd)ilities of propagation modes and events can be omitted 
\rit,li a dcfault value of 1. 

function to be used for the Of state indices' 

3. EXPLOITING SYMMETRIES 

A CTRlC is automatically constructed from a model specifica- 
tion after selecting a particular type of metric. Advantage is 
taken of the symmetries made explicit by the model specifica- 
tion to  reduce the size of the generated CTMC. This is done us- 
ing a hierarchical state description in which cluster macrostates 
and component states of instances with the same name are fac- 
torized out. This is possible because, by construction, compo- 
nents and clusters with the same instantiation name are undis- 
tinguishable. We give next for illustration purposes the de- 
scription of the state of the fault-tolerant distributed database 
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in which one front-end is failed and one piucessor of one site is 
in hard failed mode. 

CLUSTERS: Channel 
MACROSTATE 

INSTANCES: 1 
MODE: dormant 
COMPONENTS: Fe 

fa i led :  1 
COMPONENTS: Lan 

dormant: 1 
MACROSTATE 

INSTANCES: 1 
MODE: operational 
COMPONENTS: Fe 

COMPONENTS: Lan 
operational : 1 

operational : 1 
CLUSTERS: S i t e  

MACROSTATE 
INSTANCES: 1 
MODE: operational 
COMPONENTS: Proc 

operational: 1 
H f :  1 

COMPONENTS: Db 
operational: 2 

MACROSTATE 
INSTANCES: 3 
MODE: operational 
COMPONENTS: Proc 

COMPONENTS: Db 
operational: 2 

operational : 2 

The reduction of size obtained can be significant. For instance, 
without using the cluster construct of the language, front-ends, 
LAN’s, and the processors and databases of different sites have 
to be considered different, and the generated CTMC required 
for the computation of the availability has 408,969 states, while 
the lumped CTMC obtained from the specification using clus- 
ters has only 14,850 states (about 27 times less). The reduction 
is also significant in combination with pruning techniques [13]: 
39 states for the reduced CTMC against 227 states when only 
states with up to two failed components are generated. 

4. CONCLUSIONS 

A hierarchical, object-oriented modeling language for fault- tol- 
erant computer systems has been overviewed and its expressive 
power illustrated by an example of modcrate complexity. We 
have used the language to specify concisely niodels for sub- 
stantially more complex systems [ll]. By providing facilities 
to express symmetries that complex systems often exhibit a t  
levels higher than the component level, it is possible t o  gen- 
erate automatically lumped state-level models of much smaller 
size than would be generated from a flat, component-level sys- 
tem description. This is important since it is the size of the 
state-level model what restricts the applicability of numcrical 
solution methods. The kind of symmetries which t,he language 
captures could be extended by using conccpts reccntly devel- 
oped in the context of Petri net modeling [14], [15]. 
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