
HIERARCHICAL, OB JECT-ORIENTED MODELING
O F FAULT-TOLERANT COMPUTER SYSTEMS

Juan A. Carrasco*
Departament d'Enginyeria Electrbnica, UPC

Diagonal 647, plta. 9
OS02S-Barcelona, Spain

Abstract
A hierarchical, object-oriented modeling language for the speci-
fication of dependability models for complex fault-tolerant com-
puter systems is overviewed. The language incorporates the
hierarchical notions of cluster, operational mode and config-
uration and borrows from object-oriented prograniming the
concepts of class, parameterization, and instantiation. These
features together result in a highly expressive environment al-
lowing the concise specification of sophisticated dependability
models for complex systems. In addition, the language sup-
ports the declaration of symmetries that systems may exhibit
a t levels higher than the component level. These symmetries
can be used to automatically generate lumped state-level mod-
els of significantly reduced size in relation to the state-level
models which would be generated from a flat, component-level
description of the system.

1. INTRODUCTION

cification of arbitrary CThlC dependability models but require
complex and t.hus error-prone descriptions for large systems.
Another approach [6, 71 is the use of a special-purpose lan-
guage with an implicit modeling point of view and special con-
structs easing the specification of often-encountered complex
dependencies. In addition to being more user-friendly, the use
of a high-level modeling language has the advantage of convey
ing semantic knowledge which can be exploited during model
solution [S , 9, IO].

This paper overviews a hierarchical, object-oriented modeling
language for fault-tolerant computer systems which takes the
SAVE modeling language [6 ,7] as starting point, but introduces
many extensions (clusters, operational modes, configurations)
enhancing significantly its modeling power and user-friendliness
and supporting automatic generation of state-level models of
reduced size when, as it is often the case, the system has sym-
metries a t levels higher than the component level. The latter
is important since it is the size of the CTLIC what ultimately
limits the application of numerical solution methods. The rest _ -
of the paper is organized as follows. Section 2 overviews the

description of the language syntax and semantics and addi-
tional examples can be found in [ll]). Section 3 discusses the
representaLion of the states of the lumped CTSIC's . Section 4
concludes the paper

A fault-tolerant computer system can often be conceptualized

failure, recovery, and repair processes. Dependencies among
components often arise in real fault-tolerant computer systems
due to failure propagation, limited recovery efficiency, iecon-
figurations, and repair. Stochastic processes allow to consider

as made up of components ,-hanging their state as a result of language using Of moderate (a

all these important details. Recovery processes are typically
several orders of magnitude faster than both failure and repair 2 . LANGUAGE OVERVIEW
processes and can be modelled by using instantaneous coverage
probabilities [l], which can be obt,ained by statistical analysis 2.1. Modeling framework
[2] of experimental data collected from fault-injection experi-
ments. Typically, failure and repair times are assumed to have In Our language, a fault-tolerant computer system is conceptu-
exponential distributions so that the stochastic behavior of the alized as made U P of components and repair teams. Component
system can be described by a continuolls time ~ ~ ~ l ; ~ ~ , states are modified by failure and repair processes. Failure pro-
(CTMC) having failure repair general, de. cesses only affect unfailed components and are associated with
pendencies among the behavior of the compoI1eIlts of the sys. Particular components of the spstem but, in general. can he
tem are such that the CTMC has to be generated and solved propagated to other components. Repair processes are per-
using general-purpose, state-level methods, Except for systems formed by repair teams. The system is either operational or
with an small number of components, tile CTP\IC has a size down, as determined by the unfailed/failed condition of the
(number of states) sucll that its direct specificat,ion is ,,nprac. conlponents of the system through a coherent structure func-
tical a.nd autolnatic generation from a higher lcvcl specification tion [12]. Lack of coverage can be modeled in our language by
is required. failure propagation. This approach is less restrictive than i t

seems at first glance. For instance, the inefficiency of system-
Available model specification methodologies show a trntlcoff level recovery procedures can be modelled by introducing a .'re-
between modeling power and 11st.r-friendliness. Wv l i a v ~ in one covery" component without failure processes which is required
hand very general specification methodologies like St,ochastic to be unfailed for the system to be operational. and propa-
Petri nets [3, 41 and Production rules [5] , which allow the spe- gating uncovered failures to the "recovery" component. The

repair of the "recovery" component would model the restart
'This work was supported by the E S P R I T project, of the C o t i i i i i i s ~ i o ~ i of action usuaily after that type of system failures.

the European Communities no. 1909 "Sl lART. System RIr.;isiiri,iiicnt aiid
Arc h i t ec t ure Teclirri q w s "

CH3001-5/91/0000/0452/$01.00 0 1991 IEEE 452

Lack of coverage taking down only part of the system can be
modeled similarly.

A component, can be operational, failed, or dormant. As in the
SAVE modeling language [6, 71, the failed state can be refined
Iiy failed modes, which are determined at the time the failure of
tlie component occurs. In addition, in our language, the oper-
at,ional st,ate can be refined by operational modes. Operational
~iiodes provide the basis for modeling differences in the fail-
ure processes affecting a component which may result from the
configuration in which the system is working, and are an useful
gcricralization expanding significantly the modeling power of
the language. We also introduce in our language the concept
of cluster. Conceptually, a cluster is a collection of components
wliicli a t a certain abstraction level can be seen as a whole.
Clusters can have operational modes and configurations. Con-
figurat,ions are also defined at the system level. A configuration
tlefiiies a mapping of components and clusters instantiated at
a givm level into operational modes. This allows the concise
sp-ification of complex configuration strategies by exploiting
t h liicrarchical structure of the system.

Tlie hchavior of components and clusters is described in pa-
rameterizahle classes which can be instantiated. A collection of
objects can be instantiated with the same name. The behavior
of t,he objects with the same name is undistinguishable and this
information is exploited for the generation of lumped models
wliose states are defined by factorizing instances with the same
iiiiiiie and in the same state. By using clusters, symmetries
that, tlir system may have at levels higher than the component
1evc.l (which would be disregarded if a flat, component-level
description were used) can be made explicit and exploited.

2.2. An example

Tlic constructs of the language will be illustrated through an
cxample of moderate complexity. The example is a distributed
fanlt-t,olerant database system with 4 sites. Each site contains
t,wo processors and two databases, keeping two. copies of the
tlat,a.. .4rcess to data is performed through two front-ends. The
sitvs and t,lie front-ends are connected by two local-area net-
ivoIlis (LAN’s) as shown in Figure 1. The system is operational
if c~acli site has at least one unfaikd processor and one unfailed
tlatabase, and at least one front-end and the LAN to which the
frolit-end is connected are unfailed. When the system is down
all the components are dormant. In addition, when a front-
cmtl is failcd the corresponding LAX is dormant and viceversa.
Dormtilit components do not fail.

Two failed modes are considered for the processors: one re-
cliiiring repair (hard failure) and another requiring only restart
(soft failurc). The processor soft failure rate is higher when the
sitr has only one operational processor, since in this configura-
t i o r i the processor has a higher load. Databases have also two
fiiilcd modes: one requiring repair (hard failure) and another
rczc1niring only data recovery (soft failure). In order to keep the
colicx of the data consistent. write accesses are performed in
Imrallcl t o all the operational databases of a site. A processor
f;iilurc contaminates one (and only one) operational database
with a probability nhich depends on the type of failure (hard
or soft) of the processor. A contaminated database is in soft
failcd mode. Data recovery for databases in soft failure can be
done in two modes. The f i s t mode (restoring) is possible if the
the otlier database and at least one processor of the site are op-

4 ...

I 1 I

Figure 1: A distributed fault-tolerant database system.

erational and the site is accessible from at least one operational
front-end. When restoring is not possible the database has t o
be recovered by a more time-consuming reloading operation.
Processor restarts also require the site to be available from at
least one front-end.

Two field engineers repair databases, front-ends, LAN’s, and
processors, with the higher priority given to databases, next
to front-ends and LAN’s, and next to processors. Processor
restarts and database recoveries are carried out by an unlimited
number of operators.

2.3. Model constructs

In our language, a model is described by a set of parameters
and system, cluster class, component class, and repair team des-
criptions. The PARAMETERS construct for the distributed fault-
tolerant database system is given beIow. Each parameter can
be assigned a default value to be used for CTMC generation if
a value is not specified for it.

PARAMETERS
f e f r :
l f r :
phf r :
pdsf r :
pssf r :
dbhf r :
dbsf r :
hcov:

f err :
lrr :
prepr :
presr :
dbrepr :
dbresr:
dbrelr:

scov:

1/3600

1/800
1/20000

1/200
1/100

1/1200
1/3600

1/10
1/20
1/5
1/0.05
1/20
1/0.2
1

/* front-end f a i l u r e ra te */
/* LAN fa i lure rate */
/* processor hard f a i l u r e ra te */
/* proc. s o f t f . rate i n duplex */
/* proc. s o f t f . rate i n simplex */
/* database hard f a i l u r e rate */
/* database s o f t f a i l u r e rate */
/* COV. t o proc. hard fa i lures */
/* cov. t o proc. s o f t fa i lures */
/* front-end repair rate */
/* LAN repair rate */
/* processor repair rate */
/* processor restart rate * /
/* database repair rate */
/* database restore ra te * /
/ * database reload rate */

In our language, a system is described hierarchically as a set of
parameterized instantiations of cluster and component classes.
This is done by MADE OF constructs included in the SYSTEM and
CLUSTER CLASS constructs. In addition, the SYSTEM construct
includes an optional list of resource attributes, either an op-
erational or a down expression, and configurations. Resource
attributes are logical variables summarizing the availability of
unfailed resources instantiated at the system level and are de-
fined by logical expressions with atoms of the forms compo-
nent[integer] and cll~ster.res-att[integer], where component (c h -
ter) is a component (cluster) class or name instantiated at the
current (system) level and res-att is a resource attribute of the
cluster class. These atoms are true when at least integer in-

453

stances are unfailed or have the resource attribute true, respec-
tively. Previously defined resource attributes can also be used.
Resource attributes can be used in the construction of the oper-
ational/down expression and other expressions included in the
description of configurations.

The conditions under which the system is operational are des-
cribed by either an operational expression or a down expression.
Both are logical expressions with the same syntax as resource
attribute expressions. The operational expression evaluates to
true when the system is operational and its atoms have the
same semantics as in resource attribute expressions. A down
expression evaluates to true when the system is down and its
atoms have reversed semantics (at least znteger instances are
failed or have the resource attribute false, respectively). Re-
source attribute, operational, and down expressions have to be
built using only the logical and, OT operators. This restriction is
imposed to guarantee that the structure function of the system
is coherent [12].

A configuration is described by a list of directives mapping
unfailed component instances and cluster instances into oper-
ational modes. Configurations may have requirements and are
tried in the order they appear so that, in a given state, the
first one whose requirements are met is used. Thus, semanti-
cally, a list of configurations defines a configuration strategy at
a given level. Unconfigured (unmapped) component and clus-
ter instances become dormant. A dormant cluster has all its
clusters and unfailed components dormant. This implicit be-
havior is followed by many systems and, thus, turns out to be
useful.

The SYSTEM construct for the distributed fault-tolerant database
system is:

SYSTEM
MADE OF

2 Channel of ChannelC
4 S i t e of SiteC

OPERATIONAL IF: Channel.UpC11 and Site.UpC41
CONFIGURATION

CLUSTERS: Channel.Up, Site.Up
operational: a l l

specifying that the system includes two instances with name
Channel of the cluster class ChannelC and four instances with
name S i t e of the cluster class SiteC, and that the system is
operational if a t least one cluster Channel and all clusters S i t e
have their resource attribute up true. A configuration mapping
all Up clusters into operational is included. This is necessary
because, by default, unmapped clusters are dormant. The key-
word operational is used because the cluster classes do not
have operational modes.

A cluster is a set of components seen as a complex entity which
can be configured and can configure t,he components included
in it. The cluster concept is hierarchical, i.e., a cluster can be
defined in terms of lower level clusters. As components. clusters
are seen as instances of classes. The use of clusters makes the
specification of the model more concise and allows t,o exploit
symmetries which the system may exhibit at levels higher than
the component level. This is the case in the distributed fault-
tolerant database system and two cluster classes are included

in the specification of the model. The cluster class ChannelC
includes one front-end and the L.4N connected to it and is Up
when both components are unfailed. The cluster class SiteC
includes the processors and databases of a site. The description
of SiteC is:

CLUSTER CLASS: SiteC
MADE OF

2 Proc of ProcC
2 Db of DbC

RESOURCE ATTRIBUTES
Up: Proc[l] and DbCl]

CONFIGURATION
REQUIREMENTS : Proc [21
COMPONENTS: Proc

Duplex: 2
COMPONENTS: Db

operational: a l l
CONFIGURATION

COMPONENTS: Proc
Simplex: 1

COMPONENTS: Db
operational: a l l

The resource attribute up is true when at least one processor
and one database are unfailed. It is possible, in general. to de-
fine several resource attributes for a cluster class. The cluster
class SiteC has two configurations. The first one is used when
d 1 its processors are unfailed. The second one is used when
only one processor is unfailed. The first configuration maps
the two unfailed processors into the operational mode Duplex
and all unfailed databases into operational. The second config-
uration maps the unfailed processor into the operational mode
Simplex and all unfailed databases into operational. Cluster
or component classes not having operational modes have to be
mapped into operational if they are not to become dormant.
When the cluster class has operational modes each configura-
tion has to be associated to an operational mode by using the
construct CONFIGURATION FOR: op-mode .

The behavior of components is also described in classes. The
description of a component class includes, in its more general
form, lists of parameters, operational modes and failed modes.
and descriptions of failure modes and repair modes. Parameters
are very useful in practice. For instance, the behavior of front-
ends and LAN’s, which is qualitatively identical, is described in
the example by the following component class with parameters
defining the failure and repair rates:

COMPONENT CLASS: SimpleC
PARAMETERS: f a i l r , repr
FAILURE MODE

RATE: f a i l r

RATE: repr
REPAIR TEAM: Fieldengineers

PLEPAIR MODE

The values of the parameters are defined when the components
are instantiated. Thus. a front-end would be instantiated as
SimpleC(fefr, f e r r) .

The general form of a component class construct will be illus-
trated by the description of the component class Procc of the
distributed fault-tolerant database:

454

COMPONENT CLASS: ProcC
OPERATIONAL MODES: Duplex, Simplex
FAILED MODES: Hf, Sf
FAILURE MODE

FAILED MODE: Hf
RATE: phfr
PROPAGATION MODE

PROBABILITY: I-hcov
PROPAGATION EVENT

COMPONENTS: Db
NUMBER: 1
FAILED MODE: Sf

FAILURE MODE FROM: Duplex
FAILED MODE: Sf
RATE: pdsfr
PROPAGATION MODE

PROBABILITY: 1-scov
PROPAGATION EVENT

COMPONENTS: Db
NUMBER: 1
FAILED MODE: Sf

FAILURE MODE FROM: Simplex
FAILED MODE: Sf
RATE: pssfr
PROPAGATION MODE

PROBABILITY: 1-scov
PROPAGATION EVENT

COMPONENTS: Db
NUMBER: 1
FAILED MODE: Sf

REPAIR MODE FROM: Hf
RATE: prepr
REPAIR TEAM: Fieldengineers

REPAIR MODE FROM: Sf
DEPENDS UPON: /Channel [l]

The component class Procc has two repair modes. The first
one is used for hard failures and is scheduled to the repair
team Fieldengineers; the second one is used for soft failures,
is scheduled to the repair team Operators, and can only be
undertaken if a t least one channel is operational (note that
this implies that a t least one processor and the other database.
of the site are also operational).

Repair strategies are specified in REPAIR TEAM constructs which
are illustrated by the repair team Fieldengineers of the dis-
tributed fault-tolerant database system:

REPAIR TEAM: Fieldengineers
NUMBER: 2
STRATEGY: priority

DbC: 1
SimpleC: 2
ProcC: 3

The team has two repairmen and uses a preemptive priority
strategy, in which failed components scheduled to the team are
selected according to given priorities, with the selection among
components with the same priority being a t random when there
are more failed components than remaining repainnen. Priori-
ties can be assigned to component with given names as well as
classes and can be made dependent of the mode in which the
components are failed. It is possible to specify and unlimited
number of repairmen. In this case, the STRATEGY construct is
omitted. The simpler strategy ros (random order service), in
which priorities are not specified, can be used when all the com-
ponents scheduled to the repair team have the same priority.

RATE: presr
REPAIR TEAM: Operators 2.4. Metric specification

The Same type of metrics which are incorporated in
can be evaluated from a model specified using the lan-

guage described here. These metrics include, among others,

time between failures, the mean time to failure, the reliabil-
ity, and the maintainability, as well as cost and
related metrics, which result from the assignment of cost or
pedormance indices to the states of the model. The metric to
be evaluated is specified using the METRIC construct, This con-
struct includes the OPTION coIlstruct to select the metric and,
if required by the chosen option, the INITIAL STATE and INDEX
constructs. The INITIAL STATE construct can be omitted for the

state in which all components are unfailed and has the structure
illustrated in the next section. The INDEX construct specifies a

The component class Procc has three failure modes. The first
riiodels hard failures and its active in any operational mode.
The srcond and third failure modes model soft failures in, re-

eral, a list of unfailed component states, including operational
modes and the keywords operational and dormant, can be given
as the argument of the FAILURE MODE FROM construct. The de-
scription of a failure mode includes the mode in which the com-
ponent is failed. which can only be omitted if the component
class dors not have failed modes, the rate of the event (for
~ n c h component instance) and, optionally, a list of p ropagahn
inodrs.

spect'ively. the and Simp1ex Operational In gen. the s teadystate availability, the point availability, the mean

propagation modcs are exclusive events (at most one of tllenl Options requiring an Operational state with the Of the

caII occur) and their description includes the probability of
motlr and a list of propagation Propagation events are
Ilot exclusive (any combination of them can in general occur).
.4 propagation event propagates the failure of the component to
ii given number of operational instances of a set of components
of a given class. The set is specified using a special construct
called component selector which allows navigation on the in-
stantiat,ion tree of the system (starting from the level at which
t,lie coniponerit is instantiated) using a UNIX-like syntax. The
:;ctlrction of t,he set of components to which the failure can be
1,rc)pagated can be refined by specifying a list of operational
111odes in which the components can be affected. The descrip-
tioil of a propagation event includes also the mode in which
tllc coniponrnts are affected and the probability of the everit.
ProIxd)ilities of propagation modes and events can be omitted
\rit,li a dcfault value of 1.

function to be used for the Of state indices'

3. EXPLOITING SYMMETRIES

A CTRlC is automatically constructed from a model specifica-
tion after selecting a particular type of metric. Advantage is
taken of the symmetries made explicit by the model specifica-
tion to reduce the size of the generated CTMC. This is done us-
ing a hierarchical state description in which cluster macrostates
and component states of instances with the same name are fac-
torized out. This is possible because, by construction, compo-
nents and clusters with the same instantiation name are undis-
tinguishable. We give next for illustration purposes the de-
scription of the state of the fault-tolerant distributed database

455

in which one front-end is failed and one piucessor of one site is
in hard failed mode.

CLUSTERS: Channel
MACROSTATE

INSTANCES: 1
MODE: dormant
COMPONENTS: Fe

fa i led : 1
COMPONENTS: Lan

dormant: 1
MACROSTATE

INSTANCES: 1
MODE: operational
COMPONENTS: Fe

COMPONENTS: Lan
operational : 1

operational : 1
CLUSTERS: S i t e

MACROSTATE
INSTANCES: 1
MODE: operational
COMPONENTS: Proc

operational: 1
H f : 1

COMPONENTS: Db
operational: 2

MACROSTATE
INSTANCES: 3
MODE: operational
COMPONENTS: Proc

COMPONENTS: Db
operational: 2

operational : 2

The reduction of size obtained can be significant. For instance,
without using the cluster construct of the language, front-ends,
LAN’s, and the processors and databases of different sites have
to be considered different, and the generated CTMC required
for the computation of the availability has 408,969 states, while
the lumped CTMC obtained from the specification using clus-
ters has only 14,850 states (about 27 times less). The reduction
is also significant in combination with pruning techniques [13]:
39 states for the reduced CTMC against 227 states when only
states with up to two failed components are generated.

4. CONCLUSIONS

A hierarchical, object-oriented modeling language for fault- tol-
erant computer systems has been overviewed and its expressive
power illustrated by an example of modcrate complexity. We
have used the language to specify concisely niodels for sub-
stantially more complex systems [ll]. By providing facilities
to express symmetries that complex systems often exhibit a t
levels higher than the component level, it is possible t o gen-
erate automatically lumped state-level models of much smaller
size than would be generated from a flat, component-level sys-
tem description. This is important since it is the size of the
state-level model what restricts the applicability of numcrical
solution methods. The kind of symmetries which t,he language
captures could be extended by using conccpts reccntly devel-
oped in the context of Petri net modeling [14], [15].

REFERENCES

K . Trivedi, R. Geist. M. Smotherman, and J . B. Dugan .“Hy-
brid modeling of fault-tolerant systems” Comput. Elec. Eng.
Int. /., vol. 11, no. 2/3, pp. 87-108, 1984.

R. Geist. M. Smotherman and R. Talley, “Modeling Recovery
Time Distributions in Ultrareliable Fault-Tolerant Systems,” in
Proc. 20th fnt. Symp. on Fault-Tolerant Computing (FTCS-
20), Newcastle upon Tyne, June 1990, pp. 499-504.

M. A. Marsan, G. Conte, and G. Balbo, “A class of generalized
stochastic Petri nets for the performance evaluation of multi-
processor systems,” ACM Trans. on Computer Systems. vol.
2, pp. 93-122, May 1984.

0 . C. ibe, A. Sathaye, R. C. Howe, and K. S. Trivedi, “Stochas-
tic Petri Net Modeling of VAXcluster System Availability,” in
Proc. 3rd. Int. Workshop on Petri ‘Vets and Performance
Models (PNPMBS), Kyoto, Japan, December 1989. pp. 112-
121.

J . A. Carrasco and J. Figueras, “hIETFAC: Design and Imple-
mentation of a Software Tool for Modeling and Evaluation of
Complex Fault-Tolerant Computing Systems,” in Proc. 16th
Int. Synip. on Fault-Tolerant Computing (FTCS-16), Yienna.
July 1986, pp. 421-429.

A. Goyal, W. C. Carter, E. de Souza e Silva, S. S. Lavenherg.
and K . S. Trivedi, ”The System Availability Estimator.“ in
Proc. 16th Int. Synap. on Fault-Tolerant Computing (FTCS-
16), Vienna, July 1986, pp. 84-89.

A. Goyal and S. S. Lavenberg, “hIodeling and Analysis of
Computer System .4vailability,” IBA1 Research Rep. RC12158.
Yorktoivn Heights, Nov. 1986.

A. E. Conway and A. Goyal, “Monte Carlo Simulation of Com-
puter System Availability/Reliability Models,“ in Proc. 17th
Int. Symp. on Fault-Tolerant Computing (FTCS-17). Pitts-
burgh, 1987, pp. 230-235.

Juan A. Carrasco. “Failure distance-based simulation of repair-
able fault- tolerant systems.” in Proc. 5th Int. Conf. on .llorl-
elling Techniques and Tools for Computer Performance Ernl-
uation, Torino, February 1991. pp. 337-351.

Juan A . Carrasco, ”Efficient transient simulation of failure/re-
pair markovian models,” Technical Report. UPC, June 1990.
submitted for publication.

Juan A. Carrasco, “Dependability hiodeling in ShlART“. Re-
port, ESPRIT project 1609: SblART (System hleasurement
and Architecture Techniques), January 1990.

R. E. Barlow and F. Proschan, Statistical Theory of Reliability
and Life Testing: Probability Models, Silver Spring. 1981.

R. R. hluntz, E. de Souza e Silva. and -1. Goyal. “Bounding
Availability of Repairable Computer Systems.“ IEEE Trans.
on Computers, vol. 38, no. 12; December 1989. pp. 1711-
1723.

C. Dutheillet and S. Haddad. “Aggregation of States in Col-
ored Stochastic Petri Nets: Application to a Slultiprocessor
A4rchitecture,“ in Proc. 3rd Int. Il’orkshop on Petri .\-ets and
Performance Jlcdels (P.VP.IfSS), Kyoto. December 1989. pp.
30-49.

Juan A . Carrasco, “.Automated Construction of Compound
Markov Chains from Generalized Stochastic High-Level Petri
Nets,” in Proc. 3rd Int. Ii‘orkshop on Petri ,\-ets and Perfor-
mance Models (P.YP.tf8S), Kyoto, December 1989. pp . 03-103.

456

