
Failure Distance Based Bounds for Steady-state Availability without the
Knowledge of Minimal Cuts

Vı́ctor Suñé and Juan A. Carrasco
Departament d’Enginyeria Electrònica
Universitat Politècnica de Catalunya

Diagonal 647, plta. 9, 08028 Barcelona, Spain
fsunye, carrascog@eel.upc.es

Abstract

We propose an algorithm to compute bounds for the steady-
state unavailability using continuous-time Markov chains,
which is based on the failure distance concept. The algo-
rithm generates incrementally a subset of the state space
until the tightness of the bounds is the specified one. In
contrast with a previous algorithm also based on the failure
distance concept, the proposed algorithmuses lower bounds
for failure distances which are computed on the fault tree of
the system, and does not require the knowledge of the mini-
mal cuts. This is advantageous when the number of minimal
cuts is large or their computation is time-consuming.

1. Introduction

Continuous-time Markov chain models (CTMC) are a flexi-
ble, powerful tool for computing steady-state dependability
measures for fault tolerant systems such as the steady-state
availability, A. However, the steady-state probability distri-
bution of the CTMC modeling realistic systems, and, thus,
A, cannot be computed exactly in many cases because of the
enormous size of the state space of the CTMC. Bounding
techniques are an attractive approach. Using those tech-
niques, only a subset G of the state space of the CTMC
is generated and the behavior of the system outside G is
bounded somehow. Bounding techniques have been devel-
oped in the last few years and currently there exist several
bounding methods [2, 3, 4, 12, 13, 14, 15, 19]. In the
first of such methods [15], bounds for the steady-state un-
availability UA = 1 � A are obtained by partitioning the
non-generated portion U according to the number of failed
components and bounding the behavior of the chain in U
using upper bounds for the failure transition rates and lower
bounds for the repair transition rates. The method is, how-
ever, computationally very costly because a linear system of

size � jGj has to be solved for each return state, i.e. each
state through which G can be entered from U . In the same
paper, a state cloning technique is proposed which reduces
the number of linear systems which have to be solved but
introduces some looseness in the bounds. In [12] a refine-
ment of the method is proposed for the particular case in
which all states but the one without failed components are
cloned. The technique avoids a complete reapplication of
the algorithm each time G is enlarged in the search for the
desired accuracy but looses up further the bounds. This ad-
ditional looseness has been reduced in another paper from
the same authors [13]. In the method proposed in [4], the
bounds of [15] are computed without cloning states solving
only four linear systems of size jGj. In [19] another bound-
ing method is developed in which the bounds are iteratively
refined using detailed knowledge about the model in U in
the proximities of G. In [2] a bounding method based on
the failure distance concept is proposed which gives bounds
for UA which are never worse, and typically better, than
those given by [15]. The method uses the cloning technique
of [15] but adapts one of the algorithms developed in [4] so
that only five linear systems of size jGj have to be solved to
compute the proposed bounds.

The previous methods assume that the state space of the
CTMC is finite and that there is a transition to the left in all
non-generated states of the CTMC. Both restrictions have
been removed in the generalization of [15] proposed in [14].
Another generalization of [15] for finite CTMCs has been
recently proposed in [3]. In that method, group repair and
phase type repair distributions are allowed.

In the methods reviewed so far G includes all states of
the CTMC having up to K failed components. The issue of
how to generateG so that it includes as few states as possible
to achieve the required accuracy has also been investigated.
In [9], state space exploration techniques have been devel-
oped for the bounding method proposed in [15] with the
cloning technique. However, these state space exploration

techniques are expensive since they require the solution of a
linear system of size jGj after the expansion of every state.
More efficient state space exploration techniques based on
the concept of wave expansion and specifically targeted to
the method developed in [2] have been proposed in [5].

The bounding method proposed in [2] requires the knowl-
edge of the set of minimal cuts of the system, MC. There
exist a number of algorithms to obtain MC [6, 8, 11, 17].
Computation of MC is, however, NP-hard [18], so those
algorithms may break down. In addition, MC can be very
large, thus causing a large memory overhead due to the
need of holding MC. In this paper we develop a new bound-
ing method which uses lower bounds for failure distances
which are computed on the fault tree of the system, and
thus does not require the knowledge of MC. The method is
useful as an alternative to the method proposed in [2] when
the algorithms to obtain MC break down or the number of
minimal cuts is large. The rest of the paper is organized
as follows. Section 2 defines the modeling framework and
gives necessary background. Section 3 obtains the bounds
for UA using lower bounds for failure distances. Section 4
describes the algorithm to compute lower bounds for failure
distances on the fault tree. Section 5 analyzes the proposed
bounding method and compares it with the bounding method
proposed in [2] and the bounding method proposed in [15]
with state space exploration. Finally, Section 6 includes the
conclusions.

2. Preliminaries

We consider fault-tolerant systems made up of components
which fail and are repaired. The operational/down state
of the system is determined by the unfailed/failed state of
its components by means of a coherent [1] structure func-
tion represented by a coherent fault tree. Components are
grouped into types, being indistinguishable the components
of the same type. Therefore, collections of components can
be dealt with as bags [16]. Any bag of component types
which can fail simultaneously will be called a failure bag.
We assume known the set of failure bags of the system, E,
and, for each e 2 E, an upper bound, �ub(e), for the rate of
any transition associated with e. Repair actions involve just
one component and we assume also known a lower bound,
g(k) > 0, k > 0, for the rate of any transition associated
with a repair action in a state with k failed components.

Let X = fX(t); t � 0g be the finite CTMC modeling
the system and let
 be its state space. We assume that there
is only one state in
, which will be referred to as o, without
failed components and that there is at least one repair action
in any state in
 � fog. Then, X will be irreducible and,
thereby, ergodic.

Since the steady-state availability is typically very close
to one, it is often preferable to compute the steady-state

. . .U3U2

o

G

U1 UN

Figure 1. State transition diagram of the modified
CTMC X.

unavailability, UA. Let D be the subset of down states of X
and let p = (pi)i2
 be the steady-state probability vector
of X. We have

UA =
X
i2D

pi:

Bounds for UA will be computed using detailed knowl-
edge of X in the generated subset, G, and bounding the
behavior of X in U =
 � G. It will be used the state
cloning technique proposed in [15]. The technique consists
in modifyingX by adding toU clones of the states inGwith
more than F failed components, accounting for the visits to
the corresponding states of G after X exits G and before
the number of failed components has fallen below F + 1.
We will use the state cloning technique with F = 0, i.e.
clones of all states s 2 G � fog will be added to U . The
selection of F = 0 is made to ease the generation of G.
With F = 0, G includes states which are reachable through
G from state o and generation ofG from a high-level model-
ing formalism. With F > 0,Gmay contain states which are
reachable from o through U and generation of G requires a
priori knowledge about the set of states of X. The modified
X has the structure depicted in Figure 1, where Uk includes
all states in U with exactly k failed components and N is
the number of components of the system. In the following,
X will denote the modified X.

Throughout the paper we will denote by �s;s0 , s; s0 2

, the transition rate from state s to state s0, by �s =P

s02

s6=s0

�s;s0 , s 2
, the output rate of s, and by �s;C =P
s02C �s;s0 , s 2
, C �
, the transition rate from s to

the subset of states C, all referred to X unless otherwise
stated. We will also consider several transient CTMC Y .
Each such Y has state space B [fag, where all states in
B are transient and a is an absorbing state, and has a well-
defined initial probability distribution with P [Y (0) 2 B] =
1. � (s; Y), s 2 B, will denote the mean time spent byY in s
before absorption, and � (C; Y) =

P
s2C � (s; Y), C � B,

will denote the mean time to absorption in subset C. It
is well-known that the mean time to absorption vector � =
(� (s; Y))s2B is the solution of the linear systemA� = �q,
whereA is the restriction toB of the infinitesimal generator
of Y , and q = (P [Y (0) = s])s2B . It is also known that

� (s; Y)�s;s0 is the expected number of times that a transition
from s to s0, s 2 B, s0 2 B [fag, is followed.

3. Bounds for the Steady-state Unavailability

Consider the regenerative behavior of X, taking as regen-
eration points the times at which X enters o from U . Let
TG and TU be the contributions of G and U to the mean
time between regenerations of X, and let CG and CU be
the respective contributions to the mean down time. From
regeneration process theory (see, for instance [7]), we have

UA =
CG +CU
TG + TU

:

Assume that upper bounds [TU]ub and [CU]ub for, respec-
tively, TU and CU are known. Then [2, Theorem 2]

[UA]lb =
CG

TG + [TU]ub
; (1)

[UA]ub =
CG + [CU]ub
TG + [CU]ub

; (2)

are, respectively, a lower and an upper bound for UA.
Let YG be the transient CTMC with state space G [

fag and initial state o built from X by directing to a the
transitions from states in G to states in U . TG and CG can
be expressed in terms of the mean time to absorption vector
of YG, (� (s; YG))s2G, as

TG =
X
s2G

� (s; YG) ; (3)

CG =
X

s2G\D

� (s; YG) : (4)

3.1. Upper bound [TU]ub

The upper bound [TU]ub is the same as that of [2, 15]. Let
FC be the set of different cardinalities of the failure bags
of the model, let Ei be the subset of E including all failure
bags of cardinality i and let fi =

P
e2Ei

�ub(e). Consider

the transient CTMC Y uk with state space
SN

k=1fukg[fag,
initial state uk and the state transition diagram shown in
Figure 2. For each state uk and each i 2 FC , k + i � N ,
there is a transition to uk+i with rate fi, and a transition to
uk�1 if k > 1 and a otherwise with rate g(k). Let T (k) be
the mean time to absorption of Y uk and let

�k =
X
s2G

� (s; YG)�s;Uk (5)

be the probability that X enters U through Uk. Then [2,
Theorem 4]

[TU]ub =
NX
k=1

�k T (k) (6)

. . .u2 u3u1

g(N)g(4)g(3)g(2)

f1 f1

f2 f2

f1 f1
g(1)

uNa

Figure 2. State transition diagram of the transient
CTMC Y uk .

upper bounds TU . An efficient method to compute T (k),
1 � k � N , is described in [2].

3.2. Upper Bound [CU]ub

The upper bound [CU]ub is based on lower bounds for failure
distances. The failure distance from a state s 2
, d(s), is
defined [2] as the minimum number of components which
have to fail in addition to those already failed in s to take
the system down. Let F (s) be the bag of failed components
in s 2
. Assume that a lower bound for d(s), ed(s), is
available satisfying:

A1. 0 � ed(s) � d(s),

A2. ed(s) = 0 if and only if s 2 D, and

A3. ed(s)�jF (s0)�F (s)j � ed(s0) � ed(s), F (s) � F (s0).

Note that assumption A3 implies that given a transition from
s to s0, s; s0 2
, associated with a failure bag e 2 E,ed(s) � jej � ed(s0) � ed(s).

Let eUk;d be the subset of U including all states s with k
failed components and ed(s) = d, and let eL = ed(o). The seteR of (k; d) pairs for which eUk;d might be 6= ; is given by
the constraints

1 � k � N;

maxf0; eL� kg � d � minfeL;N � kg :

The constraints on k are obvious. The constraints eL�k � d
and d � eL follow from assumption A3 and the definition ofeL; 0 � d follows from assumption A1. Finally, d � N � k
follows from assumption A3 and the fact that the structure
function of the system is coherent by taking s0 the state with
all components failed and noting that ed(s0) � d(s0) = 0

and, therefore, ed(s0) = 0.
Let Y s

U , s 2 U be the transient CTMC with state space
U [fag and initial state s built from X by directing to
a the transitions from states in U to o. Let Cs

U be the
mean down time to absorption of Y s

U . Recalling that

P
s02G � (s0; YG)�s0 ;s, s 2 U , is the probability that X

enters U through s, we have

CU =
X
s02G

X
s2U

� (s0; YG)�s0;sC
s
U

=
X
s02G

X
(k;d)2eR

X
s2eUk;d � (s

0; YG)�s0;sC
s
U : (7)

Let eC(k; d) be upper bounds for Cs
U , s 2 eUk;d, and

e�k;d = X
s2G

� (s; YG)�s;eUk;d : (8)

Let

[CU]ub =
X

(k;d)2eR e�k;d eC(k; d) : (9)

We have

Theorem 1. AssumeCs
U �

eC(k; d), s 2 eUk;d, Then, CU �
[CU]ub.

Proof. Using (7), the fact thatCs
U �

eC(k; d), s 2 eUk;d, (8),
and (9):

CU =
X
s02G

X
(k;d)2eR

X
s2eUk;d � (s

0; YG)�s0;sC
s
U

�
X
s02G

X
(k;d)2eR

X
s2eUk;d � (s

0; YG)�s0;s eC(k; d)

=
X
s02G

X
(k;d)2eR � (s0; YG)�s0;eUk;d eC(k; d)

=
X

(k;d)2eR
X
s02G

� (s0; YG)�s0;eUk;d eC(k; d)

=
X

(k;d)2eR e�k;d eC(k; d) = [CU]ub :

Let L be the exact failure distance from state o, i.e. L =
d(o), and let

eC(k) =
NX
i=eL � (ui; Y

uk) : (10)

We have

Theorem 2. Cs
U �

eC(k), s 2 Uk.

Proof. By assumption A1, eL � L. Using that [2, Theorem
6] Cs

U �
PN

i=L � (ui; Y
uk) and (10):

Cs
U �

NX
i=L

� (ui; Y
uk) �

NX
i=eL � (ui; Y

uk) = eC(k):

eC(k), 1 � k � N can be computed efficiently using
the method described in [2] for C(k), 1 � k � N , with L
replaced by eL.

The bounds eC(k; d) are computed using an iterative pro-
cedure which starts with eC(k; d) = eC(k) and improves the
bounds using potentially better bounds eC0(k; d) until no
significant improvement is achieved.

Let s 2 eUk;d and consider a transition from s to s0 2 U
associated with a failure bag e 2 Ei, i 2 FC . Clearly,
s0 2 eUk+i;d0 for suitabled0values. Imposing (k+i; d0) 2 eR,
i � N � k and d0 � minfeL;N � k � ig. Moreover,
from assumptions A1 and A3, maxf0; d � ig � d0 � d.
Therefore, the only feasible destination subsets eUk+i;d0 ,
i 2 FC , are those satisfying i � N � k and (recall that
d � eL) maxf0; d � ig � d0 � minfd;N � k � ig. LeteR0 = f(k; d; i; d0)j (k; d) 2 eR , i 2 FC , maxf0; d� ig �
d0 � minfd;N � k � igg. Assume that upper boundseF (k; d; i; r), (k; d; i; r) 2 eR0, for

Pr

d0=0 �s;eUk+i;d0 , s 2eUk;d, are available and let

efi;j(k; d) =
8><>:
eF (k; d; i; d� j)

� eF (k; d; i; d� j � 1) ; � � j < !eF (k; d; i; d� j) ; j = ! ;

where � = maxf0; k + d + i � Ng and ! = minfi; dg.
The upper bounds eC0(k; d) are computed using

eC0(k; d) =
Id=0
g(k)

+ Ik>1

h
I
d>eL�k eC(k � 1; d)

+I
d�eL�k eC(k � 1; d+ 1)

i
+

1

g(k)

X
i2FC
i�N�k

!X
j=�

efi;j(k; d) eC(k + i; d� j) ;
(11)

where Ic is the indicator function returning 1 if c is true and
0 otherwise. The algorithm to compute the eC(k; d) bounds
is given in Figure 3. The parameter � is a tolerance factor
which determines when the improvement is small enough
for the algorithm to stop.

Next, we prove that the eC(k; d) computed by the al-
gorithm of Figure 3 upper bound Cs

U , s 2 eUk;d, pro-
vided that eF (k; d; i; r), (k; d; i; r) 2 eR0, and eF (k; d; i; d),
(k; d; i; d) 2 eR0, are decreasing on d. The proof will consist
of a sequence of three propositions and a theorem.

Proposition 1. Let (k; d) 2 eR. Assume that C l
U �eC(k; d), l 2 eUk;d, and that eC(k; d) is decreasing on d.

Then, C l
U �

eC0(k; d), l 2 eUk;d.

Proof. Let l 2 eUk;d. By assumption A2, d = 0 if and
only if l 2 D. Therefore, C l

U is equal to the mean time in

for (all (k; d) 2 eR) eC(k; d) = eC(k);
do f
�0 = 0;
for (k = 1; k � N ; k++)

for (d = maxf0; eL� kg; d � minfeL;N � kg;
d++) f

Compute eC0(k; d) using (11);
if (eC0(k; d) < eC(k; d)) f
�0 = maxf�0; (eC(k; d)� eC 0(k; d))= eC0(k; d)g;eC(k; d) = eC0(k; d);

g
g

g while (�0 � �);

Figure 3. Algorithm to compute the eC(k; d) bounds.

l, if d = 0, plus the mean down time from the next state
m, if m 2 U . Let us discuss next to which subsets eUk0;d0
m may belong. By assumption A3, a transition associated
with a repair action involving one component can only lead
to m 2 eUk�1;d0 , k > 1 (if k = 1, m = o =2 U), d �

d0 � d + 1. d0 = d is possible only if (k � 1; d) 2 eR,
i.e. d > eL � k; similarly, d0 = d + 1 requires d < eL.
Consider now transitions associated with failure bags e 2
Ei, i 2 FC . Clearly, m 2 eUk+i;d�j for suitable j values.
Imposing (k + i; d � j) 2 eR, i � N � k and d � j �

minfeL;N � k � ig. Furthermore, from assumptions A1
and A3, maxf0; d� ig � d � j � d. Therefore, the only
feasible eUk+i;d�j subsets are those satisfying (recall that
d � eL) maxf0; k + d + i � Ng � j � minfi; dg. Based
on this discussion we can write

Cl
U =

Id=0
�l

+ Ik>1

h
I
d>eL�k X

m2eUk�1;d
�l;m
�l

Cm
U +

I
d<eL X

m2eUk�1;d+1
�l;m
�l

Cm
U

i

+
X
i2FC
i�N�k

minfi;dgX
j=maxf0;k+d+i�Ng

X
m2eUk+i;d�j

�l;m
�l

Cm
U :

Using that, by assumption, Cm
U � eC(k0; d0), m 2 eUk0;d0 ,

and introducing the notation gj(l) = �
l;eUk�1;d+j , fij(l) =

�
l;eUk+i;d�j , Jm(i) = maxf0; k+d+ i�Ng, and JM (i) =

minfi; dg,

Cl
U � T1 + T2 +

X
i2FC
i�N�k

T3(i);

with

T1 =
Id=0
�l

T2 = Ik>1

h
I
d>eL�k g0(l)�l

eC(k � 1; d)

+ I
d<eL g1(l)

�l
eC(k � 1; d+ 1)

i
;

T3(i) =

JM (i)X
j=Jm(i)

fij(l)

�l
eC(k + i; d� j) :

From this point, the proof continues exactly as in [2,
Proposition 1] setting F = 0 and substituting L, C(k; d),
F (k; d; i; r), and fi;j(k; d) by, respectively, eL, eC(k; d),eF (k; d; i; r), and efi;j(k; d).
Proposition 2. Assume that eC(k; d), (k; d) 2 eR, eF (k; d;

i; r), (k; d; i; r) 2 eR0, and eF (k; d; i; d), (k; d; i; d) 2 eR0,
are decreasing on d. Then

eA(k; d; i) = minfi;dgX
j=maxf0;k+d+i�Ng

efi;j(k; d) eC(k + i; d� j) ;

i 2 FC ; i � N � k, is decreasing on d.

Proof. The proof is exactly as in [2, Proposition 2] replac-
ing A(k; d; i), R, C(k; d), F (k; d; i; r), F (k; d; i; d), and
fi;j(k; d) by, respectively, eA(k; d; i), eR, eC(k; d), eF (k; d;

i; r), eF (k; d; i; d) and efi;j(k; d).
Proposition 3. Assume that eC(k; d), (k; d) 2 eR, eF (k; d;

i; r), (k; d; i; r) 2 eR0, and eF (k; d; i; d), (k; d; i; d) 2 eR0,
are decreasing on d. Then eC0(k; d), (k; d) 2 eR, is decreas-
ing on d.

Proof. Let (k; d), (k; d+ 1) 2 eR. Using (11):

eC0(k; d)� eC0(k; d+ 1) = T1 + T2 +
X
i2FC
i�N�k

T3(i) ;

with

T1 =
Id=0 � Id+1=0

g(k)
;

T2 = Ik>1

h
I
d>eL�k eC(k � 1; d)

+ I
d�eL�k eC(k � 1; d+ 1)

� I
d+1>eL�k eC(k � 1; d+ 1)

� I
d+1�eL�k eC(k � 1; d+ 2)

i
;

T3(i) =
eA(k; d; i)� eA(k; d+ 1; i)

g(k)
;

where eA(k; d; i) is as defined in Proposition 2. We will
show that T1, T2 and T3(i) are all � 0. Since (k; d) 2 eR,
d � 0 and d + 1 > 0. Therefore, T1 = Id=0=g(k) � 0.
Regarding T2, three cases must be considered: a) k = 1, b)
k > 1, d > eL � k, and c) k > 1, d � eL � k. In case a,
T2 = 0; in case b, T2 = eC(k� 1; d)� eC(k� 1; d+1) � 0

because eC(k0; d0), (k0; d0) 2 eR, is assumed decreasing on
d; in case c, d+ 1 > eL� k because (k; d), (k; d+ 1) 2 eR,
and, thereby, T2(i) = eC(k�1; d+1)� eC(k�1; d+1) = 0.
Finally, T3(i) � 0 by Proposition 2.

Theorem 3. Assume that eF (k; d; i; r), (k; d; i; r) 2 eR0,
and eF (k; d; i; d), (k; d; i; d) 2 eR0, are decreasing on d.
Then, the eC(k; d) computed by the algorithm of Figure 3
upper bound Cs

U , s 2 eUk;d, and are decreasing on d.

Proof. Consider the algorithm split into phases, where each
phase includes the operations performed within the k-loop,
and let eCm(k; d), m � 0, be the bounds eC(k; d) available
after phase m. The proof will be by induction over m.eC0(k; d) = eC(k), which are (non-strictly) decreasing on
d and, by Theorem 2, upper bound Cs

U , s 2 Uk. Assume
now that the eCm(k; d) upper bound Cs

U , s 2 eUk;d, and
are decreasing on d. Let k0 be the value of k for which
the bounds are updated in phase m + 1. According to
(11), Cm+1(k0; d) only depend on Cm(k; d) for k 6= k0,
and all Cm+1(k0; d) are computed using the same set of
bounds Cm(k; d). Then, Proposition 1 guarantees that
C0(k0; d) are correct, and Proposition 3 that they are de-
creasing on d. Using the induction hypothesis, this implies
that Cm+1(k0; d) = minfCm(k0; d); C0(k0; d)g are correct
and decreasing on d.

We conclude this section by deriving suitable upper
bounds eF (k; d; i; r) for

Pr

d0=0 �s;eUk+i;d0 , s 2 eUk;d. Triv-

ially, eF (k; d; i;minfd;N � k � ig) = fi

upper bounds
Pminfd;N�k�ig

d0=maxf0;d�ig �s;eUk+i;d0 . Let e�(e), e 2 E,

be the lower bound for the failure distance from a state whose
bag of failed components is e. Let s0 2 U be a state reached
from s 2 eUk;d through a transition which has associated
with it the failure bag e. Since F (s0) = F (s) + e, we have,
by assumption A3, that ed(s0) cannot have been reduced with
respect to e�(e) by more than k, i.e. ed(s0) � e�(e)� k. Then

eF (k; d; i; r) =
X
e2Eie�(e)�k+r

�ub(e) ;

maxf0; d � ig � r < minfd;N � k � ig upper boundsPr

d0=maxf0;d�ig �s;eUk+i;d0 , r < minfd;N � k � ig. Triv-

ially, both eF (k; d; i; r), (k; d; i; r) 2 eR0 and eF (k; d; i; d) =

fi, (k; d; i; d) 2 eR0, are (non-strictly) decreasing on d, thus
fulfilling the conditions imposed by Theorem 3.

4. Lower Bounds for Failure Distances

In this section we derive lower bounds for failure distances
fulfillingassumptions A1–A3 of Section 3.2. We also derive
efficient algorithms to compute the bounds.

4.1. De�nition of Lower Bounds for Failure
Distances

We assume, without loss of generality, that the fault tree of
the system is made up of a set P of AND and OR gates and
a set I of inputs. We will denote by C the set of component
types of the system, and by gr the root gate of the fault tree.
Each input has the form c[n], c 2 C, meaning the failure ofn
components of type c. The existence of types of components
introduces some dependencies among the inputs of the fault
tree. It will be said that two inputs are related if they involve
components of the same type, i.e. are of the form c[n],
c[n0], n 6= n0. To avoid trivialities, we assume that there are
no related inputs feeding the same gate. This is not a real
restriction since for n0 > n and denoting by ^ and _ the
logical “and” and “or” operators, respectively, c[n] _ c[n0]
can be substituted by c[n] and c[n] ^ c[n0] by c[n0]. Each
node x (i.e. an input or a gate) of the fault tree feeds a
set of gates fo(x) and each gate y is fed by a set of nodes
�(y). Let val(x) 2 f0; 1g be the value of node x. If x is
a gate, val(x) is determined as usual from the values of its
inputs. If x = c[n] is an input, val(x) = 1 if and only if n
or more components of type c have failed. Since the value
of a node is equal to 1 if and only if a suitable collection of
components of the system being modeled have failed, nodes
will also be referred to as events. In this regard, the event
x 2 I [P will be said to be realized if val(x) = 1.

Let us denote a bag of failed components, F , as F =
c1[n1]c2[n2] : : : ck[nk], cl 6= cm, l 6= m, meaning that F
contains ni instances of component type ci. It will be said
that ci[ni] is part of F . The distance from a bag of failed
components F to an event x 2 I [P , db(F; x), is defined
as the minimum number of components which have to fail
in addition to those which are already part of F to realize
x. From that definition, given the bag of failed components
F (s) of a state s 2
, d(s) = db(F (s); gr). Let edb(F; x),
x 2 I [P , be a lower bound for db(F; x). The lower
bounds ed(s), s 2
, are ed(s) = edb(F (s); gr). Such lower
bounds will be computed on the fault tree using the concept
of module, defined as a gate such that the subtree hanging
from it has that gate as only exit point and every input of
the subtree does not have related inputs outside the subtree.
The gates which are modules can be determined using the
algorithm LTA/DR of [10] with a small modification to take

into account types of components: during the first depth-
first, left-most traversal of the fault tree (step no. 2 of the
algorithm), a visit to c[n] 2 I implies simultaneous visits
(i.e. with the same “time stamp” as for c[n]) to all its related
inputs.

LetF be a bag of failed components. edb(F; x),x 2 I[P ,
is recursively defined as follows. If x = c[n] 2 I:

edb(F; x) �
(
n if no c[n0] is part of F

maxf0; n� n0g otherwise
;

(12)

if x is an OR gate:

edb(F; x) � min
y2�(x)

fedb(F; y)g ; (13)

and if x is an AND gate,

edb(F; x) � X
y2A(x)

edb(F; y) (14)

+max
n X
y2B(x)

edb(F; y) ; max
y2C(x)

f0; edb(F; y)go ;
where A(x) � fy 2 �(x)j y is a module ^ j fo(y)j =
1g, B(x) � fy 2 �(x)j y is a module ^ j fo(y)j >
1 _ y is not a module ^ y 2 Ig and C(x) � fy 2
�(x)j y is not a module ^ y 2 Pg.

The lower bounds for failure distances recursively de-
fined by (12), (13) and (14) fulfill assumptions A1–A3 of
Section 3.2 [20, Theorems 2 and 4].

4.2. An Algorithm for the Computation of
Lower Bounds for Failure Distances

Expressions (12), (13) and (14) allow to compute edb(F; gr)
traversing the fault tree depth-first, left-most starting at gr.
However, this procedure could be expensive if the fault tree
is large. Next, we develop more efficient algorithms to
compute ed(s).

Each node x of the fault tree holds a “distance vari-
able”, dv(x), and the fault tree is initialized so that dv(x) =edb(;; x). Such an initialization is performed traversing
depth-first, left-most the fault tree starting at gr and using
(12), (13) and (14). Note that after the initialization pro-
cedure, eL = edb(;; gr) is known. edb(F (s); x) < edb(;; x),
x 2 P , requires edb(F (s); y) < edb(;; x) for some y 2 �(x).
Therefore, since ed(s) � eL, ed(s) = edb(F (s); gr) will be
equal to eL unless edb(F (s); y) < eL for some y 2 �(x). The
same argument can be iteratively applied going down the
fault tree until the inputs. This justifies the following algo-
rithm which computes ed(s) processing the fault tree from
inputs to gr. For each c[n] which is part of F (s), based on
(12) we make dv(c[n0]) = maxf0; dv(c[n0])� ng for each

input c[n0]. Each update of dv(x) for an input x which re-
sults in dv(x) < eL is propagated depth-first, left-most up the
fault tree using (13) and (14) whiledv(z) < eL for the visited
node z. Note that the algorithm computes the correct lower
bounds for distances from F (s) to the nodes x for whichedb(F (s); x) < eL, so, at the end, dv(gr) will hold ed(s).
Note also that the initialization dv(x) = edb(;; x) needs to
be performed only once if while computing ed(s) the changes
in the dv(x) variables are incrementally kept in a suitable
data structure, e.g. a stack. We call generically the algorithm
comp d(F; ub;DS), where F is a bag of failed components,
ub is an upper bound for the distance to be computed and
DS is a stack. The algorithm returns edb(F; gr) if that value
is< ub. In this regard, ed(s) = comp d(F (s); eL;DS). Onceed(s) has been computed, the fault tree is restored to its initial
state simply undoing the changes kept in DS. We call this
procedure restore d(DS).

Let s be a state in the frontier of G and let S be the
set of states s0 reached from s in a single failure transi-
tion. Computation of [CU]ub using (8) and (9) requires
the computation of ed(s0), s0 2 S. We describe next howed(s0), s0 2 S are computed assuming that e�(e) is known
for all e 2 E (e�(e) = comp d(e; eL;DS)). Each tran-
sition from s to s0 2 S has associated with it a fail-
ure bag es0 2 E and F (s0) = F (s) + es0 . Moreover,
we have that lbs0 = maxf0; ed(s) � jes0 jg � ed(s0) �

minfed(s); e�(es0)g = ubs0 . The dv(x) variables of the fault
tree are set to edb(F (s); x) if edb(F (s); x) < eL and edb(;; x)
otherwise by calling comp d(F (s); eL;DS). Next, for each
s0 2 S, ed(s0) = lbs0 if lbs0 = ubs0 . Otherwise, we set
d� = comp d(e; ubs0 ;DS0). Because of the characteristics
of the algorithm comp d(�), we will have d� = ed(s0) ifed(s0) < ubs0 and d� = ed(s) otherwise. Therefore, since
ubs0 � ed(s), ed(s0) = minfd�; ubs0g. Next, we call re-
store d(DS’) to allow another ed(s0) to be computed, and
once ed(s0) has been computed for all s0 2 S, we call re-
store d(DS) to restore the fault tree.

5. Analysis and Comparison

In this section we analyze the performance of the proposed
bounding method and compare it with the bounding method
proposed in [2] using the same state space exploration algo-
rithm. The bounding method proposed in [2] is analogous
to the one proposed here except that it uses exact failure dis-
tances computed using the set of minimal cuts of the fault
tree of the system, and bounding structures F (k; d; i; r) up-
per bounding

Pr

d0=0 �s;Uk+i;d0 , s 2 Uk;d, the subset Uk;d
including the states with k failed components and failure
distance d. We will also compare the method proposed here
with the bounding method proposed in [15]. In that method,

PU0
PU1

NA5

NB5 NB4

NA0 NB0 NB3 NA3

NB1 NB2

NA2NA1

DA1

RA1

DB1

RB1

PU2

NA4

Figure 4. Architecture of the first example.

the lower bound for UA is also [UA]lb but the upper bound
is

[UA]0ub =
CG + [TU]ub
TG + [TU]ub

:

In all cases the subset G is incrementally generated until
the relative unavailability band, ([UA]ub � [UA]lb)=[UA]lb,
is smaller than or equal to the desired one. For the proposed
bounding method and the method proposed in [2] the gen-
eration is done using the algorithm CONT TG W proposed
in [5]. For the bounding method described in [15] we use
an analogous algorithm CONT TG W, where the contribu-
tions to the relative unavailability band are associated only
with the parameter k (number of failed components of the
successors). Both algorithms allow to tradeoff the number
of times (� (s; YG))s2G is computed against how accurately
the state space is explored by means of a control parameter
BR, 0 � BR < 1 (the larger BR, the more accurate but
more costly the exploration). After some experimentation
we have found BR = 0:1 to be a reasonable choice. The
R parameter used in the algorithm for the computation of
exact failure distances described in [2] was set to 2.

The analysis and comparison will be made using two ex-
amples. The first example, whose architecture is depicted
in Figure 4, includes three processing clusters which com-
municate through two independent double-ring networks A
and B. Processing cluster i, 0 � i � 2, includes three
identical processing units PUi. Network A includes six
nodes NAi, 0 � i � 5, and direct (clockwise) and reverse
(counter-clockwise) links, DAi and RAi, respectively, link-
ing nodes NAi and NAi+1mod6. Network B has the same
structure as network A and its direct and reverse links are

called, respectively, DBi and RBi. The system is operational
if each processing cluster has at least an unfailed processing
unit and all processing clusters can communicate using one
of the networks. The operational configuration of the sys-
tem includes two processing units for the processing clusters
with two or three unfailed processing units, one processing
unit for the processing clusters with one unfailed processing
unit, and the components of either network A or B, with
priority given to network A, required to build one of the
operational configurations of the networks described next.
The network configuration which is tried first is a direct ring
including all nodes and direct links. The second configura-
tion which is tried is a reverse ring including all nodes and
reverse rings. The third configuration is used when parallel
direct and inverse link i fail and it includes all nodes and
links except the links between nodes i and i + 1 mod 6.
The last configuration is used when node i fails and it in-
cludes all nodes except node i and all links except those
between node i and nodes i � 1 mod 6. A fault in a pro-
cessing unit of a cluster contaminates another unfailed unit
in the same cluster with probability 0.05. The components
included in the operational configuration of the system are
called active. Active processing units, active nodes and ac-
tive links fail with rates 4:6� 10�4 h�1, 2:3 � 10�4 h�1

and 1:1 � 10�4 h�1. Inactive components fail with the
same rates multiplied by a dormancy factor of 0.2. We as-
sume that there is a single repairman who takes for repair
failed components at random. Repair rates for processing
units, nodes and links are, respectively, 0:5 h�1, 0:7 h�1

and 1:0 h�1. Components continue to fail when the system
has failed. The second example is as the first one but with
the number of nodes of both networks increased up to ten
and the number of processing clusters increased up to five.
For both examples L = 3 and eL = 2. The fault tree has
8,653 minimal cuts for the first example and 87,031 for the
second one.

We show in Figure 5 the relative unavailability band as a
function of the number of states inG for the proposed bound-
ing method and the methods described in [2] and [15]. The
results have been obtained in a 128 MB UltraSparc work-
station. It can be seen that the proposed bounding method
outperforms significantly the bounding method described
in [15] in terms of the size of G. Thus, for the first exam-
ple, the number of states required by the method described
in [15] to achieve a given relative unavailability band ranges
from 4.9 to 12.6 times the number of states required by
the proposed bounding method. With regard to the method
described in [2], the proposed method requires a number of
states about 2.6 times larger. However, the boundingmethod
described in [2] requires to bookkeep in memory the minimal
cuts and related data structures, and this overhead may make
the memory consumption (which is really the parameter of
interest) larger than that of the proposed method. Both the

0.01

0.1

0 10000 20000 30000

r
e
l
a
t
i
v
e

b
a
n
d

states

proposed
[2]

[15]

0.01

0.1

0 15000 30000 45000 60000 75000 90000

r
e
l
a
t
i
v
e

b
a
n
d

states

proposed
[2]

[15]

Figure 5. Relative unavailability band as a function of the number of states in G for the proposed bounding method, the
method described in [2] and the method described in [15], for the example with three processing clusters (left) and five
processing clusters (right) and BR = 0:1.

proposed bounding method and the method described in [2]
have to hold, for each state in the frontier of G, lists of con-
tributions to the unavailability band associated with the pa-
rameters k and d while the lists of contributions which have
to be held for those states in the method described in [15]
are associated only with the parameter k. Then, it is mean-
ingful to compare the three bounding methods in terms of
memory consumption. The comparison is done in Figure 6,
which plots unavailability relative band against (estimated)
memory consumption. The proposed bounding method is
again far more efficient than the method described in [15]
and more efficient than the method described in [2]. The
smaller the relative unavailability band,however, the smaller
the difference in terms of memory consumption between the
proposed method and the method described in [2]. This is
due to the fact that jGj increases and, thereby, the memory
consumption due to storing the state descriptions of G and
the lists of contributions to the unavailability band becomes
relatively more important than the overhead introduced by
storing the minimal cuts and related data structures.

The overhead due to the computation of lower bounds
for failure distances is negligible regarding memory con-
sumption. The overhead in terms of CPU time consumption
depends on the size of the fault tree. The fault tree of the first
example has 39 inputs, 32 gates and 431 edges. The fault
tree of the second example has 65 inputs, 48 gates and 1,193
edges. We have profiled our code and have found a time
overhead due to the computation of lower bounds for fail-
ure distances of 7.8% in the first example with jGj =8,608
states and 15.8% in the second example with jGj =9,568
states. Then, although increasing with the size of the fault
tree, the overhead in CPU time due to the computation of

lower bounds for failure distances is reasonable.

6. Conclusions

In this paper we have proposed a new method to compute
bounds for the steady-state unavailability, which is based
on lower bounds for failure distances. We have developed
algorithms to compute such distances on the fault tree of
the system. The proposed bounding method generates in-
crementally a subset of the state space using a previously
proposed state space exploration algorithm. Numerical anal-
ysis has shown that in terms of number of states needed
to achieve a given accuracy, the proposed method outper-
forms a previously proposed method not based on the fail-
ure distance concept and is worse than a previously pro-
posed method which uses exact failure distances. How-
ever, when compared in terms of memory consumption, the
proposed bounding method can outperform the bounding
method which uses exact failure distances if the number of
minimal cuts is large. Therefore, the proposed method is a
good tradeoff between bounds tightness and memory con-
sumption when the number of minimal cuts of the system is
large.

References

[1] R. E. Barlow and F. Proschan. Statistical Theory of Relia-
bility and Life Testing. Probability Models. McArdle Press,
Silver Spring, 1981.

[2] J. Carrasco. Tight steady-state availability bounds using the
failure distance concept. Performance Evaluation,34:27–64,
1998.

0.01

0.1

0 5 10 15 20 25

r
e
l
a
t
i
v
e

b
a
n
d

MB

proposed
[2]

[15]

0.01

0.1

0 20 40 60 80 100

r
e
l
a
t
i
v
e

b
a
n
d

MB

proposed
[2]
[15]

Figure 6. Relative unavailability band as a function of (estimated) memory consumption in MB for the proposed
bounding method, the method described in [2] and the method described in [15], for the example with three processing
clusters (left) and five processing clusters (right) and BR = 0:1.

[3] J. Carrasco. Bounding steady-state availability models with
group repair and phase type repair distributions.Performance
Evaluation, 35:193–214, 1999.

[4] J. Carrasco, A. Calderón, and J. Escrivá. Two new algorithms
to compute steady-state bounds for Markov models with slow
forward and fast backward transitions. In Proc. 4th Work-
shop on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS’96), pages 89–95,
February 1996.

[5] J. Carrasco, J. Escrivá, and A. Calderón. Efficient exploration
of availability models guided by failure distances. Perfor-
mance Evaluation Review, 24(1):242–251, May 1996.

[6] J. Carrasco and V. Suñé. An algorithm to find minimal cuts
of s-coherent fault trees with event classes using a decision
tree. IEEE Transactions on Reliability, 48(1):31–41, March
1999.

[7] E. Çinlar. Introduction to Stochastic Processes. Prentice-
Hall, Englewood Cliffs, NJ, 1975.

[8] O. Coudert and J. C. Madre. Metaprime: An interactive fault-
tree analyzer. IEEE Transactions on Reliability, 43(1):121–
127, March 1994.

[9] E. de Souza e Silva and P. M. Ochoa. State space explo-
ration in Markov models. Performance Evaluation Review,
20(1):152–166, June 1992.

[10] Y. Dutuit and A. Rauzy. A linear-time algorithm to find
modules of fault trees. IEEE Transactions on Reliability,
45(3):422–425, September 1996.

[11] W. Hennings and N. Kuznetsov. FAMOCUTN & CUTQN:
Programs for fast analysis of large fault trees with repli-
cated & negated gates. IEEE Transactions on Reliability,
44(3):368–376, September 1995.

[12] J. C. S. Lui and R. R. Muntz. Evaluating bounds on steady-
state availability of reparaible systems from Markov mod-
els. In W. J. Stewart, editor, Numerical Solution of Markov
Chains, pages 435–454. Marcel Dekker, New York, 1991.

[13] J. C. S. Lui and R. R. Muntz. Computing bounds on steady-
state availability of reparaible computer systems. Journal of
the ACM, 41(4):676–707, July 1994.

[14] S. Mahévas and G. Rubino. Bounding asymptotic depend-
ability and performance measures. In Proc. 2nd IEEE Int.
Performance and Dependability Symposium,pages 176–186,
Urbana-Champaign, USA, September 1996.

[15] R. R. Muntz, E. de Souza e Silva, and A. Goyal. Bounding
availability of repairable computer systems. IEEE Transac-
tions on Computers, 38(12):1714–1723, 1989.

[16] J. L. Peterson. Petri Net Theoryand the Modeling of Systems.
Prentice-Hall, London, 1981.

[17] A. Rauzy. New algorithms for fault trees analysis. Reliability
Engineering and System Safety, 40:203–211, 1993.

[18] A. Rosenthal. A computer scientist looks at reliability com-
putations. In R. Barlow, J. Fusell, and N. Singpurwalla,
editors, Reliability and Fault Tree Analysis, pages 133–152.
SIAM, Philadelphia, 1975.

[19] P. Semal. Refinable bounds for large Markov chains. IEEE
Transactions on Computers, 44(10):1216–1222, October
1995.

[20] V. Suñé and J. Carrasco. A failure-distance based method to
bound the reliability of non-repairable fault-tolerant systems
without the knowledge of minimal cuts. Technical report,
Universitat Politècnica de Catalunya, January 1999. Avail-
able at ftp://ftp-eel.upc.es/techreports under the name
DMSD 99 1.ps.

