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Abstract

e propose an algorithmto compute boundsfor the steady-
state unavailability using continuous-time Markov chains,
which is based on the failure distance concept. The algo-
rithm generates incrementally a subset of the state space
until the tightness of the bounds is the specified one. In
contrast with a previous algorithmal so based on thefailure
distance concept, the proposed al gorithmuses | ower bounds
for failure distances which are computed on the fault tree of
the system, and does not require the knowl edge of the mini-
mal cuts. Thisisadvantageouswhen the number of minimal
cutsislarge or their computation is time-consuming.

1. Introduction

Continuous-timeMarkov chain models (CTMC) are aflexi-
ble, powerful tool for computing steady-state dependability
measures for fault tolerant systems such as the steady-state
availability, A. However, the steady-state probability distri-
bution of the CTMC modeling realistic systems, and, thus,
A, cannot be computed exactly in many cases because of the
enormous size of the state space of the CTMC. Bounding
techniques are an attractive approach. Using those tech-
niques, only a subset G of the state space of the CTMC
is generated and the behavior of the system outside G is
bounded somehow. Bounding techniques have been devel -
oped in the last few years and currently there exist several
bounding methods [2, 3, 4, 12, 13, 14, 15, 19]. In the
first of such methods [15], bounds for the steady-state un-
availability UA = 1 — A are obtained by partitioning the
non-generated portion U/ according to the number of failed
components and bounding the behavior of the chain in U
using upper boundsfor thefailuretransition rates and lower
boundsfor the repair transition rates. The method is, how-
ever, computationally very costly because alinear system of

size ~ || has to be solved for each return state, i.e. each
state through which G can be entered from U. In the same
paper, a state cloning technique is proposed which reduces
the number of linear systems which have to be solved but
introduces some looseness in the bounds. 1n [12] arefine-
ment of the method is proposed for the particular case in
which al states but the one without failed components are
cloned. The technique avoids a complete reapplication of
the algorithm each time & isenlarged in the search for the
desired accuracy but looses up further the bounds. This ad-
ditional 1ooseness has been reduced in another paper from
the same authors [13]. In the method proposed in [4], the
bounds of [15] are computed without cloning states solving
only four linear systems of size |G|. In [19] another bound-
ing method is devel oped in which the bounds are iteratively
refined using detailed knowledge about the model in U/ in
the proximitiesof . In [2] a bounding method based on
the failure distance concept is proposed which gives bounds
for UA which are never worse, and typicaly better, than
those given by [15]. The method uses the cloning technique
of [15] but adapts one of the algorithms developed in [4] so
that only five linear systems of size |G| have to be solved to
compute the proposed bounds.

The previous methods assume that the state space of the
CTMC isfinite and that thereisatransitionto theleft in al
non-generated states of the CTMC. Both restrictions have
been removed in the generalization of [15] proposedin[14].
Another generalization of [15] for finite CTMCs has been
recently proposed in [3]. In that method, group repair and
phase type repair distributionsare allowed.

In the methods reviewed so far G includes dl states of
the CTMC having up to K failed components. The issue of
how to generate (- sothat itincludesasfew statesaspossible
to achieve the required accuracy has also been investigated.
In[9], state space exploration techniques have been devel -
oped for the bounding method proposed in [15] with the
cloning technique. However, these state space exploration



techniques are expensive since they require the solution of a
linear system of size |G| after the expansion of every state.
More efficient state space exploration techniques based on
the concept of wave expansion and specifically targeted to
the method devel oped in [2] have been proposed in [5].

Thebounding method proposedin[2] requirestheknow!-
edge of the set of minimal cuts of the system, MC. There
exist a number of agorithms to obtain MC [6, 8, 11, 17].
Computation of MC is, however, NP-hard [18], so those
algorithms may break down. In addition, MC can be very
large, thus causing a large memory overhead due to the
need of holding MC. In this paper we develop anew bound-
ing method which uses lower bounds for failure distances
which are computed on the fault tree of the system, and
thus does not require the knowledge of MC. The method is
useful as an aternative to the method proposed in [2] when
the algorithms to obtain MC bresk down or the number of
minimal cuts is large. The rest of the paper is organized
as follows. Section 2 defines the modeling framework and
gives necessary background. Section 3 obtains the bounds
for UA using lower bounds for failure distances. Section 4
describes the a gorithm to compute lower boundsfor failure
distances on the fault tree. Section 5 analyzes the proposed
bounding method and comparesit with the bounding method
proposed in [2] and the bounding method proposed in [15]
with state space exploration. Finally, Section 6 includes the
conclusions.

2. Preliminaries

We consider fault-tolerant systems made up of components
which fail and are repaired. The operational/down state
of the system is determined by the unfailed/failed state of
its components by means of a coherent [1] structure func-
tion represented by a coherent fault tree. Components are
grouped into types, being indistingui shablethe components
of the same type. Therefore, collectionsof components can
be dedlt with as bags [16]. Any bag of component types
which can fail simultaneously will be caled a failure bag.
We assume known the set of failure bags of the system, F,
and, for each e € F, an upper bound, A, (¢), for the rate of
any transition associated with e. Repair actionsinvolvejust
one component and we assume a so known a lower bound,
g(k) > 0, k > 0, for the rate of any transition associated
with arepair action in a state with & failed components.

Let X = {X(¢); ¢t > 0} be thefinite CTMC modeling
thesystem and let €2 beitsstate space. We assume that there
isonly onestatein €2, which will bereferred to as o, without
failed components and that thereis at least onerepair action
inany statein 2 — {o}. Then, X will be irreducible and,
thereby, ergodic.

Since the steady-state availability is typicaly very close
to one, it is often preferable to compute the steady-state
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Figure 1. State transition diagram of the modified
CTMC X.

unavailability, UA. Let D bethe subset of down states of X
and let p = (p;)icq be the steady-state probability vector

of X. We have
UA = Zpi.
ieD

Bounds for UA will be computed using detailed knowl-
edge of X in the generated subset, G, and bounding the
behavior of X inU = Q — G. It will be used the state
cloning technique proposed in [15]. The technique consists
inmodifying X by addingto U clonesof the statesin (G with
more than F' failed components, accounting for the visitsto
the corresponding states of & after X exits ¢ and before
the number of failed components has falen below F + 1.
We will use the state cloning technique with 7 = 0, i.e.
clones of al statess € G — {0} will beadded to U. The
selection of F' = 0 is made to ease the generation of .
With F' = 0, G includes states which are reachable through
G from state o and generation of &G from ahigh-level model -
ing formalism. With /' > 0, G may contain stateswhich are
reachable from o through U and generation of G requiresa
priori knowledge about the set of states of X. The modified
X hasthestructuredepicted in Figure 1, where Uy, includes
al states in U with exactly k failed components and N is
the number of components of the system. In the following,
X will denote the modified X.

Throughout the paper we will denote by A, ./, s,s" €
2, the transition rate from state s to state s, by A\, =
Y os'eq As,st, s € €, the output rate of s, and by A, ¢ =

s#s’
Yovec Asss s €9, C C Q, the transition rate from s to

the subset of states €, dl referred to X unless otherwise
stated. We will also consider severa transient CTMC Y.
Each such Y has state space B U {a}, where all statesin
B aretransient and « is an absorbing state, and has a well-
defined initial probability distributionwith P[Y'(0) € B] =
1. 7(s,Y),s € B, will denotethemean timespentby Y ins
before absorption, and 7(C,Y) = > .~ 7(s,Y), C C B,
will denote the mean time to absorption in subset C'. It
iswell-known that the mean timeto absorption vector = =
(7(s,Y))sep isthesolutionof thelinear sysem A+ = —q,
where A istherestrictionto B of theinfinitesimal generator
of Y,and q = (P[Y(0) = s])sep. Itisasoknown that



(s, Y) A o istheexpected number of timesthat atransition
fromstos’,s € B, s’ € BU{a}, isfollowed.

3. Boundsfor the Steady-state Unavailability

Consider the regenerative behavior of X, taking as regen-
eration points the times at which X enters o from U. Let
T and Ty be the contributions of G and U to the mean
time between regenerations of X, and let C; and Cy be
the respective contributions to the mean down time. From
regeneration process theory (see, for instance[7]), we have

_ Ce+Cy
Te+ Ty

Assume that upper bounds [7¢/],s and [Cy]up for, respec-
tively, 7ty and Cyy are known. Then [2, Theorem 2]

UA

Ca
(VA = Te + Tvlw @
_ Co +[Culw
VAl = To+ [Colus | (2

are, respectively, alower and an upper bound for UA.

Let Y be the transent CTMC with state space G U
{a} and initia state o built from X by directing to « the
transitions from statesin G to statesin /. T and C'¢ can
be expressed in terms of the mean time to absorption vector
of g, (T(S, Yg))seg, as

TG: ZT(S,YG), (3)
SEG

CG: Z T(S,YG). (4)
seGND

3.1. Upper bound [Ty]uws

The upper bound [Ti/].1 isthe same as that of [2, 15]. Let
F'C be the set of different cardinalities of the failure bags
of themodd, let £; be the subset of £ including all failure
bags of cardinality 7 and let f; = > cp. Aun(e). Consider
thetransient CTMC Y “* with statespace | _, {us } U {a},
initial state u; and the state transition diagram shown in
Figure 2. For each state u, andeachi € F'C, k+i < N,
thereisatransition to uy; withrate f;, and atransition to
ui—1 if k > 1 and a otherwisewithrate g(k). Let T'(k) be
the mean time to absorption of Y%+ and let

me= Y 7(s,Ya) e o, (5)
SEG
be the probability that X enters U/ through Uy. Then [2,
Theorem 4]
N

[Tolun = Y m T(k) (6)

k=1

9(N)

Figure 2. State transition diagram of the transient
CTMC Y,

upper bounds Ty, An efficient method to compute 7'(%),
1<k < N,isdescribedin[2].

3.2. Upper Bound [Cy]uw

Theupper bound [C].1, isbased onlower boundsfor failure
distances. The failure distance from astate s € €2, d(s), is
defined [2] as the minimum number of components which
have to fail in addition to those aready failed in s to take
the system down. Let F'(s) bethe bag of failed components
ins € Q. Assume that a lower bound for d(s), d(s), is
available satisfying:

Al 0<d(s) < d(s),

A2. d(s) = 0if andonlyif s € D, and

A3. d(s)— |F(s') — F(s)] < d{s") < dls), F(s) C F(s').

Note that assumption A3impliesthat given atransitionfrom
sto s, s,5 € €, associated with afaillurebag e € F,
d(s) — le| < d(s') < d(s).

Let Uy 4 bethe subset of U/ including al states s with &
failed componentsand d(s) = d, and let L = d(o). The set
R of (k,d) pairsfor which U , might be # 0 is given by
the constraints

1<k<N,
max{0,L — k} <d < min{L, N — k} .

The congtraintson k are obvious. The congtrai ntsL — k <d
and d < L follow from assumption A3 and the definition of
L; 0 < dfollowsfrom assumption Al. Findly,d < N — k
follows from assumption A3 and the fact that the structure
function of the system iscoherent by taking s’ the state with

al components failed and noting that d(s’) < d(s’) = 0
and, therefore, d(s') = 0.

Let Y75, s € U bethetransient CTMC with state space
U U {a} and initia state s built from X by directing to
a the transitions from states in U to o. Let C}; be the

mean down time to absorption of Y. Recaling that



Yeea T8, Ya) A s, s € U, is the probability that X
enters U through s, we have

CU = Z Z T(S/,Yg)/\slys C[s]

s'eG seU

=2, 2 2

S'€G (| A)ER s€U k. a

5 YG As/ )8 CU . (7)

Let C'(k, d) be upper boundsfor Cj;, s € Uy 4, and

Fra= Y T(s,Ya)A = T (8)
SEG
Let
[Colus = Y FraClk,d). (9)
(k,d)eR
We have

Theorem 1. AssumeC5; < C'(k,d), s € Uy.q4, Then, Cyy <
[Culub-

Proof. Using (7), thefact that C;j, < C'(k,d), s € Uy 4, (8),
and (9):

Cy = Z Z Z s’ YG si)s &5

s'eG (k, d)ER SEUk d

< Z Z Z s’ YG é(k’d)
s'eG (k, d)ER SEUk d

=3 D (Ve ,@dé(kad)
$'€G (k d)eR )

= > DT, Ve ,@dé(kad)
(k,d)ERs 'eG )

= Z fﬂv'kydé(k’,d):[CU]ub~ O
(k,d)eR

Let L bethe exact failuredistance from stateo, i.e. L =
d(o),and let

N
Clk) = m(us, Y™*). (10)
i=L

We have
Theorem 2. Cj, < C(k), s € Us.

Proof. By assumption A1, L < L. Using that [2, Theorem
6] Cir < oI, m(us, V) and (10):

N N
Cir < r(u, V) <3 r(ug, YY) = C(k). O
i=L i:z

C(k), 1 < k < N can be computed efficiently using
the method described in [2] for C'(k), 1 < k < N,with L
replaced by L. B

The bounds C'(k, d) are computed using an iterative pro-
cedure which startswith C'(k, d) = C'(k) and improves the
bounds using potentially better bounds 5’(l<:, d) until no
significant improvement is achieved.

Let s € Uy 4 and consider atrangitionfrom s to s’ € U
associ ated with a failure bag e ¢ Ej, i € F'C. Clealy,
s’ e Uk+l « forsuitabled’ values. Imposing (k+:,d') € R,
i < N—kandd < min{L,N —k — i}. Moreover,
from assumptions Al and A3, max{0,d — i} < d’ < d.
Therefore, the only feasible destination subsets Uy 4
i € FC, are those satisfying ¢ < N — k and (recall that
d < L)max{0,d — i} < d < min{d, N — k —i}. Let
R' = {(k,d,i,d')| (k,d) € R, i€ FC, max{0,d—i} <
d < min{d, N — k — i}}. Assume that upper bounds

2 , ' - > .
{W(k,d,z,r), (k,d,i,r) € R/, for 3 ,_, Astk+z,d’, s €
Uy 4, are availableand let
F(k,d i d—j)
fiilk,d) = —F(k,did—j—1), c<j<uw
F(kadaiad_j)a j:wa

where 0 = max{0,k +d +i¢— N} and w = min{i, d}.
The upper bounds C’ (k, d) are computed using

'k, d) = “22 4 1oy {Id>z_k C(k —1,d)

g(k’)

it s Clk—1,d+1)

> S hkaé

g( ) 1EFC j=o
I<N—-k

(11)
(k+i,d—j),

where I.. istheindicator function returning 1 if c istrue and
0 otherwise. The agorithmto computethe C'(%, d) bounds
is given in Figure 3. The parameter ¢ is a tolerance factor
which determines when the improvement is small enough
for the algorithm to stop. N

Next, we prove tha the C'(k,d) computed by the d-
gorithm of Figure 3 upper bound C%;, s € ﬁkyd, pro-
vided that F(k,d,i,7), (k,d,i,r) € R/, and F(k,d,i,d),
(k,d,i,d) € R, are decreasing on d. The proof will consist
of a sequence of three propositionsand atheorem.

Proposition 1. Let (k,d) € R. Assume that C}, <
C(k,d), | € Uy,q, and that C'(k,d) is decreasing on d.
Then, C,; < C'(k,d), 1 € Uk 4.

Proof. Let [ € ﬁkyd. By assumption A2, d = 0 if and
only if { € D. Therefore, C; isequal to the mean timein



for @@l (k,d) € R) C(k,d) = C(k);
do {
¢ =0;
for(k’zl;ng;ﬁvk++) B
for (d = max{0, L — k}; d < min{L, N — k};
d++) { N
Compute C’(k, d) using (11);
if (C"(k,d) < C(k,d))
¢’ = max{¢, (C(k, ) C'(k, d))/C"(k, d)};
Clk,d) = C’(k,d),

+while (e > ¢);

Figure 3. Algorithm to compute the C'(k, d) bounds.

[, if d = 0, plus the mean down time from the next state
m, if m € U. Let us discuss next to which subsets Uy 4
m may belong. By assumption A3, a transition associated
with arepair action involving one component can only lead
tom € Ug_1,4, k>1(G(fk =1, m:OQ_fU) d <
d" < d+1. d = dispossbleonlyif (k —1,d) € R,
ie d>L—Fk smilaly, d = d + 1 requiresd < L.

with

Id:O

T =

1 N

D ~
o=l |17, gOA(,) Ok —1,d)
+1 ) Clk—1,d+1)
d<L A bl bl

Jar(4)

. () ~ . .

Ta(i) = > f‘j\—f)C(k’—l—z,d—j).

J=Tm (i)

From this point, the proof continues exactly as in [2,
Proposition 1] setting 7' = 0 and substituting L, C'(k, d),
F(k,d,i,r), and f; ;(k,d) by, respectively, L, C(k,d),
F(k,d,i,r),and fi j(k,d). O

k,d) € R, Fk,d,

Proposition 2. Assume that C'(k, d), (k,d) € R,
i,d), (k,d,i,d) € R/,

i), (k,d,i,r) € R', and F(k,d, i,

are decreasing on d. Then

N min{z,d} N N

A(k,d,i) = > Foilk,dyClh+i,d—j),
j=max{0,k+d+i—N}

i€ FC,i< N —k,isdecreasingond.

Consider now transitions associated with failure bags e ¢ Proof. The proof is exactly asin[2, Proposition 2] replac-
E;, i € FC. Clearly, m € U4 .4—; for suitable j values. ing A(k,d,i), R, C(k,d), F(k,d,i,7), F(k,d, i d), and
Imposing (k +i,d—j) € R,i < N—kadd—j < f”(k , d) by, respectively, A(k,d,i), R, C(k,d), F(k,d,
min{L, N — k — i}. Furthermore, from assumptions A1 7), Fk,d,i,d)and f; ; (k, d). O
and A3, max{0,d — i} < d— j < d. Therefore, the only

feasible Uy 4_; Subsets are those satisfying (recall that I.Droposition.:%. ASSLHTE that~(](l<: d), (k,d) € R, F(k, C/l
d< T)max{0,k+d+i— N} < j < min{i,d}. Based r), (k.d,i,r) € R',and F(k,d, i,d), (k,d,i,d) € R’,
on this discussion we can write aredecreasmg ond. Then C’(k d), (k,d) € R, isdecreas
ing ond.
la= ALm ~
cl = Cj\—lo + Ipst {Id>f L Z jTC[T + Proof. Let (k,d), (k,d+ 1) € R. Using (11):
meﬁ 1 ~ ~
* dA, C'lhyd) = C'k,d+ 1) =T+ To + > Ty(i),
It ~Z /{l CU} zlgejg—ck
MEUR—1,a+41 ]
min{z,d} /\l with
+ Z Z Z T;n C[T]n . T1 — Id:o - Id+1:0
ZZ<EJ\};§k] =max{0,k+d+i— N}meﬁk-i—z,d—j g(l{j) 3
N B Ty = Iysy [T 7, Clh—1,d)
Using that, by assumption, C7? < C'(k',d'), m € Uy ar, _
and introducing the notation g; (1) = A, 5 . fi; (1) = + g Clk=1,d+1)
Frpnasy o () = max{0. ko d i = N}, and Ty (3) = I g Clk—1,d+1)
min{i, d}, N
Iy, Clk=1,d+2)],
l . ~ ~
Co STi+Tot 3, Tai), Ak d) = Ak, d+1,0)

i T =
A5, 3(0) a(k)

bl



where ﬁ(k,d, i) is as defined in Proposition 2. We will
show that 71, T» and T5(i) are dl > 0. Since (k,d) € R,
d>0andd+ 1> 0. Therefore, 71 = I;=0/9(k) > 0.
Regarding 7%, three cases must be considered: a) k£ = 1, b)
k>1,d>L—kadc)k>1,d<L—k Incasea,
Ty = 0;incaseb, b = C(k—1,d)— C(k—1,d+1) > 0
because C'(k,d'), (k',d’) € R, is assumed decreasing on
d;incasec,d+ 1> L — k because (k, d), (k,d+1) € R,
and, thereby, 75 (i) = C(k—1,d+1)—C(k—1,d+1) = 0.
Finaly, 75(¢) > 0 by Proposition 2. O

Theorem 3. Assume that F(k,d,i,r), (k,d,i,7) € R/,
and F(k,d,i,d), (k,d,i,d) € R', are decreasing on d.
Then, the é(k, d) computed by the algorithm of Figure 3
upper bound C;, s € ﬁkyd, and are decreasing on d.

Proof. Consider the algorithm split into phases, where each
phase includes the operations performed within the k-loop,
and let C"™(k, d), m > 0, be the bounds C'(k, d) available
after phase m. The proof will be by induction over m.
C%(k,d) = C(k), which are (non-strictly) decreasing on
d and, by Theorem 2, upper bound Cf;, s € Ug. Assume
now that the C™ (k, d) upper bound C, s € ﬁk,d, and
are decreasing on d. Let &’ be the value of & for which
the bounds are updated in phase m + 1. According to
(12), C™*1 (k' d) only depend on C™ (k,d) for k # k',
and al C™*1 (k' d) are computed using the same set of
bounds C™(k,d). Then, Proposition 1 guarantees that
C'(k',d) are correct, and Proposition 3 that they are de-
creasing on d. Using the induction hypothesis, thisimplies
that C™ 1 (k', d) = min{C™(k’,d),C"(k',d)} are correct
and decreasing on d. O

We conclude this section by deriving suitable upper

bounds F(k,d,i,r)for 5o A & .5 € Ugq. Triv-
S\ Ukqs,al
ially,
F(k,d,i,min{d, N — k —i}) = f;
upper bounds zg}ﬁiﬁﬁg@:g Mg, Letie), e €L,

bethelower bound for thefailure distance from astatewhose
bag of failed componentsise. Let s’ € U be astate reached
from s € Uy 4 through a transition which has associated
withitthefalurebag e. Since F'(s") = F(s) + ¢, we have,
by assumption A3, that d(s’) cannot have been reduced with

respect to 7j(e) by morethan k, i.e. d(s') > 7(e) — k. Then

Z Aub (€)

ecF;

n(e)<k+r

F(k,d,ir)=

max{0,d — i} < r < min{d, N — k — ¢} upper bounds
Zd’:max{();d—i} /\Sﬁk+,,d/ < mm{~d, N —~k —i}. Triv-
idly, both F'(k,d,i,r), (k,d,i,r) € R"and F'(k,d,i,d) =

fir (k,d,i,d) € R’, are (non-strictly) decreasing on d, thus
fulfilling the conditionsimposed by Theorem 3.

4. Lower Boundsfor Failure Distances

In this section we derive lower bounds for failure distances
fulfillingassumptions A1-A3 of Section 3.2. Wedso derive
efficient algorithmsto compute the bounds.

4.1. Definition of Lower Bounds for Failure
Distances

We assume, without loss of generality, that the fault tree of
the system is made up of aset P of AND and OR gates and
aset I of inputs. Wewill denote by C' the set of component
types of the system, and by ¢, the root gate of the fault tree.
Eachinput hastheforme[n], ¢ € C', meaningthefailureof n
componentsof typee. Theexistence of typesof components
introduces some dependencies among the inputs of the fault
tree. It will besaid that twoinputsarerelated if they involve
components of the same type, i.e. are of the form ¢[n],
¢[n'],n # n’. Toavoidtrividities, we assume that there are
no related inputs feeding the same gate. Thisis not areal
restriction since for »’ > n and denoting by A and Vv the
logical “and” and “or” operators, respectively, c[n] V ¢[n']
can be substituted by c¢[n] and ¢[rn] A ¢[rn] by ¢[rn']. Each
node z (i.e. an input or a gate) of the fault tree feeds a
set of gates fo(z) and each gate y is fed by a set of nodes
fi(y). Let val(z) € {0,1} bethevalue of node . If = is
agate, val(z) is determined as usua from the values of its
inputs. If & = ¢[n] isaninput, val(z) = 1 if and only if n
or more components of type ¢ have failed. Since the value
of anodeisequal to 1if and only if asuitable collection of
components of the system being model ed have failed, nodes
will aso be referred to as events. In this regard, the event
z € TU P will besaid to be redlized if val(z) = 1.

Let us denote a bag of failed components, F', as F' =
e1[ni]es[ns] .. ex[ng], @ # cm, I # m, meaning that F'
contains n; instances of component type ¢;. It will be said
that ¢;[n;] is part of F'. The distance from a bag of failed
components " toanevent x € I U P, dy(F, x), is defined
as the minimum number of components which have to fail
in addition to those which are aready part of F' to realize
. From that definition, given the bag of failed components
F(s) of astates € Q, d(s) = dp(F(s),gr). Let dp(F, z),
z € I'U P, be alower bound for dy(F,x). The lower
bounds d(s), s € Q, are d(s) = dy(F(s), g,). Such lower
boundswill be computed on the fault tree using the concept
of module, defined as a gate such that the subtree hanging
from it has that gate as only exit point and every input of
the subtree does not have related inputs outside the subtree.
The gates which are modules can be determined using the
algorithm LTA/DR of [10] with a small modification to take



into account types of components. during the first depth-
firgt, left-most traversal of the fault tree (step no. 2 of the
agorithm), a visit to ¢[n] € I implies simultaneous visits
(i.e. withthesame “time stamp” asfor ¢[n]) todl itsrelated
inputs. N

Let F beabag of failed components. dy(F, z),z € TUP,
isrecursively defined asfollows. If © = ¢[n] € I:

~ n if no c¢[n’] ispart of F
db(Fa l‘) = . )
max{0,n —n'} otherwise (12)
if zisan OR gate:
Jb(Fa l‘) = min {Jb(Fa y)}’ (13)
y€efi(z)

andif z isan AND gate,

dy(Fie)= Y dy(F,y) (14)
yeA(x)

—|—max{ Z db (F,y),

yEB(z

ylglax {0, db(F y)}}

where A(z) = {y € fi(z)|y isamodule A |fo(y)]
1}, B(z) = {y € fi(z)|y isamodule A |fo(y)]
1 Vv y isnotamodule A y € I} and C(z) = {y
fi(x)|y isnotamodule A y € P}.

The lower bounds for failure distances recursively de-
fined by (12), (13) and (14) fulfill assumptions A1-A3 of
Section 3.2 [20, Theorems 2 and 4].

m\/ll

4.2. An Algorithm for the Computation of
Lower Bounds for Failure Distances

Expressions (12), (13) and (14) allow to compute&(F, gr)
traversing the fault tree depth-first, left-most starting at g,
However, this procedure could be expensive if the fault tree
is large. Next, we develop more efficient algorithms to
compute d(s).

Each node = of the fault tree holds a “distance vari-
able’, dv(z), and thefault treeisinitialized so that dv(x) =
dy(P,z). Such an initialization is performed traversing
depth-first, left-most the fault tree starting at ¢, and using
(12), (13) and (14). Note that after the initialization pro-
cedure, I = db(Q) g») isknown. dy(F(s),z) < dy(0, z),
re P, requwesdb( (s),y) < db(Q) z) for somey € fi(z).
Therefore, since d( ) < L, d(s ) = dy(F(s), gr) will be
equal to L unlessdy,(F(s),y) < L for somey € fi(z). The
same argument can be iteratively applied going down the
fault tree until the inputs. This justifies the following algo-
rithm which computes d(s) processing the fault tree from
inputsto g,. For each c[n] which is part of F(s), based on
(12) we make dv(c[n’]) = max{0, dv(¢[n']) — n} for each

input c[n’]. Each update of dv(z) for an input  which re-
sultsindv(z) < L ispropagated depth-first, left-most up the
faulttreeusing (13) and (14) whiledv(z) < L forthevisited
node z. Notethat the algorithm computes the correct lower
bounds for distances from F(s) to the nodes « for which
dy(F(s),z) < L, so, at the end, dv(g,) will hold d(s).
Note also that the initialization dv(z) = dy(0, z) needs to
be performed only onceif whilecomputing d| (s) thechanges
in the dv(x) variables are incrementally kept in a suitable
datastructure, e.g. astack. Wecall generically thea gorithm
comp_d(F, ub, DS), where F' isabag of failed components,
ub is an upper bound for the distance to be computed and
DSisastack. The agorithm returns El?,(F, gr) if that value
is< ub. Inthisregard, d(s) = comp_d(F(s), L, DS). Once
d(s) hasbeen computed, thefault treeisrestored toitsinitial
state simply undoing the changes kept in DS. We cdll this
procedure restore_d(DS).

Let s be a state in the frontier of ¢ and let S be the
set of states s’ reached from s in a single failure transi-
tion. Computation of [Cy]u, using (8) and (9) requires
the computation of d(s’), s' € S. We describe next how
d(s'), s’ € S are computed assuming that 7j(e) is known
for adl ¢ € E (jj(¢) = comp.d(e, L,DS)). Each tran-
sition from s to s € S has associated with it a fail-
ure bag e, € EF and F(s') = F(s) + es. Moreover,
we have that Ib,, = max{0,d(s) — |e|} < d(s') <
mln{d( ),7i(es')} = ubyr. The dv(x) variables of the fault
tree are set to dy(F (s), ) if dy(F(s),z) < L and dp (0, z)
otherwise by calling comp_d(F(s), L, DS). Next, for each
s €5, d(s") = by if lby = uby. Otherwise, we set
d* = comp_d(e, ub,,, DS)). Because of the characteristics
of the algorithm comp_d(-), we will have d* = d(s') if
d(s') < uby and d* = d(s) otherwise. Therefore, since
uby < d(s), d(s') = min{d*, uby'}. Next, we cal re-
store_d(DS) to alow another d(s) to be computed, and
once d(s') has been computed for al s’ € S, we call re-
store_d(DS) to restore the fault tree.

5. Analysisand Comparison

In this section we analyze the performance of the proposed
bounding method and compare it with the bounding method
proposed in [2] using the same state space exploration algo-
rithm. The bounding method proposed in [2] is analogous
to the one proposed here except that it uses exact failuredis-
tances computed using the set of minimal cuts of the fault
tree of the system, and bounding structures F'(k, d, i, r) up-
per bounding 3" _y As v, 4, w0 5 € Uk a, the subset Uy 4
including the states with & failed components and failure
distance d. Wewill also compare the method proposed here
with the bounding method proposedin[15]. Inthat method,
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Figure 4. Architecture of the first example.

the lower bound for UA is also [UA]i, but the upper bound
is

Ca + [Tulus
VA, = = -
VAT, Ta + [Tvlus

Inall casesthesubset G isincrementally generated until
the relative unavailability band, ([UAJu, — [UAI ) /[UAIL,
issmaller than or equal to thedesired one. For the proposed
bounding method and the method proposed in [2] the gen-
eration is done using the agorithm CONT_TG_W proposed
in [5]. For the bounding method described in [15] we use
an anaogous agorithm CONT_TG_W, where the contribu-
tions to the relative unavailability band are associated only
with the parameter & (number of failed components of the
successors). Both agorithms alow to tradeoff the number
of times (7 (s, Y))se IS computed against how accurately
the state space is explored by means of a control parameter
BR, 0 < BR < 1 (thelarger BR, the more accurate but
more costly the exploration). After some experimentation
we have found BR = 0.1 to be a reasonable choice. The
R parameter used in the agorithm for the computation of
exact failure distances described in [2] was set to 2.

The analysis and comparison will be made using two ex-
amples. The first example, whose architecture is depicted
in Figure 4, includes three processing clusters which com-
municate through two independent doubl e-ring networks A
and B. Processing cluster ¢, 0 < ¢ < 2, includes three
identical processing units PU;. Network A includes six
nodes NA;, 0 < ¢ < 5, and direct (clockwise) and reverse
(counter-clockwise) links, DA; and RA;, respectively, link-
ing nodes NA; and NA, 4 1mods. Network B has the same
structure as network A and its direct and reverse links are

called, respectively, DB; and RB;. Thesystemisoperationa
if each processing cluster has at | east an unfailed processing
unit and al processing clusters can communicate using one
of the networks. The operationa configuration of the sys-
tem includestwo processing unitsfor the processing clusters
with two or three unfailed processing units, one processing
unit for the processing clusters with one unfailed processing
unit, and the components of either network A or B, with
priority given to network A, required to build one of the
operationa configurations of the networks described next.
The network configurationwhichistriedfirstisadirect ring
including al nodes and direct links. The second configura:
tionwhich istried isareverse ring including al nodes and
reverse rings. The third configuration is used when parallel
direct and inverse link ¢ fail and it includes al nodes and
links except the links between nodes ¢ and ¢ + 1 mod 6.
The last configuration is used when node i fails and it in-
cludes al nodes except node ¢ and all links except those
between node ¢ and nodes ¢ + 1 mod 6. A fault in apro-
cessing unit of a cluster contaminates another unfailed unit
in the same cluster with probability 0.05. The components
included in the operationa configuration of the system are
called active. Active processing units, active nodes and ac-
tive links fail with rates 4.6 x 10=% h=*!, 2.3 x 10=* h~!
and 1.1 x 10=* h™'. Inactive components fail with the
same rates multiplied by a dormancy factor of 0.2. We as-
sume that there is a single repairman who takes for repair
failed components at random. Repair rates for processing
units, nodes and links are, respectively, 0.5 h=*, 0.7 h=!
and 1.0 h=*. Components continueto fail when the system
has failed. The second example is as the first one but with
the number of nodes of both networks increased up to ten
and the number of processing clusters increased up to five.
For both examples I. = 3 and L = 2. The fault tree has
8,653 minimal cutsfor thefirst example and 87,031 for the
second one.

We show in Figure 5 the relative unavail ability band as a
function of thenumber of statesin G for the proposed bound-
ing method and the methods described in [2] and [15]. The
results have been obtained in a 128 MB UltraSparc work-
station. It can be seen that the proposed bounding method
outperforms significantly the bounding method described
in [15] in terms of the size of &. Thus, for the first exam-
ple, the number of states required by the method described
in[15] to achieve agiven relative unavail ability band ranges
from 4.9 to 12.6 times the number of states required by
the proposed bounding method. With regard to the method
described in [2], the proposed method requires a number of
statesabout 2.6 timeslarger. However, the bounding method
describedin[2] requiresto bookkeepin memory theminimal
cutsand related data structures, and thisoverhead may make
the memory consumption (which isredly the parameter of
interest) larger than that of the proposed method. Both the
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Figure 5. Relative unavailability band as a function of the number of statesin G for the proposed bounding method, the
method described in [2] and the method described in[15], for the example with three processing clusters (left) and five

processing clusters (right) and BR = 0.1.

proposed bounding method and the method described in [2]
have to hold, for each state in the frontier of &, lists of con-
tributionsto the unavailability band associated with the pa-
rameters k& and d whilethelistsof contributionswhich have
to be held for those states in the method described in [15]
are associated only with the parameter £. Then, it is mean-
ingful to compare the three bounding methods in terms of
memory consumption. The comparison isdonein Figure 6,
which plots unavailability relative band against (estimated)
memory consumption. The proposed bounding method is
again far more efficient than the method described in [15]
and more efficient than the method described in [2]. The
smaller therelative unavail ability band, however, thesmal ler
the differencein termsof memory consumption between the
proposed method and the method described in [2]. Thisis
due to the fact that || increases and, thereby, the memory
consumption due to storing the state descriptions of G and
thelistsof contributionsto the unavail ability band becomes
relatively more important than the overhead introduced by
storing the minimal cuts and related data structures.

The overhead due to the computation of lower bounds
for failure distances is negligible regarding memory con-
sumption. The overhead in terms of CPU time consumption
dependsonthesize of thefaulttree. Thefault treeof thefirst
example has 39 inputs, 32 gates and 431 edges. The fault
tree of the second example has 65 inputs, 48 gatesand 1,193
edges. We have profiled our code and have found a time
overhead due to the computation of lower bounds for fail-
ure distances of 7.8% in the first example with |G| =8,608
states and 15.8% in the second example with |G| =9,568
states. Then, although increasing with the size of the fault
tree, the overhead in CPU time due to the computation of

lower boundsfor failure distances is reasonable.

6. Conclusions

In this paper we have proposed a new method to compute
bounds for the steady-state unavailability, which is based
on lower bounds for failure distances. We have developed
algorithms to compute such distances on the fault tree of
the system. The proposed bounding method generates in-
crementally a subset of the state space using a previously
proposed state space expl oration algorithm. Numerical anal-
ysis has shown that in terms of number of states needed
to achieve a given accuracy, the proposed method outper-
forms a previously proposed method not based on the fail-
ure distance concept and is worse than a previoudly pro-
posed method which uses exact failure distances. How-
ever, when compared in terms of memory consumption, the
proposed bounding method can outperform the bounding
method which uses exact failure distances if the number of
minimal cutsislarge. Therefore, the proposed method is a
good tradeoff between bounds tightness and memory con-
sumption when the number of minimal cuts of the systemis
large.
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