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Abstract 

Randomization is a popular method for  t h e  tran- 
sient solution of continuous-time Markov models. Its 
primary advantages over other meth.ods (i.e., ODE 
solvers) are robustness and ease of implenientatzon. 
It is however well-known that the performance of the 
method deteriorates with the “stiflness” of the model: 
the number of required steps 10 solve the model up to 
t ime t tends to  At for At + cx), where A as the max- 
imum output rate. For measures like the uiireliability 
At can be very large for the t of interest, making the 
randomization method very unefficient. In  this paper 
we consider such measures and propose a new solu- 
tion method called regenerative randomization whzch 
exploits the regenerative structure of the model a n d  can 
be fa r  more efficient. Regarding Ihe niimber of deps 
required in  regeneratzve raiidoinizaizoii w e  prove Ihat: 
1) it is smaller than the niimber of sleps required in  
standard randomization when the znztzal distrihutzon is 
concentrated in  a single state, 2) for  At co, z t  is up- 
per bounded b y  a function O(Iog(At/c)), where c i s  the 
desired approximation error hound. Using a reliabzlzly 
example we analyze the performance aird stability of 
the method. 

Keywords: Randomization, continuous-time Markov 
chains, regenerative models, reliability, transient solu- 
tion. 

1 Introduction 

Continuous-time Markov chains (CTR’IC’s) are oft.en 
used for performance, dependability and performabil- 
ity modeling. The transient analysis of these models 
is usually significantly more costly than the steady- 
state analysis, and very costly in absolute terms when 
the CTMC model is large. This makes the tlevel- 
opment of efficient transient analysis techniques for 
CTMC’s a research topic of great interest,. Coni- 
monly used methods are ODE solvers and rantlom- 
ization. Good recent reviews can be found i n  [ILeiM 

uniformization) is numerically very stal)le and  easy t.o 
and [Mal94]. The  randomization method (also calle d 

implement. I t  was first proposed by Jensen [Jen53] 
and has been applied to  analyze performance mod- 
els [Gra77], [Gro84], dependability models [I<oh82], 
[Rei88], and performability models [Qur93]. The ran- 
domization method is based on the following result. 
Let S = { X ( t ) ; t  2 0 )  lie a CTRlC with state space 
R; let X j j ,  i , j  E 0 he the transition rates of S and 
let A; = CjEn X i j ,  i 6 R be the output rates of X .  
Consider any A 2 maxien X i  (usually A is taken to 
be maxien X i  , and define the discrete-time Markov 
chain (DTM (4 ) Y = { Y k ;  t = 0,  1 , 2 , .  . .) with same 
state space and initial distribution as X and jump 
probabilities q j j  = Xj j /A,  i # j ,  q; i  = 1 - Xi/A. Let 
N = { N ( t ) ; t  2 0 )  be a Poisson process with arrival 
rate A .  Then, X ( t )  = Y N ( t ) .  A recent, short proof of 
t,he result, with very general conclit.ions on  A’ can be 
found i n  [DijOO]. These conditions are satisfied i f ,  a.s 
we assume. S is finit,e. 

The randomization equation gives immediately an es- 
quenie for the computation of the transient probabili- 
ties of X, but it can also be exploited to compute more 
complex measures such as the distribution of the inter- 
val availability   SOU^^], Rub931 and the distribution 
of performa.bilit,y [Soo89\. In this paper we a.ssume 
t,hat X is a transient CTRlC 1vit.h state space Qt U { a } ,  
where a is an absorbing state a.nd all states in Qt are 
transient, and consider the absorption probability by 
time t ,  A P ( t )  = P [ X ( t )  = a ] .  The unreliability is an 
example of such a measure. Using the randomizat,ion 
eq U a t i on : 

In a practical implementation of the randomization 
met hod, the infinite series is approximated by truncat- 
ing the series up  to a given number of randomization 
steps, I<, and the approximation error is bounded. 
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where A P a ( t  is the approximation and A P ‘ ( t )  up- 
per bounds t b e approximation error. Taking a large 
enough M ,  A P ‘ ( t )  can be computed using a finite 
number of terms with arbitrary accuracy as: 

Using the well known result that  N ( t )  has an asymp- 
totic normal distribution with mean and varia.nce A t ,  
i t  is easy t o  show that ,  for large A t ,  the number of 
steps required in the randomization method is x A t ,  
almost independent of the required approximation er- 
ror. Often we are interested in solving the model for 
values of t for which At is large, and in such cases 
randomization is unefficient. Consider for instance a 
reliability model of a repairable fault-tolerant system. 
For such a model A is of the order of the maximum 
repair rate while the t of interest can be large. With 
a model including hot restarts, A can be as large as 
1 min-l, while the t of interest could be 1 year, yield- 
ing At = 525,600. Using the randomization method 
we are bound to  solve Y for more than half a million 
steps! If X is large this may be extremely expensive. 

Several approaches have been proposed t’o alleviate 
the problem. Miller has used select,ive randomization 
to  solve reliability models with detailed representa- 
tion of error handling activities [Mi183]. Reibman and 
Trivedi [Rei881 have proposed a more general approach 
based on the multistep concept which works very well 
when the transition probability matrix is dense. De- 
noting by Q the transition probability matrix of I’ 
and by r(k) the probability distribution row vector 
of Y a t  step k, we have r ( k  + S )  = r ( k ) Q S ,  where 
S is the length of the multistep. Then, computing 
Qs explicitely, the number of vector-matrix multipli- 
cations can be reduced ~ignificant~ly exploiting the fact 
that  for large At the number of r ( k ) ’ s  with significant 
contributions to  the randomization formula is of t,he 
order of v%. However, if Q is sparse Qs can be much 
denser than Q, and the number of floating point op- 
erations can still be large. Adapt,ive uniformizat,ion 
[Moo931 is a recent method in which the randomiza- 
tion rate is adapted depending on t,he states in  which 
the randomized DTMC can be in a t  a given step. For 
some models, adaptive randomizat,ion can be fast,er 
than the standard method. In addition, it can he 
used to solve models with infinite state spaces and 
not uniformly bounded transition rates. Another re- 
cent proposal to  speed up  the randomization met.hod 
is steady-state detection [Ma194]. This t,eclinique will 
be efficient if the steady-state is reached fa.st, but for 
for many models (for instance, reliabilit,; models of 
repairable fault-tolera.nt, syst.ems) the steady state is 
reached very slowly and the technique will not help. 
More recently, we have proposed [Car941 a method 

called regenerative randomization for the computation 
of measures like the steady-state availability and the 
expected interval availability which can be expressed 
as the transient reward rate or mean interval reward 
rate of rewarded regenerative CTMC models. Unlike 
standard randomization, our method is measure spe- 
cific. In this paper we extend the regenerative ran- 
domization method to  the computation of A P ( t )  and 
investigate its theoretical properties. We show that 
when the initial distribution of X is concentrated in 
a single state (a  very common case) regenerative ran- 
domization requires a t  most the same number of steps 
than standard randomization. Furthermore, for large 
A t ,  the number of steps required t o  achieve an ap- 
proximation error 5 6 is O(log(At/c)). In Section 2 
we derive the regenerative randomization method for 
A P ( t ) .  Section 3 includes the proofs of the theoreti- 
cal properties of the method. Section 4 analyzes the 
method compared to standard randomization using a 
reliability model. Section 5 concludes the paper. 

2 Regenerative randomization 

Regenerative randomization requires the selection of 
a transient state U E Q‘. Let at = P [ X  0) = i] = 
P[Yo = i], i E Q,  and assume P [ X ( O )  = 4 = 0. Let Qt = R‘ - { U } .  Let 2 = { Z k ;  k = O , l ,  2 , .  . .} be the 
transient DTMC followin Y from U till reentry in U .  
The state space of 2 is Q U { a ,  b } ,  where both a and 
b are absorbing states. 2 0  = U and 2 enters b when 
Y enters U .  The transition probabilities of Z are: 

Q 

P[Zk+1 = jlZk = i] = P[Yk+l = j l Y k  = i], 
P[Zk+l = blZk = i] 
P[Zk+l = u J Z ~  = U] 

= 
= 

P[Yk+l = u J Y ~  = i], 
P[Yk+l = b ( Y k  = b] = 1, 

with i E R‘, j E Q:, U a. 

Let Z’ = { Z i ;  k = 0 , 1 , 2 , .  . .} be the transient DTMC 
with state space Qt U { U ,  b } ,  where both a and b are 
absorbing states, following Y except that  2’ remains 
in b if Y has been in U .  The initial distribution of 2’ 
is P[ZA = i] = ai, i E Oh, P[ZA = b] = a,, and its 
transition probabilities are: 

P[Zk+, = jlzk = i] = PIYk+I = j l Y k  = i], 
P [ Z ; + ,  = 612; = i] 
P[Z;+,  = ~12; = U ]  

1 

= 
P[Yk+l = u J Y ~  = i], 
P[Yk+1 = blYk = b] = 1 ,  

with i E Qi, j E 0: U { U } .  

In  the following let rt(k) = P[Zk = i], ((k) = P[Zk = 
i] . 

The regenerative randomization formula is obtained 
considering a discrete-time stochastic process W = 
{ W k ; k  = O , 1 , 2 , .  . .}, with state space {0 ,1 ,2 , . .  .} U 
{ O ’ ,  1’, 2’ ,  . . .} U {U}, defined from I’ as follows: 

1 
I;’ 
U if Yk = U 

i f  Yk-, = U AY, E Q ; , k - - l  < m 5 k 
if Ynl E Qh,O 5 m 5 6 
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Figure 1: State transition diagram of the DTMC W .  

Informally, W k  = 1 if Y has visited U by time k, has 
not been absorbed, and has made its last visit to U 1 
steps before the current step, k; Wk = k’ if Y has not 
visited U by time k and has not been absorbed; and 
wk = a if Y has been absorbed. 

Proposition 1 Let a ( k )  = CiER, x;(k), u ’ ( k )  = 
xien: ri(k), v k  = (ra(k + 1) - r a (k ) ) /U(k ) ,  Qk = 
( r b ( k + l ) - r b ( k ) ) / a ( k ) ,  U ;  = ( .h(k+l)-Tb(k>)/U’(k),  
q; = ( r i ( k + l ) - r i ( k ) ) / a ’ ( k ) .  Then, W is an homoge- 
neous discrete-time Markov ch.ain with znitial probabil- 
ity distribution P[Wo = 01 = CY,,, P[Wo = 0’1 = 1-CY,,, 
P[Wo = i] = 0 ,  i { O , O ’ }  and the state transztion di- 
agram shown in Figure 1 .  

Proof The initial distribution of W follows inmedi- 
ately from the definition. It is a.lso clear that:  1) 
Wk E { ( ) , I , .  . . , I C ,  k’, a } ,  2 )  from a state 1 ,  W can only 
jump to states a, 0, or 1 + 1, and 3) from a state k’, 
W can only jump to states a, 0, or (k + 1)’. We will 
compute all transition probabilities a t  a given step k 
and show that  they only depend on the “from” state. 

Case a ( W k  = 1 , 0  5 15 k): 

The regenerative randomization formula can now be 
obtained refining the state description of Y according 
to W and derandomizing W into a CTMC V .  The 
result is expressed by the following theorem. 

Theorem 1 Let V = { V ( t ) ; t  2 0) be the C T M C  
with state space ( 0 ,  I , . .  .} U {O’, l’,.. .} U { a } ,  initial 
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Figure 3: State transition diagram of the CTMC VK,L 
Figure 2: State transition diagram of the CTMC V .  

distribution P[V(O) = 01 = a”, P[V(O) = 0’1 = l - a u ,  
P[V(O) = i ]  = 0, i $ {O,O’}, and the state transition 
diagram shown in Fzgure 2. Then, AP(t) = P [ X ( t )  = 
a] = P[V( t )  = a ] .  

The infinite summations of the exact regenerative ran- 
domization formula will be truncated assuming that Z 
has been solved up to  step I< and Z’ has been solved 
up to  step L.  The parameters Z<, L control the com- 
putational effort and the approximation error. This 
is done considering the CTMC VK,L = { V I ( , L ( ~ ) ; ~  2 
0) with state space { 0 , 1 , .  . . , I < }  U {O’, l’, . . . , L ‘ }  U 
{ a , b }  defined as follows. V K , L ( ~ )  = V ( t )  if V ( T )  E 
{O’, I t , .  . . , ( L  - I)’} U (0, 1, .  . . , A’ - I} U {a} for T E 
[ O , t ] ,  or V ( t )  = L‘ and L’ has been entered only once 
in 0, t or V(2) = K and I< has been entered only once 
in [ O l d ;  and V K , L ( ~ )  = b otherwise. 

The state transition diagram of VK,L is given i n  Fig- 
ure 3. The  absorbing state 6 represents the behav- 
ior of V non captured by the states { 0 , 1 , .  . . , I<} U 
(0’) 1’. . . , L’} U { a }  of VK,L. Clearly, from the defini- 
tlon of VK,L: 

P[VK,L(t) = i] 5 P [ V ( f )  = i ] )  

i E { 0 , 1 , .  . . , A - }  U { O ’ ,  1’. . . , L’} U { U } .  

Then, a lower bound to  A P ( t )  = P [ X ( t )  = a]  = 
P[V( t )  = a] is given by: 

APO(t) = P[VK,L(t) = U ] ,  (1) 

and the approximation error can be bounded as fol- 
lows: 

A P ( t )  - A P “ ( t )  = P [ V ( t )  = U ]  - P[VK,L(~) = U ]  

5 P [V,<,L(t) = b] = A P ‘ ( t )  (2) 

The VK,L model for the transient probabilities of the 
st~ates a ,  b can be solved i n  the Laplace domain (see 
[Ca194] for details). Then, using (1) , (2)  and antitrans- 
forming analytically whenever possible: 

k = O  / = k + l  “ 

with 

A k  
L-1 

(s + N ( s )  = 1 - a ’ ( k ) ( s  + .;A) 
k = O  

h’- 1 k 

k = O  
K-1 

s + A  

(5) 
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The infinite series in (3), (4) can be approximated with 
arbitrary accuracy taking a large enough A4 > L + 1 
as: 

M - 1  

+ 6(W1 2 w e - A t  W e - A t  
l !  

l = k + l  
I! 

I = k + l  

( A t ) M e - A t  S ( M )  = -- At M !  .. l-z 
where the 6 ( M )  terms upper bound the chopped sum- 
mations. 

Regenerative randomization involves in general two 
truncation parameters. This opens the issue of op- 
timizing the distribution of the total number of steps. 
We adopt the optimization method which has worked 
succesfully for other measures [Car94]. In this method, 
A P L ( t )  is split into two terms; t,he first, A P : ( t ) ,  ac- 
counts for the probability of b in VK,L resulting from 
entries from state L'; the second, A P ; ( t ) ,  accounts for 
the entries in b from Ii'. These terms are: 

00 

A P ; ( t )  = d ( L )  w e - A t ,  k! 
k=L+1  

A P i ( t )  can be reduced increasing L ;  similarly, A P ; ( t )  
can be reduced increasing A'. Then, starting with 
the distribution ( K  = 1, L = 1) we increment A' if 
AI';(?) 2 A P i ( t ) ,  and increment L otherwise. The 
step is repeated a t  each ( K , L )  pair obtained until 
A P L ( t )  satisfies the accuracy requirements. Using this 
strategy the contributions to  t.he approximation er- 
ror bound tend to  equalize. Then, a t  worst, the to- 
tal number of steps would be close t,o the minimum 
(with optimum distribution) number of steps required 
to  achieve half the approximation error bound. Since 
the dependence of the number of steps on the imposed 
AP'(2) is typically smooth, this guarantees in practice 
a behavior very close to  the optimum. 

3 Theoretical properties 

We start  considering the case P [ X ( O )  = U] = 1. In 
this case v' - q i  = u'(k)  = 0 a.nd the equations ( 3 - 5 )  
are simpdeed, requiring only the transient solu t.ion of 
the DTMC 2 a t  the steps k = 0 , 1 , .  . . , I < .  We have 
the following result: 

Theorem 2 When P [ X ( O )  = = 1 regenerative 
randomization requires at most e same number of  
steps than st and a rd random izat ion. 

Proof Let A P " ( t )  and A P k ( t )  denote the approxi- 
mations to  AP(t5 given by, respectively, standard and 
regenerative randomization. Let A P i ( t )  and A P X ( t )  
denote the respective error aproximation bounds. By 
a path analysis, we will show that for the same trunca- 
tion parameter K (the truncation parameter L is not 
involved in the randomization formulae for the case 
considered) A P L ( t )  2 A P g ( 2 )  and A P L ( t )  5 A P $ ( t ) .  

Consider the set of all paths P of the DTMC Y .  A 
path p E P is a sequence of L ( p ) +  1 states, where L p 
denotes the length of the path. Let p ( i ) ,  0 5 i 5 L [ p ]  
be the ith state of the path p ,  and let Pb] be the 
probability of the path p ,  i.e.: 

P[p] P[yo  = p(O)AYi  = p ( 1 ) A . .  . A y ~ ( p )  = p ( L ( p ) ) ] .  

Let P," be the subset of P including all paths of 
length t which end i n  state a .  Clearly, P[Yk = U ]  = 
CpEPL P b ] .  Then, we can write A P : ( t )  as: 

K 

AP:( t )  = P b ] P [ N ( t )  = k]. (6) 
k = O p E P :  

For A P i ( t )  we have: 

cc 

A P i ( 1 )  = P [ N ( t )  = k]. (7) 
k = K + l  

Let VK be the CTMC VK,L particularized t o  the case 
considered ( P [ X ( O )  = U ]  = l) ,  and let WK be the 
randomized version of V K ,  i.e., V K ( ~ )  = ( W K ) N ( ~ ) .  
WK can be defined as follows: ( W K ) k  = wk if W,,, E 
{(),I,. . . , I< - 1} U { U }  for 0 5 m _< k or wk = Ii' and 
I< has been entered only once; ( w K ) k  = b otherwise. 

We can write A P i ( t )  and A P b ( t )  as: 
a3 

A P & ( t )  = P[(WK)k = a]P[N(i)  = k], 
k = O  

00 

A P k ( t )  = 1 P [ ( w K ) k  = b]P[N(i) = k]. 
k = O  

Let P,"iK be the subset of P including the paths of 
length t which end in state a and do not give a real- 
ization of W K  entering state b. Clearly, P[(WK)k = 
U ]  = C p E p ; , ~  Phi]. Since WK can enter b only after 
a t  least A'+l st.eps, P,"," = P," for 0 5 k 5 1;. Then, 
using (6): 

a3 

A P k ( t )  = P [ ( I . I / K ) k  = U ] P [ N ( t )  = k] 
k = O  
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+ P b ] P [ N ( t )  = k]  
k=K+1 p ~ p t ~ "  

00 

= A P z ( t ) +  P b ] P [ N ( t )  = k ]  

2 A P ; ( t ) .  

k=K+1 pEp,"s" 

Let P;lK be the subset of P including the paths of 
length k which give a realization of WK entering state 
b. Clearly, P[(WK)k = b] = ~ p E p ; , ~  Pb], and, since 

W K  can enter b only after a t  least I<+ 1 steps, P,"'" = 

I 

~ , "  

Then, using (7): 

M 

P [ N ( t )  = k ]  = A P i ( t )  0 
k=K+1 

An immediate consequence of this result is the follow- 
ing corollary: 

Corollary 1 When X has an initial probability dis- 
tribution concentrated in a single state, regenerative 
randomization with an appropriate selectaoii of the re- 
generative state is better than standard randomization. 

Proof Let r E R be the initial state of X.  Take U = r 
and apply Theorem 2 0. 
We now study the limiting behavior of regenerative 
randomization. We will show that  the number of steps 
required to  achieve an approximation error bound c 
is, for At + CO, O(1og A t / € )  . The proof is done 
finding a suitable upper b o u n d  for A P E ( t )  and using 
spectral properties. The bound is obtained in the fol- 
lowing sequence of two propositions. The proofs of 
these propositions run in parallel with those of similar 
propositions which appear in [Car941 and are ommitred 
here. 

qo 

Figure 4: State transition diagram of W K J .  

P r o p o s i t i o n  2 Let W K , L  = { ( W K , L ) k ;  k = O , 1 , .  . .} 
be the D T M C  obtazned from VK,L under randomzza- 
tron rate A ,  z.e., V K , L ( ~ )  = ( W K , L ) N ( ~ )  (22s state 
transataon dzagram zs gzueii an Fagure 4). Then, 
P [ ( W K , L ) ~  = b] 5 I ( k  > L ) u ' ( L )  + I ( k  > I < ) ( k  - 
I<)o( I<) .  

P r o p o s i t i o n  3 The error approximation error bound 
of regenerative randomization satisfies 
APE(t) < a ' ( L )  + a ( K ) A t .  

Theorein 3 The number of steps required b y  regener- 
ative randomization to  achieve an approximation error 
bound APt(t) 5 c is, for At + CO, upper bounded b y  a 
fuiictioii which is O ( l o g ( A t / c ) ) .  

P r o o f  The proof uses as a basic tool results for the 
spectrum of non-negative matrices (see, for instance, 
[Cin75]). Let Q R  be the restriction of the transi- 
tion probability mat,rix of 2 to  its reachable tran- 
sient states. In general, Q R  may be reducible. Let 
Q1, Q2, .  . . , Qnr be the irreducible submatrices of the 
normal form of QR. Using Frobenius theorem, each 
Q,  has a real, positive and simple eigenvalue pi such 
tha.t any other eigenvalue < of Qi satisfies 161 5 p i .  The 
equality can only be given in the case in which Qi is pe- 
riodic and, in that  case, the eigenvalues C with IC1 = pi 
form with pi a equally spaced rotated set of complex 
numbers. Also, each Qi has rows which sum less than 
1, and pi  < 1. Let p = maxl<i<M pi. Using this char- 
acterization of the eigenvalues 6f the submatrices Qi of 
Q R ,  it is easy to  prove that a ( k )  = Cicn P[zk = i ]  is, 
for k -+ CO, upper bounded by a function of the form 
A p k ,  with A > 0. Similarly for Z' ,  let, p i ,  1 5 i 5 M' 
be the "dominant" eigenvalues of t,he irreducible ma- 
trices of the normal form of Q L ,  the restriction of 
the transition probability matrix of Z' to its reach- 
able transient skates. Let p' = inaxl<i lhfJ  p i ,  then, 
for k 4 03, d ( k )  is upper bounded by A'ptk, with 
A' > 0. Then, using Proposition 3, for At 4 CO: 

A P ' ( t )  < AlptL + A p K A t .  
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Let S = I( + L .  Since I( = L may not be the opt.ima1 
distribution, the approximation error for A’ = L = 
S/2 upper bounds the approximation error achieved 
with optimal distribution of the steps for a given S .  
Let pm = max{p, p’}. Then: 

A P t ( t )  < A’p’’/’ + ApSj2At < (A’ + AAt)p;l2 

The number of steps required to  achieve an approxi- 
mation error 5 c is upper bounded by the S’ satisfy- 
ing: 

(A’ + AAt)p;*/’  = E .  

Solving in s’ , considering pm < 1: 

4 Numerical analysis 

In this section we illustrate the properties of regen- 
erative randomization and compare its performance 
with that  of standard randomization using a relatively 
small but representative reliability model. We use tlie 
number of randomization steps in Y for SR and the 
number of steps in 2 a.nd 2’ (Ii’+L) for R R  a.s compar- 
ison metric. RR requires the use of a Laplace inversion 
algorithm. We have used Crump’s method [Cru76] 
with the parameter T of the inversion formula. set, to  
2 t ,  other parameters set so that, the relative ant,it,rans- 
form error is smaller than lo-’, and a maximum num- 
ber of Laplace abscissae to  achieve convergence equal 
to  50. In general, between 20 and 30 transform ab- 
scissae have been enough to  achieve convergence. R R  
is implemented by advancing K ,  L according t,o the 
heuristic described a t  the end of section 2 ,  till t.he 
goal relative error is satisfied. Crump’s method adds 
a time complexity O(m’) per step, where m is the 
number of abscissae. The significance of this overhead 
depends on the size of the CTRlC X.  For the rela- 
tively small models of the examples (a few hundred 
states) the overhead is a.round 30%. For large models, 
the overhead would be insignificant,. 

The example is a fault-tolera.nt database including t,wo 
front-ends, two databa.ses and two processing subsys- 
tems, each one made up of a switch, a memory a.nd two 
processors. The fault-tolerant dat,ahase system is op- 
erational if a t  least one front-end a.nd one dat,aba.se 
are unfailed and one processing subsystem is oper- 
ational; a processing subsystem is operational if its 
switch, its memory and a t  least one processor are un-  
failed. Unfailed components of a. non-operat,iona.l pro- 
cessing subsystem and all unfailed components if the 
system is not operational become dormant. Dorinant 
components do not fail. All Components fail with con- 
stant rates. Front-ends and databases have failure 
rate switches a.nd memories have failure rate 
5 x 
When a processor fails it contaminates (fails) the op- 
erational databases with probability 0.01. For t,he re- 
pair rates we consider two sets of values. I n  the (lata 

and processors have failure rat,e 2 x 

set 1 all components are repaired with rate 1. In the 
data  set 2, da.tabases have repair rat,e 0.5, front-ends, 
switches and memories have repa.ir rate 1, and pro- 
cessors have repair rate 5. There is only one repair- 
man which follows a preemptive resume priority strat- 
egy with random selection of the component to  repair 
among tlie failed components with the same repair 
priority. Front-ends and databases have the highest 
repair priority, followed next by switches and memo- 
ries, followed by processors. The measure of interest 
is the unreliability. 

We will consider two initial states for the fault-tolerant 
database system: s1 (the state in which all compo- 
nents are unfailed) and s2 (the state in which only 
one front-end is failed). Both are operational states 
and ur (0 )  = 0. For da t a  set 1, A x 1; for data  set 
2 ,  A z 5. Table 1 gives the number of required steps 
under standard randomization (SR) and regenerative 
randomization (RR) with a relative approximation er- 
ror goal E,. = for the data  set 1 (repair rates 
equal) and initial state SI, taking U = SI for RR.  Ta- 
ble 2 gives the same results for the data  set 2 (repair 
rates unequal). I n  bot,h cases U is the initial state and 
RR is guaranteed to  require a t  most the same num- 
ber of steps a.s SR. This is confirmed by the numerical 
results, which show that R R  can require significantly 
less st.eps than SR also for small a.nd medium At. We 
can also see the benign behavior of RR when t in- 
crea.ses. For data set 1, R R  is remarkably efficient; 
for data set 2,  RR is less efficient but still significantly 
more than SR,  specially for large A t .  The difference in 
performance of R R  i n  both cases can be explained by 
tlie dispersion of repair ra.tes in the data  set 2 .  In  the 
first case tlie output rate of al l  tlie states with failed 
components is a.pproxiniately equa.1 to A ,  the probabil- 
it,ies q i i  of tlie DTRIC 2 are small and 2 moves very 
“fast” to  the absorbing state b ;  then, the quantities 
a ( k )  decrease very rapidly with k ,  and very few steps 
are enough to  achieve a sinall approximation error (see 
Proposit,ion 3,  wliich gives an asymptotic upper bound 
to i lP ‘ ( t )  for large A t ) .  For data  set 2 the probabilities 
q7i of 2 are not, negligible and inore steps are required 
before a( A:) decreases significantly, causing RR to be 
slower. 

The number of steps required under SR is indepen- 
dent on the approximation error for At -+ W. The 
asympt,ot,ic bound for t,he number of required steps 
under RR when A t  + 00 given by Theorem 3 sug- 
gests a more sensitive behavior of R R  in relation to 
6 .  Figure 5 shows t.hat. beha.vior for the fault-tolerant 
dat,aba.se model, init.ial st,ate SI, U = s1 and data  set 2. 
We should not,e t,Iiat here we fix the relative approxi- 
mat,ion error bound, wl1erea.s the asymptotic behavior 
of Theorem 3 is est,ahlished i n  terms of the absolute 
approxiination error bound. This explains why the 
number of required steps S’ seems to  go asymptoti- 
cally to a constant value instead of increasing logarith- 
mically with 2: for the relatively small values of At we 
consider i n  the figure, A P ( t )  is approximately propor- 
tional t,o A t ,  tra.nsforming the law A + Blog( (At ) /~ )  
of Theorem 3 int .0 a function independent of At, when 
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Table 1: Number of steps in SR and RR for the un- 
reliability vr ( t )  of the fault-tolerant database model 
for da t a  set 1 ,  initial state SI, U = SI, 6 ,  = lo-’ and 
several values of t .  

steps 

8.052 x 
6 
6 
6 

Table 2: Number of steps in SR and RR with U = 
SI for the unreliability u r ( t )  of the fault-tolerant 
database model for data  set 2, initial state SI, U = SI, 
6 ,  = and several values o f t .  

steps 

8.067 x 10-5 
138 
141 
141 

100 

50 

Figure 5 :  Number of steps in R R  with U = s1 for 
the unreliability u r ( t )  of the fault-tolerant database 
model for data  set 2, initial state SI, as a function of 
the relative error approximation goal 6 ,  and t .  

the relative error E ,  x B A t / c  is considered instead of 
6 .  The impact of the required relative approximation 
error bound is quite evident. Thus, it seems that ,  in 
RR,  solution accuracy can be sensibly traded-off with 
computational effort, even for large A t .  This is in con- 
trast with SR. 

We next consider the fault-tolerant database model 
with data  set 2 and initial state s2. s2 is a state which 
is rarely visited. In such a situation taking the initial 
state as U may degrade significantly the typical perfor- 
mance of RR,  making it very close to  SR even though 
R R  is still theoretically better. For the fault-tolerant 
database model which is highly skewed to  state SI, the 
choice ti = s1 is the reasonable one. This is clearly il- 
lustrated by the results obtained with both choices 
which are given in Table 3. We also give the number 
of steps required under SR.  R R  with U = s2 requires 
almost the same number of steps as S R  for all 2 .  In 
addition, for t = 103,104 and the choice ( U  = s 2 ) ,  
Crunip’s method did not converge, apparently due to  
cancellation errors caused by the very small rate a t  
which a(R)  decreases. This lead us to  suspect about 
the numerical stability of the method. However, by 
comparing the results given by the Laplace inversion 
algorithm with the solution of the VK,L model with 
SR we checked that our implementation of Crump’s 
method was robust whenever it converged (the rela- 
tive error for both the approximation and the error 
bound was below in all cases we have tested). 
RR wit.h U = s1 requires slight,ly more steps than SR 
for small At and significantly less for large A t ,  exhibit- 
ing the “benign” behavior. 

5 Conclusions 

A new, recently proposed randomization method 
called regenerative miidorrtiza2ion h a s  been extended 
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Table 3: Number of steps in SRI RR with U = s1 and 
RR with U = s2 for the unreliability u r ( t )  of the fault- 
tolerant database model for data set 2, initial state ~ 2 ,  

cT = and several values o f t .  

t 
0.01 

w ( t )  
1.075 x 

0.1 
1 
10 
100 
103 
104 

1.032 x 

9.074 x 10-4 

7.123 x 
1.807 x 

8.145 x IOd3 
7.770 x lo-’ 

steps 
SH R R (  SI) RR ( s 2 )  

6 9 6 
10 15 10 
24 36 24 
97 138 96 

63 1 258 629 
5,376 258 * 

51,090 258 * 

to  the computation of measures of transient CTRIC’s 
of the type “absorption probability distribution”. An 
example of such a measure is the unrelia.bility. We 
have proved that  in the common case i n  which the ini- 
tial distribution of the model is concentrated in  a sin- 
gle state,  regenerative randomization (RR) is always 
better (requires a t  most the same number of steps) 
than standard randomization (SR). Using numerical 
examples it has been shown that RR can be orders of 
ma.gnitude faster than SRI specially in dependability 
models which often have “ra.re” states and, a t  the same 
time, frequently visited states which are good candi- 
dates for the state U required by R,R. The method 
described here can be also applied to models incor- 
porating performance as well as failure/repair events, 
e.g., queued servers which can fail. We feel that  the 
solution method we have proposed makes more acce- 
sible characteristics of such stiff models which depend 
on short as well as long term behavior, thus  open- 
ing a way to  explore interesting tradeoffs. We also 
want to  point out that ,  a t  the price of a n  increase i n  
the number of states, non-exponential dist ribiitions of 
very general classes can be accomadat,ed in CTRCC’s 
using phase-type distributions [Bob92]. Thus,  the ap- 
plication of the method proposed here is not restricted 
to  models with exponential distributions. 
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